
DRIVER ARCHITECTURE IN A LINUX WORLD

John W. Linville, Dux Linux

LVL7 Systems, Inc.

13000 Weston Parkway, Suite 105, Cary, NC 27513, USA

linville@lvl7.com

Abstract

Vendors of modern networking hardware realize that the devices they provide require a great deal of

software in order to function effectively. As a result, many hardware vendors provide large amounts of

software for use with their devices. However, the prevalent use of the VxWorks
�

1 operating system has

allowed hardware vendors to become careless with the architecture of the driver software they provide.

Often the driver software provided by hardware vendors is difficult to use in a protected environment

like Linux
�
.2 This paper begins by discussing strategies for making use of such drivers in a Linux

�

environment, and continues by discussing how hardware vendors might architect Linux
�
-friendly driver

software. Finally, the paper discusses how vendors can provide first-class Linux
�
support for their

hardware and why it is in their best interest to do so. This paper is a must read both for system

integrators new to Linux
�
and for driver software architects unfamiliar with the Linux

�
environment.

1 Introduction

In the modern world of advanced networking, sim-
ple hardware just does not exist. Requirements for
both speed and functionality have increased expo-
nentially for many years. In many segments of the
marketplace, designs relying on a system’s CPU to
forward frames, to learn addresses, or even to run
simple protocols are at such a disadvantage that al-
most no one in those market segments produces such
a system. Modern networking designs require hard-
ware that is capable of off-loading basic networking
functions from the CPU. Whether that hardware is
a programmable co-processor or a configurable net-
working ASIC, complicated software is required to
bond that hardware and the system’s CPU into a
cohesive networking system.

In order to encourage the use of this advanced but
complicated hardware, networking hardware vendors
provide driver software for use with their products.
This software is generally not a formal device driver
as defined by an operating system, but rather an
informal collection of software designed to ease the
use of the driven hardware. Nevertheless, this soft-
ware is often incorporated directly into commercial
end products. This situation has provided hardware
vendors with the opportunity to differentiate their

products by offering as much software support for
exercising the features of their hardware as possible.

Today, most networking hardware vendors provide
a large base of software to support their products.
Such software typically contains hardware access
routines, application support libraries, and even ser-
vice tasks that perform maintenance services related
to supported applications of the hardware. However,
most hardware vendors are not in the business of
selling software. As a result, hardware vendors tend
to have limited software development resources. It
is not surprising that these vendors tend to support
only the most ubiquitous operating system platforms
with their driver software.

For some time, VxWorks
�

has been the domi-
nant operating system for embedded networking de-
vices. Consequently, the primary focus for software
support by networking hardware vendors has been
VxWorks

�
. More recently, Linux

�
has become a

strong player in the world of embedded systems and
particularly in the embedded networking arena. At
first glance, VxWorks

�
and Linux

�
may seem to

have much in common with one another. For ex-
ample, both support one or more of the industry
standard Posix APIs. However, these two operat-
ing systems are distinctly different in many ways.
Supporting one rarely implies support of the other.

1VxWorks is a registered trademark of Wind River Systems, Inc.
2Linux is a registered trademark of Linus Torvalds.



This situation is aggravated by the fact that many
hardware vendors take advantage of the less restric-
tive “features” of the VxWorks

�
environment when

implementing their informal driver software. The
Linux

�
kernel enforces a strict driver model for

hardware access and it segregates different software
components into separate address spaces. In con-
trast, VxWorks

�
does not enforce any strict driver

model or memory access protection.3 The software
provided by many hardware vendors makes no dis-
tinctions between hardware access routines, applica-
tion support libraries, or system service tasks. The
lack of such distinctions is incompatible with the pro-
tected environment provided by Linux

�
. As Fig-

ure 1 illustrates, the result is a software conglomer-
ate that can be very difficult to integrate effectively
into a Linux

�
system.

