

A Simulation Framework for Device Driver Development

Yan Shoumeng Zhou Xingshe
Dept. of Computer Science & Engineering

Northwestern Polytechnical University, Post Code 710072
 Xi’an, China

ABSTRACT

Traditional development method of device driver
becomes more and more unacceptable along with the
increasingly deeper application of special devices.
With a view to shorten the development cycle, this
paper analyzes the traditional development model of
such system, and presents a new co-development
model based on device simulation. It gives the detailed
design of device simulation. It also provides the
implementation detail of related tools for easier
simulation deployment. The simulation mechanism
and the simulation tools together form a simulation
framework for device driver development. The
simulation process using the framework is discussed
and an example application is presented.

INTRODUCTION

 Proprietary I/O devices are often involved in
many computer application systems. In such scenarios,
Developers have to develop drivers for these devices
to utilize them under some operating system.
Traditionally, development of device driver can be
undertaken only after hardware design finishes, for the
writing and debugging process involves many
interactions with real hardware. However, with the
increasing competition among corporations, shorter
time to market is important for a successful production.
To shorten the development cycle of device driver, this
paper proposes that using a simulation device as the
target of driver's operations.
 Previous works on device simulation focus on how
to support development of application level software.
VxSim[1], a component for platform simulation in
VxWorks Tornado environment, support application
software which requiring very simple interactions with
hardware, but is not suitable for software with
extensive device accesses, especially device drivers. A
simulation development method for device driver is
proposed in paper [2], which simulates all system
routines in an application and compile and link the
driver source code with the application together. This

method can only make some testing work on device
driver, but cannot support the simulation of the
running of the entire application system that based on
the device driver.
 This paper presents a device simulation
mechanism based on an abstraction model of I/O
devices. Then a simulation framework for device
driver development is discussed. This framework can
effectively support writing and debugging of device
driver without the need of hardware existence. For the
running of application software is relying on the
underlying device driver, it is natural that this
framework also supports the development of the entire
system without requiring hardware involvement.

DESIGN OF DEVICE SIMULATOR

According to analyses of various devices, we
abstract I/O device as follows:

HW ::= (REG，IRQ，LOG)

Among above formulation, REG denotes the

interface registers of device; IRQ denotes the interrupt
request number occupied by the device; LOG denotes
the action logic, i.e. what action device should take
under certain conditions. So, if we can simulate the
three elements of above device abstraction model
properly in a software module, we can say we have
simulated the device successfully.

The software module, which simulates the three
basic elements of real hardware, is called device
simulator. In essence, it is also a driver module
residing in kernel address space.

We will describe the detailed simulation
mechanisms for the three elements in the following of
this section. Basically, the REG is simulated by a
kernel memory buffer; the IRQ is simulated by a
variable; and the LOG is simulated by a user-provided
switch-case routine, which is called by a kernel timer
handler periodically. We will also give the primary
data structure of device simulator.
(1) Simulation of Registers

It is well known that address space of a process
consists of user space（accessible in user mode）and
system space（accessible in kernel mode）. System
space is used to load the kernel components of
operating system and is not accessible to application
level. The space is made up of non-paged memory
areas that are always visible whether the user space is
active or not. Device drivers, of which both code and
data reside in the system space, have read and write
access rights to the entire system space. Therefore, if a
driver can know the variables address of other drivers,
it should be able to access the variables.

Based on this point, the registers of device can be
simulated simply by an unsigned character array or
some memory allocated from non-paged memory area.
Considering flexibility requirement, we choose the
second method, i.e. dynamically allocating certain
amounts of non-paged memory. This method enables
us to change the number of register conveniently with
the change of hardware design. Herein, a critical
problem to solve is that other drivers, i.e. real drivers
of devices, how to know the address of these
simulated registers. Our solution is to introduce an
intermediate medium. When the device simulator
module is loaded, the head address of registers is
decided. Then we can log the address into the
intermediate medium, through which the real driver
can get the address information of simulated registers
and can access them thereafter.
(2) Simulation of IRQ

The interrupt process mechanism in X86
architecture can be described as follows:

 Interrupt signal is sent from peripheral to
interrupt controller chip or module

 Interrupt chip transform the signal into data
signal and send it to CPU

 CPU search the IDT and get the vector entry
 Jump to certain interrupt service routine

Based on this knowledge, we can use a variable
to simulate the IRQ and call int n directly to simulate
the interrupt triggering. Herein, n is not the variable
denoting IRQ but the index in IDT transformed from
IRQ. The transformation, which is fulfilled by
interrupt controller in real environment, can be
different in different OS platforms. For example, it is
to simply plus 0x20 on LINUX, but on Windows it
involve special system call to complete this
transformation.

