AN ASSESSMENT OF REAL-TIME ROBOT CONTROL OVER

IP NETWORKS

G. H. Alt, R. S. Guerra & W. F. Lages
Federal University of Rio Grande do Sul, Electrical Engineering Department
Av. Osvaldo Aranha, 103, 90035-190 Porto Alegre, RS, BRAZIL
alt@inf.ufrgs.br, rsguerra@eletro.ufrgs.br, w.fetterQieee.org

Abstract

This article presents an assessment of the performance of a real-time controller using an IP network
to link the controller, the sensor and the actuator. This control system is part of anthropomorphic
robot manipulator with two arms and a pan-and-tilt stereo vision head with total of the 19 joints. Each
joint has an actuator, an incremental encoder, an electromagnetic brake and an inductive contact sensor.
There are also two six-axis force sensors. In order to cope with all devices an distributed control system
was implemented. The devices are all connected to an IP network and the real-time control loops are
configured by software and run over the IP network. The real-time requirements of the control loops,
which must run at 100Hz rate, are enforced by using RTAI in LXRT hard real-time mode. RTAI is also
used for monitoring the time behavior of the network packets, in order to deal with the best-effort of
assumption of the IP network. Indeed, an IP network assures that it will do its best effort to deliver each
data packet, but there is no guarantee that the packet will be delivered. However, a real-time control
loop must run at an accurate rate or the system performance or stability will be impacted. Therefore,
sensor data must be feed to the controller at the same rate, or it will not be able to compute the control
action. Hence, the ability of the IP network to deliver the packets with reliability and rate accuracy is
very important. Of course, IP networks were not designed with such applications in mind, but it is very
difficult to neglect the low-costs due to mass-production. The time behavior and the performance of a
controller implemented over an IP network is characterized and compared with those obtained with a

local controller.

1 Introduction

Control of computer networks consists in the use of
control systems theory for the determination of pa-
rameters of communication networks, frequently us-
ing methods of closed-loop control. Typical prob-
lems in this line of research wireless is the control of
transmission power in wireless networks [5] and the
control of congestion in ATM networks [12].

On the other side, the main motivation of this work
is in using the existing conventional computer net-
works, based on IP protocol, to implement a dis-
tributed control systems. In general, the decision to
use a distributed control system based on the Inter-
net protocol (IP) is made due to simplicity and low
cost of installation and maintenance. This area t is
relatively new for the control community in academy
(there are a few number of academic papers deal-
ing with this), but it is not so new in the industrial
field [1] although using dedicated protocols. This

peculiarity allows us to assume that there is a lot
of space for developments in this area. The idea in
this context is to use communication network to ex-
change control signals. Standard computer network
technologies have been adapted for this context, such
as daisy-chained RS-232, multi-drop RS485, IEEE-
488 and Ethernet and its extensions, such as wire-
less Ethernet (IEEE-802.11). Additionally special-
ized networks have been developed for industrial ap-
plications, such as CAN [2] [3], Foundation Fieldbus
[4] and Profibus [8].

Networks for control systems differ from general com-
puter networks in some important aspects, such as
generating frequent small packages with real-time re-
quirements. An important aspect to consider is that
the objective in a control network is not to transmit
digital data, but control or sensor signals through
bits. Hence, usual metrics in computer networks
such as amount of data and transfer rate become
secondary in a control network.

Another factor to consider is that in a control net-
work the delays are not generated by the environ-
ment, in contrast to what could be supposed at a
first glance. The transfer rate of the network, is such
that the time of data transmission. The delays are
generated basically by the queues in the network sys-
tem. In general computer networks, these queues op-
timize the average delay time of packages. However,
in a control network many times is more convenient
to eliminate these queues [12].