FIGURE 1: Typical conglomerate driver

2 The Näıve Approach

Linux
�

is a protected system. The Linux
�

kernel
uses the memory management hardware available on
modern CPUs not only to protect tasks from each
other but also to protect the kernel from errant user-
land tasks. Furthermore, in order to ensure system
integrity the kernel allows only “root”-owned pro-
cesses to access physical address ranges. Even those
processes are required to use specific programming
interfaces in order to map physical address ranges
into a process’s virtual address space. Other types
of hardware accesses are restricted entirely to code
running in the kernel’s context. This group includes
interrupt handlers, DMA transfers, and any other
hardware access that is not memory-mapped. These
protections have great value, but they serve to make
it very difficult to control hardware of any complex-
ity entirely from userland.
As asserted earlier, modern networking hardware
tends to be both highly functional and highly com-
plex. Simple memory-mapped register access is gen-

erally insufficient for control of these devices. Other
forms of hardware access generally require execution
in kernel context, and vendor-provided conglomerate
drivers tend to be poorly segregated between hard-
ware access and higher-level functionality. The solu-
tion seems obvious: package the conglomerate driver
in a way that allows it to execute within the context
of the kernel.

A vendor-provided driver tends to have a top-level
API that is intended for use by developers in cre-
ating a working system. Developers will expect to
use this API when developing their networking ap-
plications. However, in this model the actual con-
glomerate driver will reside in a separate address
space from the rest of the application. This makes
traditional linking impossible. One solution is to
provide a library for the application to link against
that mimics the published API of the conglomerate
driver. Underneath, this doppleganger 4 library will
communicate to the kernel-resident code by estab-
lished means, such as an ioctl() call to an actual
Linux

�
device driver. Figure 2 illustrates the imple-

mentation of this approach.

FIGURE 2: The Näıve Approach

In practice, this approach works reasonably well to
provide access to a conglomerate driver’s functional-
ity from userland applications. However, the cost of
switching between user and kernel contexts can accu-
mulate to be quite large if driver APIs are called re-
peatedly or in rapid succession over a period of time.
Also, many complex conglomerate drivers make use
of application callbacks. Since there is no simple
way to call userland functions from within the ker-
nel’s context, this method either precludes the use
of callbacks or requires one to invent a means of
simulating them appropriately for the given driver

3Wind River Systems, Inc. offers a product called VxWorks AE
�

which does offer a protection domain model. However,

use of VxWorks AE
�

is not as prevalent as is the use of its predecessor. Therefore, all references to VxWorks
�

within this

document should be interpreted to refer to the original VxWorks
�
.

4In German folklore, a doppleganger is the ghostly double of a living person—especially one that haunts its fleshy counterpart.



and application. Similarly, other means of applica-
tion ←→ driver communication that rely on shared
memory may only be available with some difficulty,
if at all.

Perhaps the biggest problem with this approach lies
with the fact that standard Linux

�
kernels are not

preemptible. While not generally a problem with
properly written code, this can be quite a big prob-
lem with code that was not written with this environ-
ment in mind. Such software will generally not make
any effort to bound its own execution time. Thus,
improperly written code will very easily starve all of
the other processes in a system. Since VxWorks

�

allows any or all tasks to be preemptible, vendor-
provided conglomerate drivers generally fall into this
category of improperly written code.

Note that non-preemptibility is a problem even if
processes execute at a very low priority. Even though
threads executing in the kernel’s context receive no
special consideration when it comes to scheduling,
once they are scheduled they will continue to hold the
CPU until they voluntarily relinquish it. Since it is
presumable that every thread will be scheduled even-

tually, this is a potential problem with any thread ex-
ecuting within the kernel’s context. There is a well-
known kernel patch maintained by Robert Love that
will tend to solve this particular problem.[1] How-
ever, not everyone will be using this patch at the
present time or even in the near future.5

A less tangible problem with this approach relates
to the amount of code running in the kernel’s con-
text. Vendor-provided conglomerate drivers tend to
be rather large. These conglomerate drivers tend
to provide a lot of functionality and are often tar-
geted at multiple devices within a family of hard-
ware. It is generally accepted that the number of
bugs in a piece of software is proportional to the size
of that software. So, the potential for bugs in driver
code is fairly large. By placing code in the kernel’s
context, one makes it more difficult to debug that
code and makes the consequences of bugs in that
code greater than if the same code were running in
a user’s context. By itself, this should be enough
to dissuade the experienced Linux

�
developer from

pursuing this approach.