Otherwise, we in fact can simulate the interrupt
controller using an independent driver which checks
whether interrupt should be triggered or not
periodically and simulates the sending of interrupt to
CPU. But for simplicity, we trigger the interrupt in
each device simulator module directly.
(3) Simulation of Action Logic

The simulation of action logic of device under
various conditions is a difficult point in the simulation
mechanism. For real hardware, the detection of
condition changes is accomplished through circuit
behavior. If want to simulate it by software, we must
have a mechanism to detect the changes of condition
actively and take suitable process according to
conditions. Therefore, a kernel timer is adopted to
detect current condition and take certain actions
periodically. The timer is started in the device
simulator module. And when the period expires, a
“case-switch” function is called. It deserves to note
that the granularity of timer is related to the simulation
fidelity. Thus, the practical value of the period should
be decided according to practical condition, or it
should be able to adapt in the simulation process.
Considering that the driver developer of real hardware
is the most familiar to hardware specification, we
propose that they should present the “case-switch”
function. Herein, we only provide the reference
method to implement the function. A good way is to
introduce the finite state machine (FSM) theory into
describing the device behavior. The interface of device
can be viewed as a FSM, states of which are the
snapshot of the interface registers at certain time and
inputs of which are writing values from real device
driver and device control panel (will be described later
in detail). The description based on FSM can be
transformed by a special tool into practical program
code as the simulation implementation of action logic.
(4) Simulation of Register Access

The register access routines provided by system
should be replaced so that the accesses in real device
driver to registers can be redirected to the registers
array of device simulator. In the simulation
implementation of register access routine, a access
action is divided into two steps: first getting the
address of the simulated register array, then taking the
real memory access action. Concurrent access to
registers is possible for the support for online edit
capability, which involves access to registers in device
simulator. Therefore, the simulated registers are
critical resources and system mutex primitives should
enclose the register access routines. The rewritten
register access routines will be provided as a head file,
and the real device driver project, to replace the
system register access routines, just need to include
that file. When the real hardware is finished later, we
just need to discard the head file and rebuild the
project to get the final device driver.
(5) Primary Data Structures

The implementation of device simulator is object
based. We encapsulate the attributes and behaviors of
device simulator in a structure. Herein, we adopt C
language for C is the common language of driver
development. Each device simulator maintain the

following data structure:
typedef struct tagSimHardware{
unsigned char *m_pRegister;//address of registers
unsigned int m_uRegNum;//number of register
unsigned int m_uIrq;//IRQ number
unsigned int m_uPeriod;//timer period
KTIMER m_Timer;//Timer
////////pointer of member function
bool (*init) PSIMHARDWARE this, unsigned int
uRegNum, unsigned int nIrq, unsigned int
Period);//initialize hardware
void (*ActionLogic)(PSIMHARDWARE this);
//action logic as the callback function of timer
void (*SetIrq)(PSIMHARDWARE this);
//change the IRQ
BOOL (*SetPeriod)(PSIMHARDWARE this,
unsigned int uPeriod);//change timer period
void (*SaveConfig)(PSIMHARDWARE this);
//save information of device simulator to medium
void (*GenerateInt)(PSIMHARDWARE
this);//simulation of interrupt triggering
} SIMHARDWARE,* PSIMHARDWARE;

SIMULATION TOOLS

This section discusses the design of aiding tools
for easy simulation deployment
(1) Device Control Panel

In many cases, driver developers expect for some
control capabilities over device simulators. Demands
can be list as follows.

 The design of hardware can be changed
frequently. The device simulator module
should reflect the latest change timely and
easily.

 The behavior of real device is usually
difficult to control to reoccur some cases.
But this capability is required in driver
debugging. Thus, it would be better if
device simulator module can provide
functions such as register save and
restoration, register edit, and interrupt
generation.

 Otherwise, in the different phases of driver
development, what matters is different. This
demands the precision of simulator can be
adjust easily.