Control networks must obey the two main criteria:
limited delay time and guaranteed delivery. A very
long delay to deliver a message can deteriorate the
performance of the control system or even turn it
unstable. The use of many protocols has been con-
sidered to satisfy these requirements, among them:
CAN (CSMA/BA), token bus (IEEE-802.4), token
ring (IEEE-802.5) and CSMA /CD (IEEE-802.3)[12].
The key point her is to determine which device in a
control network has the right to access the transmis-
sion medium. Clearly, this method used to select one
device has a great influence on the delay of messages.
The final goal of this work is to control a manipula-
tor robot through the Internet, sending sensor data
and control signals through the network. To cope
with the variable delays, two methods will be used.
Quality of Service (QoS) protocols to minimize the
delays as much as possible and optimal estimation
theory, such as Kalman filter, to estimate the ana-
log signal corresponding to the data packages with
unacceptable delays.

This paper analyzes the many time delays present
in a control system over the Internet. The delays
and their variation (jitter) occurring in a real control
system are measured and their effects on the system
analyzed.

While delay time in the Internet can not be ac-
curately determined, due to its complex stochastic
model [13], some attempts have been made to model
the network delay [10]. However, it remains difficult
to estimate the delay of packages being transmitted
through a given route.

Certain enough an IP network will do its best effort
to deliver the packages, but in fact there is not any
guarantee about the time behavior of the package or
even about the delivery itself. However, a control
loop must operate at an accurate rate, or the system
performance or worse, the system stability will be
impacted. Therefore, the data of the sensors must
be supplied to the controller at the same rate, or if
it will not be able to compute the control action.
The ability of the network to deliver packages with
sensor data to the controller and packages with con-
trol data to the robot at required rates is very im-
portant for the system performance and stability. Of

course, IP networks were not designed with such ap-
plications in mind, but its low cost and availability
due to the production scale attained, makes it diffi-
cult to not consider the use of IP networks.

In this paper, the time behavior of closed-loop con-
trol system implemented over an IP network is ana-
lyzed and contrasted with a purely local controller.

2 System Description

The system used to evaluate the delays in the close-
loop control system is shown in figure 1. The system
is composed by a manipulator robot and its con-
troller and they are connected by an IP network.
The control signals for the manipulator (Voltage to
be applied to the motors) are computed by the con-
troller and sent to the manipulator through the IP
network. Similarly, the position of the manipulator
joints (readings from incremental encoders) are sent
to the controller using the network. Thus, there are
two major delays due to the network in the closed-
loop.

FIGURE 1: Networked Control System

2.1 System Hardware

The block diagram shown in figure 1 was imple-
mented using the Janus manipulator robot, avail-
able at the Electrical Engineering, Department of the
Federal University of Rio Grande do Sul, Brazil. Fig-
ure 2 shows the Janus Manipulator. It is an anthro-
pomorphic robot with two arms and a head. Each
arm has 8 joints equipped with a DC motor actuated
by PWM, an incremental encoder, an electromag-
netic brake and and inductive contact sensor. The
head has two joints and a stereo vision system.

FIGURE 2:

Janus Manipulator Robot

2.2 System Software

All the control actions of the system are performed
in software. The hardware just supports the read-
ing of the sensor data and the command of actua-
tors. As the focus of this work is in the network
introduced delays, the control law for the robot was
kept as simple as possible. Thus, the robot controller
uses an independent PID controller on each joint. In
other words, the voltage applied to each joint motor
is computed by (1):

u(t) = Ke(t) + K; /t e(t)dt + Kd%e(t) (1)
0

where u(t) is the motor voltage, e(t) is the joint posi-
tion error and K, K; and Ky are controller param-
eters to be adjusted for the desired performance.
For reasons related to control system stability, which
are above the scope of this paper, the sampling rate
of the joint controllers should be 100Hz. This sam-
pling rate is enforced using RTAI in hard real-time
mode. RTAT hard real-time facilities is also used to
time-stamp the transmission and reception of net-
work packages.

3 Control over IP Network

The logical network employed in this work is based
on non-deterministic Ethernet at physical and link
layers, IP at network layer and UDP at transport
layer. The IP protocol can break up datagrams and
send them through different paths over the network.
The datagrams should then be reordered and re-
assembled at reception. Furthermore, IP does not
assure data delivery, since the routers have permis-
sion to discard datagrams, without even informing

sender or receiver. This is called best effort service,
as opposed to reliable service offered by some other
networks. IP trusts above layers to recover discarded
frames[11] in order to implement a reliable service to
applications.