The Linux
�

kernel reserves most direct hardware ac-
cess to code running in the kernel’s context. Vendor-
provided conglomerate drivers do nothing to seg-
regate hardware access routines from library rou-
tines and service tasks. The simple solution seems
to be to package the conglomerate driver in a way
that lets it run in the kernel’s context. Unfortu-
nately, this approach is quite expensive in terms of
context switches, it precludes certain common soft-

ware practices, it can cause problems due to non-
preemptibility in the kernel’s context, and it puts
extra code into the kernel’s context where it is more
difficult to debug and more dangerous in the event
of failure. To the näive, this approach seems like
a great idea. However, experience shows that it is
rarely satisfactory. There must be a better way.

3 A Better Strategy

There are potentially many reasons why one may
wish to preserve the code a vendor provides as a sin-
gle conglomerate. This is particularly true if the con-
glomerate driver is an existing piece of developed and
tested software. It has already been demonstrated
that it is undesirable to run a conglomerate driver
in the kernel’s context. However, it is also possi-
ble to run most or all of a conglomerate driver in a
user’s context. This strategy can produce a work-
able system without major changes to an existing
conglomerate of software.

As discussed earlier, the Linux
�

kernel restricts
many kinds of hardware accesses to only code run-
ning in the kernel’s context. Complex networking
hardware will generally require more than simple
memory-mapped register accesses in order to func-
tion properly. If the body of an existing conglomer-
ate driver is to reside in a user’s context, some means
must be devised to account for these non-memory-
mapped hardware accesses. The general approach
to providing this type of access is to implement a
small formal device driver that executes in the ker-
nel’s context. This small driver provides the required
functionality (e.g. DMA transfer setup) through a
small suite of custom ioctl() calls. As depicted in
Figure 3, generally only a few small changes to the
conglomerate driver are required to make this strat-
egy work.

FIGURE 3: A Better Strategy

5This paper will avoid advocating the use of kernel patches that are currently outside the mainstream.



This strategy avoids many of the problems found
with the previous approach. No special “shim” or
doppleganger library is required to allow the appli-
cation to access the conglomerate driver, and call-
backs, two-way sharing of pointers, and other com-
mon software techniques are easily available to the
body of the conglomerate driver’s code. Thread pre-
emption is not a problem since code running in a
user’s context is always preemptible. Debugging is
possible using standard means,6 and crashes do not
automatically crash the whole system. In general,
this is a much better strategy than the previously
described approach.

However, this strategy is not a panacea. It may be
very difficult to isolate those services that must run
in the kernel’s context from the rest of the conglom-
erate driver. Presuming that the conglomerate driver
was not architected with this strategy in mind, it is
likely that any simple partitioning will be less than
optimal. It is very likely that some hardware accesses
will occur more frequently than truly required and
that others will be a small part of a larger atomic op-
eration that has no other need to run in the kernel’s
context. Hence, this strategy is still prone to exces-
sive amounts of expensive context switching or non-
preemptible execution in the kernel’s context. This
situation is exacerbated if the networking hardware
needs to be accessed through a Linux

�
net driver.7

The Linux
�

networking stack is part of the kernel.
As such it executes within the kernel’s context. Con-
sequently, Linux

�
net drivers execute within the ker-

nel’s context in order to provide access to network-
ing hardware through standard Linux

�
networking

APIs. If the current strategy is in use and the net-
working hardware needs an associated Linux

�
net

driver, then either: a) the net driver needs to have
a means of synchronizing hardware access between
itself running in the kernel’s context and the con-
glomerate driver running in a user’s context; or, b)
the net driver needs to be able to exchange incoming
and outgoing frames with the conglomerate driver
running in a user’s context. Either of these possibil-
ities is expensive with regard to context switches. In
particular, option b) requires as many as three sepa-
rate context switches for any given frame received at
the CPU. Obviously, this is more context switching
than is desirable.

