
Bandwidth allocation in RT Linux

Vladimir Pajkovski

Abstract

In systems intended for handling continuous media (both video and audio), standard Linux does
not provide suitable scheduling of the system resources regarding the complexity of the tasks.
Where such a system consist of mixed applications, conventional computing is executed at the
same time with hard real−time tasks, single scheduling policy is not able to satisfy the demands
of the real−time application. If proportional resource allocation is applied, each task can recive
a fair share of a resource. Different sheduling policies are appropriate for diffent applications.
In that matter, few Fair−sheduling algorithms are tried out. Fair−sheduling algorithms make
sure that each resource gets proportional share of the CPU while executing the task. For
implementing the algorithms and testing behaviour of the application, RT Linux is used.

Introduction
Fair−Scheduling algorithms guarantee allocating
bandwidth fairly. Allocating the bandwidth in a fair
manner automaticlly ensures that ill−behaved sources
can get no more than their fair share[1]. Start−Time
Fair Queuing (SFQ) is a resource allocation algorithm
that can be used for acheaving fair CPU
allocation[2]. It achieves fair allocation of the CPU
regardless of variation in available processing
bandwidth, therefore meeting the key requirements
for of a scheduling algorithm

We implemented Start−Time Fair Queuing for testing
the behaviour of video aplications in RT Linux.
Reason for choosing RT Linux is because of the
inability of standard Linux for roviding suitable
scheduling of the system resources.

Design of the sheduler
The scheduler can be designed in principle in two
ways. It can either an existing data structure be used,
where new sheduling policies can be set within the
sheduler framework(like RT Linux)[], or another way
is to introduce a new data structure, where a
sheduling hierarchy can be proposed (Qlinux, for
example)[3].

We decided to use the existing RT Linux modular
structure. In this way, without needing to modify the
structure, it is possible to try out (time permiting)
several Fair−Share algorithms. However, we only
have changed the scheduling policy.

......more about the scheduling policies, events about
scheduler activation ...

Implementation of the scheduler
....little bit later....

 together with the changes in
rtl_schedule()....

Where it is used
XawTV was the video and audio application used for
straming and recoding/playback. Capturing images
has also been performed. Starting the application
takes some more time than in standard Linux, while
changing beetween TV chanels is much slower in RT
Linux. However, preemption of the task running was
not possible. Starting other
applictions (like Netscape) took much longer time
than under standard Linux.

.....some measuring results to be shown......

Testing and Results
For testing we have used the RTMM (DTU−Real−
Time Multi Media) tool.
Several measurements of real−time scheduling of
multiple streams
(video, audio, images...) were preformed. Testing of
the behaviour
of the aplication used is presented.

.....more to come.....very soon.......

Conclusion and Future Work
A modular scheduler was implemented in the RT
Linux code.
Decision on implementing a Fair−Scheduling policies

Further developments may include implementation of
some more scheduling
algorithms, like EEVDF(Earliest Eligible Virtual
Deadline First) and
HP Fair−Sheduiling.

Acknowledgments
I would like to thank my supervisor for giudance and
support in the work
on my thesis. My gratitude goes to the people that
previosely succeeded in implementing
a modular schedular in RT Linux and making it
available for further developement.

References
[1] Alan Demers and Srinivasan Keshav and Scott
Shenker, 1989

 Analysis and Simulation of a Fair Queuing
Algorithm

[2] Albert G. Greenberg and Neal Madras, 1992

 How Fair is Fair Queuing?

[3] Pawan Goyal and Xingang Guo and Harrick M.
Vin, 1996

 A Hierarchical {CPU} Scheduler for Multimedia
Operating Systems