This limitation does not cause problem for typical
applications such as web, mail or file transfer. But
as the new applications, including audio and video
arise, there is an increasing demand for high trans-
fer rates (bandwidth) and low latencies while keep-
ing two-way communication. Hence, the question is,
how to improve the level of services offered by IP and
the corresponding infrastructure without adding too
much complexity. There are many proposals of meth-
ods to incorporate Quality of Service on top of IP.
See [9] for an up-to-date discussion of these methods.

The transport protocols most used with IP network
protocol are, by far, Transmission Control Protocol
(TCP) [7] and User Datagram Protocol (UDP) [6].
TCP is a full-featured transport layer protocol, with
all functionalities needed to ensure a reliable end-to-
end data transfer, such as flow control, error detec-
tion and recovery, etc. On the other hand, UDP is
a very simple protocol without error detection and
recovery. Effectively it is not much more than an
interface to IP protocol.

For the real-time networked control application pro-
posed here, UDP seems to be more adequate. The
simplicity of UDP allows the application interact
more directly with the network system, in order to
keep the required data rate. Furthermore, as the
data (sensor and control signals) should be transmit-
ted within strict time frames, the recovery of lost or
corrupted protocol packages through retransmittion
could have a bad effect on the system since system
bandwidth would be used to transmit a package of
outdated data. Also, sensor and control signals tend
to be smooth signals. Therefore, it is more effective
to estimate value of the sensor or control signal corre-
spondent to the the lost packages then to retransmit
them. Figure 3 shows the stack of protocols proposed
for real-time robot control.

The application programs, i. e. the programs that
run above UDP use a client-server architecture. The
robot systems is the server while the client perform
the robot controller functions. Services available to
client includes turn the robot on and off, set voltages
applied to motors and return readings from sensors.
The client application interfaces with user and runs
the robot controller function using the PID control
law, as detailed in section 2.2.

Application client X server

Client e ™ Robotic System

| 1 |

UDP le UDP protocol » UDP

1P L R > 1P

[1 P

Ethernet driver

Ethernet driver

ethernet

FIGURE 3: Stack of Protocols Used for
Networked Robot Control

In a typical UDP client-server application, the client
does not establish a connection with the server, since
UDP is a connection less protocol. Instead, the
client just sends the datagram to the server using
the sendto() function. Similarly, server does not
accept connections from client. Instead, server only
calls recvfrom() function, that blocks until data ar-
rive from client. The recvfrom()function returns
the address of client, to allow server to send replies
to correct client.

4 Networked Robot Control

4.1 Server

The server is implemented by a function that loops
reading datagrams arriving at server port. The data-
gram buffering is implicit in UDP layer. Each UDP
socket has a reception buffer. A call to recvfrom()
return a datagram from the buffer in FIFO order.
Hence, if many datagram arrive for socket before
they can read, they are queued. Of course, the buffer
has a size limit. However, for our application that
is not an issue, since to maintain the sampling rate
required by the control system, the server should be
able to read each incoming datagram before the next
one arrives.

Figure 4 shows the details of the client-server com-
munication. There is just one server process and
it uses just one socket that receives all the requests
from client and sends all the answers.

UDP Server

socket()
UDP client
socket() bind()
recvfrom()
sendto() l

Waiting datagram

recvfrom() Request process
sendto()
close()
FIGURE 4: Client-Server Networked

Robot Control

When the server program is initiated in the robot
system, it creates one socket and defines the local
port for the socket. This function contacts the port
mapper to register the server. Then, the server waits
for requests from client.

4.2 Client

The concept employed in the proposed networked
control system is to perform all control operations
in the client.

The client is divided in independent routines that
switch on, disconnect, and send control signals to
the robot and receive sensor data from robot.