This strategy also has an intangible problem. Most
software architectural diagrams show the operating
system and device drivers at the bottom and any
applications at the top. With this strategy, the ac-
tual hardware driver lives somewhere in the middle of

the diagram. So, this strategy is somewhat “upside-
down” with regard to accepted norms. Of course,
this is not a technical issue. However, the “upside-
down” nature of this strategy can lead to much con-

fusion. Confusion leads to errors, errors lead to bugs,
and bugs lead to failures.

As we have already seen, running a conglomerate
driver in the kernel’s context has many problems.
Still, it is very tempting to preserve existing code as
a single entity. With slightly more effort, it is possi-
ble to run a mostly intact conglomerate driver in a
user’s context while still producing a workable sys-
tem. However, this strategy is not without costs.
Context switching is expensive, and this strategy
requires more context switching than is desirable.
Also, this strategy is “upside-down” when compared
to how things are normally done. Confusion leads to
failures and is best avoided if at all possible. While
this strategy is better than the first approach, it
seems clear that another solution must be found.

4 The Best Solution

The discussion so far has enumerated and demon-
strated the problems with maintaining a conglomer-
ate driver as a single entity in a Linux

�
environment.

The cost of excessive context switching becomes sig-
nificant, and the costs associated with debugging dif-
ficulties, system complexity, and design unconven-
tionality are significant as well. While there may be
defensible reasons for attempting to do so, using a
conglomerate as-is can be quite expensive. It seems
likely that the approaches described so far introduce
as many problems as they solve.

So, what is the correct solution? All of the problems
discussed so far stem from an architectural conflict:
the Linux

�
kernel restricts most hardware accesses

to code running in the kernel’s context; and, con-
glomerate drivers do not adequately separate hard-
ware access code from other conglomerate compo-
nents. The deceptively simple answer is that one
must remove this conflict between the Linux

�
ar-

chitecture and the architecture of the conglomerate
driver. This means dismantling the conglomerate
driver and reconstructing it in a form compatible
with the Linux

�
driver model.

How does one begin? As was discussed earlier, the
typical conglomerate driver contains not only basic
hardware access routines, but also application sup-
port library routines and even services tasks. In
many cases the hardware access routines will need

6Unlike code running in the kernel’s context, code running in a user’s context is easily debugged using software debuggers

and other common debugging means.
7Use of the Sockets API to communicate over networking hardware will require the implementation of a Linux

�
net driver

for that hardware.



to run within the kernel’s context. However, the
other components almost always need to run in a
user’s context. The task at hand is to separate
the two application-oriented components from the
system-oriented hardware access component. The
result should look something like the depiction in
Figure 4 below.

FIGURE 4: The Best Solution

One starts by sorting the pieces of the conglomerate
driver into a hardware access group and an “other”
group. Sometimes this will be a straightforward pro-
cess, but often it will require quite a bit of code anal-
ysis. At this point it will likely be necessary to be-
gin breaking existing files into hardware access and
“other” versions of the original files. Also, many ex-
isting functions will need to be modified either to
remove unnecessary hardware accesses or to formal-
ize those accesses in a way that is supportable in
the Linux

�
environment. The end result should be

two distinct object libraries. The hardware access
library should have no dependencies on the “other”
library, while the “other” library should at most re-
quire access to the functions defined in the hardware
access library. In particular, there should be abso-
lutely no use of shared global variables between the
two libraries and no calling of functions defined in the
“other” library from functions defined in the hard-
ware access library.
With the former conglomerate driver broken into
these two distinct libraries, one has the basic ingre-
dients necessary for implementing this solution. The
hardware access library can be packaged to run in the
Linux

�
kernel’s context using a wrapper that im-

plements one or more of the standard Linux
�

driver
interfaces. The “other” library is used for linking
against applications requiring access to the hardware
controlled by the former conglomerate driver. The
interface between the hardware access library and
the “other” library is implemented either by adding

Linux
�
-specific code to the “other” library or by cre-

ating a doppleganger library that provides the same
symbol definitions as the hardware access library but
uses Linux

�
-specific code to drive the hardware ac-

cess code running in the kernel’s context. The end
result is a functional solution in nearly every case.