The device control panel, an application level
software that interfaces with the kernel mode device
simulator, can meet these demands. Using this tool,
developers can generate an interrupt manually; can
change the IRQ of certain device simulator; can
display and edit the registers; and can adjust the
precision of simulation. In implementation, the device
control panel is a user interface to the underlying

device simulator and provides a channel to control the
behavior of simulator.

Device simulator processes the control command
issued from device control panel in IOCTL file
operation. It first get a unique control command
according to IOCTL number, then call functions such
as GenerateInt, SetIrq, SetPeriod, SaveConfig to fulfill
the required operations.
(2) Simulator Auto-generator

Major implementation parts of device simulator
are definite, which make it possible to provide a
auto-generator of device simulator. We have designed
a tool like the MS Visual Studio AppWizard, by which
developers only need to provide a few indefinite
aspects of implementation through friendly user
interface. The tool will integrate the user input and the
predefined simulator driver template and then produce
a specific device simulator. Through using this tool,
the difficulty of simulator development is lowered
greatly, and the development cycle is shortened.

SIMULATION PROCESS IN THE
SIMULATION FRAMEWORK

This section describes the entire simulation
process in the simulation framework.

Firstly, the developer should generate a device
simulator according to his device specification using
the simulator auto-generator. Secondly, he should load
the simulator and the real device driver into system.
Now, the upper layer application and the device driver
can run just as if there is a real underlying device. The
developer can easily produce the exceptional device
condition through manipulating the simulator’s
registers and has exceptional code path of the target
device driver tested sufficiently. If the device
specification changes, the developer can also easily
modify the simulator through deice control panel to
reflect the change timely.

Fig.1 gives the interactions among the relative
components in this simulation framework.

Device
driver

Device
simulator

control

Interrupt/data

Kernel
mode

Fig. 1 Interaction in simulation process

Device
propert

Device
property

Device
control panelMedia

Device property
modifying command

Application

Device file
operation

APPLICATIONS

This section gives an application example of this
simulation framework. By using this framework, the
device drivers in this application have been
sufficiently programmed and tested before real
hardware became available. And thus, the
development period is greatly shortened.

The application system is a data acquisition
system based on airborne computer. In the computer,
there is a smart communication card, which is
responsible to receive data from eight data channels.
The application software is responsible to fetch data
from the card and save them to disk. At the same time,
it also draw the data change curve on the screen and
give an alarm when exception is detected.
Components of the system are presented as fig 2.

Our task is to develop application software and

device driver for the smart communication card.
Because the smart communication card had not been
completed, we can’t make software programming and
testing in detail. The overall development process is
delayed for a time. Later, we adopt the simulation
framework proposed by this paper and alleviate this
problem to a great extent. Before hardware design is
finished, we have developed and tested the device
driver and application software sufficiently. Thus, the
development cycle is shortend. Fig. 3 gives the
simulation running of the application software without
real hardware involved.

CONCLUSIONS

We have presented a driver development method

based on simulation. The device simulation
mechanism, the device control panel and the simulator
auto-generator have formed a simulation framework.
Currently, this framework has been integrated into an
IDE for CC-LINUX, in which it is used to support
simulation debugging and simulation running of

embedded system. The practices have proved that this
framework can shorten the development cycle
efficiently. What should be done next is how to
simplify the deployment of action logic. We hope to
provide a tool, which can help developers describe the
action logic in FSM and generate code automatically
for action logic based on the description. This will be
the direction of further study.

REFERENCES

[1]VxWorks Tornado Online Help.
[2]Eddy Quicksall and Ken Gibson. Simulation and
Device-Driver Development, Dr. Dobb's Journal, 1997
(1).
[3]Development Techniques for Using Simulation to
Remove Risk in Software/Hardware Integration,
http://www.redhat.com/support/wpapers/cygnus/cygnu
s_risk/development.html.
[4]Jiang weihua and Yu huqun. A Co-simulation

method for embedded system design(in Chinese),
Journal of East China University of Science and
Technology, Vol. 27 No.5:475-479.

[5]Liu mouyong and Ge jiguang. Implementation of
Virtual Hadware in Operatiing System Design (in
Chinese) [J]，Journal of Zhejiang University，Vol. 33
No.4:351-355.

Fig. 2 Components of application system

1# channel
2# channel
3# channel

4# channel

5# channel

6# channel

7# channel

8# channel

Airbor
ne

comput
er

Data

buffer

Mcu

RS-2
32C
（8）

Smart communication card

Fig. 3 Simulation running of application