The real-time robot controller, located in the client,
is programmed using the threads model and allows
the execution of the independent joint control. The
controller thread runs in parallel with the communi-
cations thread, that sends the control signals com-
puted by the controller thread and receive sensor
data used by controller thread. These two threads
communicate each other by shared variables. Both
threads are hard real-time LXRT threads, running
in endless loop. However, the controller thread is a
periodic thread and defines the sampling rate of the
system (100Hz). The controller thread synchronizes
with the communicating thread through semaphores
and with the server program through UDP data-
grams since the recvfrom() function is blocking.

5 Experimental Results

Experimental result with the proposed system were
obtained in four setups:

Monolithic Program PID controller and robot in-
terface unified in a single program.

Client-Server Through Loopback Interface
PID controller (client) and robot interface
(server) implemented as two independent pro-
grams running in the same machine and com-
municating through the loopback interface.

Client-Server in a Single Machine PID con-
troller (client) and robot interface (server) im-
plemented as two independent programs run-
ning in the same machine and communicating
through the network interface (NIC driver).

Client-Server in Different Machines PID con-
troller (client) and robot interface (server) im-
plemented as two independent programs run-
ning in separate machines, obviously commu-
nicating through the network.

5.1 Monolithic Program

This test case is the traditional control system im-
plementation, without networking. Therefore it pro-
vides the bottom-line for comparing the effects of the
network in the control loop. The following timing
parameters were collected (see figure 5):

1. Time delay between the reading of sensor data
and the writing of motor voltages, shown by
the red line in figure 5. This parameter mea-
sures the time used to compute the control law
give by expression (1).

2. Time delay between two consecutive writings
of motor voltages, shown by the green line in
figure 5. This parameter measures the effective
sampling period of the controller.

3. Time delay between two consecutive readings
of sensor data, shown by the blue line in fig-
ure 5. This parameter measures the effective
sampling period of the controller.

Zes0?7

Bif tempo TR/RX
Dif TR/TR-1
Dif RRRA-1 ——

20407 by

le+07 | | ‘ ‘

[H }
~1e+07

~2e+07

~3e+07

FIGURE 5:
lithic Program

Time Delays (ns) with Mono-

5.2 Client-Server Through Loopback
Interface

This test case uses the proposed client-server archi-
tecture but the network effects are minimized by con-
necting the client and the server through the loop-
back interface. Therefore it provides what would
be the faster client-server connection, enabling us
to evaluate the effects of separating the controller
and the robot interface while minimizing the net-
work effects. The following timing parameters were
collected (see figure 6):

1. Time delay between the reception of sensor
data and the transmission of motor voltages,
shown by the red line in figure 6. This param-
eter measures the time used to compute the
control law give by expression (1). Note that
this parameter is measured at the client.

2. Time delay between two consecutive transmis-
sions of motor voltages, shown by the green line
in figure 6. This parameter measures the effec-
tive sampling period of the controller. This
parameter is also measured in the client

3. Time delay between the reception of the con-
trol signal and the transmission of the sensor
data, shown by the blue line in figure 6. This
parameter measures the time used by the robot
interface to apply the voltages to motors and
read sensors. This parameter is measured at
the server.

Be«07?

Dif tempo THARX

Dif T/Te-1

IV p—
dev0?

| OV
~ 1
|
| |
0
| |
28407

~de+07

~Be+07

o 100 200 300 400 500 60O 00 800 900 1000

FIGURE 6: Time Delays (ns) with Client-
Server Through Loopback Interface

5.3 Client-Server in a Single Machine

This test case uses the proposed client-server archi-
tecture but the network effects are minimized by con-
necting the client and the server through the NIC
driver. Therefore it enables us to evaluate the effects
of NIC driver while minimizing the effects of net-
work itself. The following timing parameters were
collected (see figure 7):

1. Time delay between the reception of sensor
data and the transmission of motor voltages,
shown by the red line in figure 7. This param-
eter measures the time used to compute the
control law give by expression (1). Note that
this parameter is measured at the client.