In most cases, however, this solution is not for the
faint hearted. Once a conglomerate driver has ex-
isted for some time, the lack of architectural disci-
pline amongst conglomerate driver developers tends
to lead to a spaghetti-like mess of hardware ac-
cesses within service tasks, application callbacks
from within interrupt handlers, and other question-
able practices that can be difficult to translate to
the Linux

�
environment. Sorting-out such a tangle

of software can require a great deal of time, energy,
and motivation. An intimate knowledge of both the
conglomerate driver and the hardware it drives is
required as well. Still, in the author’s opinion the re-
sulting “purified” driver is well worth the cost. That
is especially true if quality, performance, or main-
tainability are desirable attributes for one’s Linux

�
-

based product.8

Unfortunately, this solution has a greater upfront
cost than the approaches discussed so far. One must
be willing to dig deeply into code that most devel-
opers consider a “black box.” This can require a
large investment of development time and resources.
Properly separating a conglomerate driver into hard-
ware access and “other” libraries requires not only
an intimate knowledge of the conglomerate driver
and the hardware it drives, but also enough Linux

�

knowledge and experience to accomplish the task.
Covering both of those competencies can be diffi-
cult, and the investment of time and resources can
be expensive. However, the payoff is in better per-
formance, easier debugging, and greater stability. In
the long run this is the cheapest of the alternatives
discussed so far.

5 Driver Architecture 101

So far, the discussion has been about how to make
use of an existing conglomerate driver in a Linux

�

environment. This discussion has been pertinent be-
cause the prevalent use of VxWorks

�
in the em-

bedded networking arena has fostered the prolifera-
tion of poorly architected conglomerate drivers. But
drivers would not require difficult adaptation for
Linux

�
if they were developed properly in the first

place! A set of driver libraries that are architected
in a Linux

�
-friendly way should work equally well

with VxWorks
�

or any other operating system.

8Hopefully this applies to everyone. . .



How does one structure a driver library so that it
works equally well with both Linux

�
and operat-

ing systems like VxWorks
�
? A proper driver archi-

tecture should provide for a hardware access layer.
This layer should encapsulate all of the atomic oper-
ations one would want to perform on the hardware.
Once defined, this layer should not be violated for
any reason whatsoever. Also, any dependencies on
the hardware access must be “one-way”—calls from
the hardware access layer to higher layers are specif-
ically not allowed. In Linux

�
, the hardware access

layer will be run within the kernel’s context. In an
unprotected operating system, this layer will be just
another part of the driver library.
A driver architected in this way should work reason-
ably well either in a protected operating system like
Linux

�
or in an unprotected operating system like

VxWorks
�
. A driver library architected in this fash-

ion from the beginning should introduce neither ex-
tra runtime overhead nor extra complexity in either
a protected or unprotected environment. Further-
more, this basic design framework is more in line with
modern software design practices and should lead to
fundamentally better software with fewer bugs and
better stability. There really is no excuse for not fol-
lowing this basic design framework when architecting
a new hardware driver.
As demonstrated, there are a number of ways to
approach the problem of adapting an existing con-
glomerate driver to a Linux environment. However,
this problem should not exist in the first place! A
driver library architected in a Linux

�
-friendly way

will work equally well in either a protected environ-
ment like Linux

�
or an unprotected environment

like VxWorks
�
. And, due to the better design prin-

ciples in use, a driver architected in such a way will
tend to be better software. Clearly this is the way
hardware driver libraries should be done.

