Optimal Pulse Patterns Modulator using Real Time Linux.

David A. Ulloa G.
Universidad Técnica Federico Santa Maria, Chile.
Guest student in Bergische Universitat Gesamthochschule Wuppertal, Germany.
Catedral 1679 depto. 405 Santiago Centro, Santiago,Chile.
dulloa@mail.com

Abstract

Since that micro-controllers and DSP’s started to be used in power electronics many ideas could be
realized and the Optimal Pulse Pattern Modulator was developed together with the Trajectory Controller
in order to correct its problem. Working in this kind of research one needs a stable and comfortable system
which must be flexible to make almost any change. According to that a combination between a Hitachi
SH2 core and a personal computer under Real Time Linux was implemented. This paper describes some
aspects about the theory of this modulator, how that was implemented and shows results obtained with

this system.

1 Introduction.

Many years ago Power Electronics gave us the pos-
sibility to control big volumes of energy using con-
verters which are made principally of Transistors,
MOSFET’s, IGBT’s or IGCT’s as switches. One
can find a large variety of different topologies for this
kind of converters and this work was done by a IGBT
three level inverter (Fig. 1).

vl 1 A 5 4 9
Y 2| 6| K& 10
v 3 7| A4 11| A
v 4 A g8 12

~M
FIGURE 1: Three Levels Inverter with
load

The three level inverter has this name due to the
number of voltage levels per phase that it can pro-
duce in its output. These outputs can have a positive
voltage (Ud/2), a zero voltage and a negative voltage

(-Ud/2). Due to efficiency reasons, power converters
work in the switching mode, generating harmonics
as undesired consequence of this operating princi-
ple. Those harmonics are smaller if the switching
frequency is enhanced, but on the other hand when
one increases the switching frequency one gets more
switching losses (Fig. 2). Between switching losses
and low distortion exist a big tradeoff which is man-
aged using Optimal Pulses Patterns modulation.

25

= N
o o
T T

Switching Losses [KW]
S

0 50 100 150 200 250 300 350 400
Load Current [A]

FIGURE 2: Switching losses in a 2000[HP]
three levels inverter. Notice that a normal
apartment can be supplied with 4 [kW].

2 Theoretic background.

2.1 Space vector modulation.

This kind of modulation is the most typical way
to drive an inverter. All voltage combinations at the
output are described as a fix vector in the alpha-beta
space through the expression (1), and this for a three
levels inverter, produces a vector map as in Fig. 3. A
reference voltage vector U* is generated by the three
closer fix vectors through an average in time of these
three. This procedure is call Space Vector Modula-
tion (SVM)[1] and it has a good behavior when the
switching frequency is over 2[KHz|, otherwise this
modulation brings us undesired distortion.

2 o am
Uap = g(uu + uvejZT + uwej%) (1)

Alpha-Beta transformation

10
3+ fF—10 + - J—"4++ -] 2

S=+—10—-+—1+=-+46
13

FIGURE 3: This figure shows all possible
output voltages combinations of a three levels
inverter. The vector U* is a possible reference
vector for the modulator.

2.2 Optimal pulse patterns modula-
tion.

The most effective way to reduce the harmonic and
subharmonic voltage component is to take in account
all switching angles in a fundamental period as vari-
ables for a closed optimization. All switching times
are calculated off-line, and stored in memory, assum-
ing steady state operation of the machine. This mod-
ulation gives a defined steady state current and sta-
tor flux trajectory in the alpha-beta space, these tra-
jectories depend upon the specific pulse pattern that
the modulator is sending to the inverter. The op-
timal pulse patterns modulation (OPPM) does not
produce subharmonics, hence it is in synchronism

with the fundamental voltage frequency. A compar-
ison between the voltage harmonics of SVM (Fig. 4)
and OPPM (Fig. 5) shows that the distortion in this
modulation is lower than in SVM.

0.2+ . : . = “oss

04 4 0.65
0
5 10 0.45
15 20
25

30 0.25
Modulation Index

Harmonic Magnitude

Harmonic Index

FIGURE 4: Harmonic contains in SVM.
Notice that the first harmonic of the switch-
ing frequency is closer to the fundamental har-
monic and its magnitude is at its mazimum
when the modulation index is at its maxi-

mum.
14
[}
Sos|
c
8’0.6\ il
= i
0.4
g
%0'2\ $ 0.85
0 0.65
0 5 : -
10 " 045
15 5
% 47 025
Harmonic Index Modulation Index
FIGURE 5: Harmonic contains in OPPM.

In this modulation the harmonic magnitudes
are bigger for higher harmonics however this
is not a problem because they are filtered by
the machine.