2. Time delay between two consecutive transmis-
sions of motor voltages, shown by the green line
in figure 7. This parameter measures the effec-
tive sampling period of the controller. This
parameter is also measured in the client

3. Time delay between the reception of the con-
trol signal and the transmission of the sensor
data, shown by the blue line in figure 7. This
parameter measures the time used by the robot
interface to apply the voltages to motors and
read sensors. This parameter is measured at
the server.

Be+07

Bif tempo TA/RX
Bif TR/TH-1

Dif REMRA-1 ——

~Ges0?

~Bet07

0 100 200 300 400 B0 500 o0 8OO 300 1000

FIGURE 7: Time Delays (ns) with Client-
Server in a Single Machine

5.4 Client-Server in Different Ma-

chines

This test case uses the proposed client-server archi-
tecture over a typical IP network, enabling us to eval-
uate the performance of the proposed system. The
following timing parameters were collected (see fig-
ure 8):

1. Time delay between the reception of sensor
data and the transmission of motor voltages,
shown by the red line in figure 8. This param-
eter measures the time used to compute the
control law give by expression (1). Note that
this parameter is measured at the client.

2. Time delay between two consecutive transmis-
sions of motor voltages, shown by the green line
in figure 8. This parameter measures the effec-
tive sampling period of the controller. This
parameter is also measured in the client

3. Time delay between the reception of the con-
trol signal and the transmission of the sensor
data, shown by the blue line in figure 8. This
parameter measures the time used by the robot
interface to apply the voltages to motors and
read sensors. This parameter is measured at
the server.

Dif tempo TX/RX
Iif DT
6407 Bif RRARM-1L ——

ke

0 100 200 300 400 SO0 600 00 800 900 1000

FIGURE 8: Time Delays (ns) with Client-
Server in Different Machines

6 Conclusion

This paper presented an experimental evaluation of
time delays in a networked control system using con-
ventional TP network. RTAI hard real-time mode
was used to enforce the control system sampling rate
and to measure time delays and jitter.

Although the delays and jitter that were observed in
experiments are acceptable, it should be noted that
these figures were obtained with an unloaded net-
work. Future work should address methods to min-
imize the delays introduced by the network through
the use of QoS techniques. Packages loss and pack-
ages with unacceptable delay should be coped with
by estimating its contents from former received pack-
ages.

Another important point to be investigated is the
real impact of time delay and jitter on the control
system performance, measured by traditional con-
trol systems performance criteria, such as overshoot,
damping, integral of square errors and so on.

7 Acknowledgments

Authors thank the Research Support Foundation of
the State of Rio Grande do Sul (FAPERGS), Brazil,

for its support to this project through the Support
Program for Scientific and Technological Develop-
ment in Information Technology (PROADI) under
Grant n2 01/0567.

References

[1] L. Bushnell. Special section - networks and
control. IEEE C(Control Systems Magazine,
21(1):22-99, 2001.

[2] http://www.can.bosch.com.
[3] http://www.canopen.org.
[4] http://www.fieldbus.org.

[5] P. R. Kumar. New technological vistas for
systems and control: The example of wireless
networks. IEEE Control Systems Magazine,
21(1):24-37, 2001.

[6] J. Postel. User datagram protocol. RFC
768, ISI-USC, August 1980. available at
ftp:/ /ftp.ietf.org/rfc/rfc768.txt.

[7] J. Postel. Transmission control protocol. RFC
793, ISI-USC, September 1981. available at
ftp:/ /ftp.ietf.org/rfc/rfc793.txt.

[8] http://www.profibus.com.
[9] http://www.qosforum.com.

[10] R. Riedi, M. Course, V. Ribeiro, and R. Bara-
niuk. A multifractal wavelet model with appli-
cation to TCP network traffic. IEEE Trans. In-
form. Theory, pages 992-1018, 1999.

[11] Andrew S. Tanenbaum. Computer Networks.
Prentice-Hall, Englewood-Cliffs, NJ, 1988.

[12] G. C. Walsh and H. Ye. Scheduling of networked
control system. IEEE Control Systems Maga-
zine, 21(1):57-65, 2001.

[13] Xipong Xiao and Lionel M. Ni. Internet qos: A
big picture. IEEE Network, pages 8-18, 1999.