6 Embracing Linux
�

Not that long ago, Linux
�

was an operating system
only for desktop and server computers. However,
in the past few years Linux

�
has become quite a

significant player in the world of embedded systems
and particularly in the embedded networking arena.
Some have suggested that Linux

�
will become the

dominant operating system in the embedded systems
market.[2] What is certain is that Linux

�
will con-

tinue to be a significant player in the embedded net-
working arena for the near future.
Given the growing popularity of Linux

�
in the em-

bedded arena, it seems reasonable that a hardware

vendor may want to make its hardware as attrac-
tive as possible to those using Linux

�
. How might

a vendor do this? A good first step is to ensure that
the vendor’s driver architecture is Linux

�
-friendly.

A vendor might do this either by purifying what ex-
ists now or by making sure that the driver is archi-
tected correctly in the first place. As well, the vendor
should conduct the exercise of running the driver un-
der Linux

�
in order to ensure that the driver actu-

ally works in the Linux
�

environment. These exer-
cises will serve to guarantee that the Linux

�
market

is available to the vendor’s hardware.

Michael Tiemann,9 CTO of Red Hat, Inc., has sug-
gested that Linux

�
should be viewed as a platform

rather than simply as an operating system.[3] What
does this mean for a hardware vendor? For one thing,
this means that the vendor should implement stan-
dard Linux

�
device drivers as appropriate for the

capabilities of the vendor’s devices. Moreover, a wise
vendor will determine how to take advantage of ex-
isting Linux

�
functionality10 as well as how to ex-

tend it in ways that are appropriate for the vendor’s
hardware. In this way, the vendor’s hardware be-
comes accessible to any software already available for
Linux

�
that is related to the functions provided by

the vendor’s hardware. It should be clear that this
would benefit both the hardware vendor and the sys-
tem integrator using Linux

�
.

That Linux
�

will be a significant embedded operat-
ing system for at least the near future seems certain.
Linux

�
users are more likely to use hardware with

good Linux
�

support. This is especially true since
hardware that is well supported by Linux

�
is un-

likely to require much custom software to make use
of it. The benefits of embracing Linux

�
should be

obvious.

7 Conclusion

For some time, VxWorks
�

has dominated the mar-
ket for embedded networking operating systems.
This market dominance has allowed networking
hardware vendors to concentrate only on supporting
VxWorks

�
with the software they provide to drive

their hardware. Unfortunately, the unprotected na-
ture of VxWorks

�
has fostered the development of

driver software that is difficult to use with a pro-
tected operating system like Linux

�
. There are ways

to use a more-or-less intact conglomerate driver with
Linux

�
, but the results are generally sub-optimal.

Following simple rules, it is possible to re-architect
an existing conglomerate driver in order to make

9Michael Tiemann was a co-founder of Cygnus, the first company with a business built around Open Source technologies.
10Linux

�
has extensive support for networking e.g. routing, bridging, VLANs, LAGs, etc.



it more compatible with Linux
�
-like operating sys-

tems. The results achieved by using a “purified”
driver can be quite satisfactory. However, conduct-
ing such a purification requires a larger commitment
of resources than the average organization is willing
to make. As usual, much better results are achieved
by doing the job right the first time.

A properly architected driver will work equally well
with either protected or unprotected operating sys-
tems. There should be neither a runtime penalty nor
a development penalty for doing things correctly in
the first place. Such a driver will open a much wider
market for the hardware it drives. Why would one
build a driver any other way?

References

[1] Andrews, Jeremy, 2001, Interview: Robert Love,
KernelTrap, http://kerneltrap.org/. . .
. . . /node.php?id=1.

[2] Sprackland, Teri, 2002, Embedded Market Ac-

cepts Linux, Nikkei Electronics Asia,
http://www.asiabiztech.com/nea/200205/. . .
. . . /cmpu 183147.html.

[3] Tiemann, Michael, 2002, How Linux Will Revolu-

tionize the Embedded Market, LinuxDevices.com,
http://www.linuxdevices.com/articles/. . .
. . . /AT7248149889.html.