2.3 Flux trajectory controller.

When the machine speed controller changes its op-
eration point, the optimal pulse patterns modulator
must exchange one pattern for another. Due to all
patterns being different, a change between them pro-
duces a temporal flux and current error. This error
is called Dynamic Modulation Error (DME) and it
must be corrected with a trajectory controller [2]. A
flux trajectory controller is implemented and it is all
the time comparing the machine flux trajectory with

the steady state flux trajectory. When they are dif-
ferent, a DME error is produced and the controller
corrects the trajectory, making changes at the calcu-
lated switching angles.

3 Implementation.

When one works in fast dynamic systems, such as
AC machine controllers, it is extremely important to
have a hard real time platform. A PC system is not
enough for this requirement because the delay be-
tween an hardware interrupt signal and its software
answer is not fixed.

The system was implemented using a SH2 core Hi-
tachi micro-controller connected through a SRAM
with a PC system. The micro-controller that keeps
the hard real time does not have a variable delay
between a hardware interrupt signal and its software
answer. Owing to the micro-controller not being
mathematically powerful enough, another processor
is required for the *number crunching” and a PC
under real time Linux was added for this function.

3.1 Communication.

The communication sequence between the micro-
controller and the PC is showed in Fig. 6. The micro-
controller gets an Interrupt from an internal timer.
After each Interrupt it sets all switch timers for the
inverter, retrieves all data from the AD (Analog to
Digital) converters, stores all measurements in the
SRAM and sends an Interrupt to the PC. The real
time Linux system answers as fast as possible the
hardware interrupt from the micro-controller, then
the interrupt service routine gets the measurements
from the SRAM, the PC makes all calculations, then
sends the results to the SRAM and then returns
an interrupt to micro-controller. Finally the micro-
controller gets all calculated values from the SRAM
and waits for the next Interrupt from the internal
timer. This sequence has a frequency of 2[KHz].

Internal interruption,

Timer settings, Data
Acquisition.
I 1

nC to PC interrupt 3

B
SH7045 PC to nC interrupt PC
—
6 4
’ E}Z LJ_lA [I
SRAM
Data Transmission 5

Data Transmission

th h SH2 b
roug us through ISA bus

FIGURE 6: Communication sequence.

3.2 Interface board.

The SRAM is mounted in an ISA interface board.
This board contains buffers and a CPLD and it is
practically a discrete dual port RAM. The mem-
ory can be accessed by the PC ISA bus and by the
micro-controller bus. The micro-controller bus has
the memory access priority. All control signals are
handled by the CPLD which at the same time con-
trols the hardware interrupts in both directions. The
PC IRQ channel is selected by software setting an in-
ternal register on the CPLD. Fig. 8 shows a block
diagram for the interface board and Fig. 7 shows the
complete system.

FIGURE 7: Hardware system.

3.3 Software.

The micro-controller is programed in C without an
operating system. The SRAM is an eight bits data
memory and its access by the micro-controller is de-
fined as follow:

#define REG1 *((volatile unsigned int #*)ADDRES)

Now the definition REG1 can be handled as a nor-
mal variable. The definition as an unsigned int even
though the memory is only an eight bits memory,
is in order to simplify the hardware implementation.
One can notice that on the board diagram, specifi-
cally on the address lines for the SH2 bus, that they
are from bit number 2 to bit number 9, that means a
four bytes data access. The PC sees each byte in the
SRAM as a I/O port. The kernel module contains
all initializations, the optimal pulses information and
all algorithms for the trajectory controller. This was
made in order to simplify the code exportation from
Linux to another platform such as a powerful DSP

IRQs
CPLD N
S IRQ out Ly
% g J g Add8.15]
Q. >
N
a SHIRQ in
.- p Add[0.38.15] (g
. CS mmm— — m
W ——p &
+ R —py - v
)]
2
m
N SHAdA[2.9] Add[0.7]
O ——
SHDat[0.7]
.. g

FIGURE 8: Interface board.

or micro-processor especially dedicated for this pur- calculating the steady state stator flux
pose. The project is divided in different header files for all patterns, vectorial machine models
as follow: initialization and finally the speed control

register.h(560L). This file contains all
constant and variable definitions, vector
structures, scalar and vectorial PI con-
trollers structures, scalar first order sys-
tem, vectorial first order systems and all
I/0 ports definitions for SRAM access.

tab4r.h(3064L). Contains all optimal
pulse pattern tables and some initial con-
ditions for the steady state stator flux.

vmath.h(278L). This file contains all
scalar and vectorial mathematic func-
tions, and includes the whole mathe-
matics system manipulation. With this
header file one can constructs in a simple
manner complex vectorial models (Fig.
10) such as an asynchronous AC machine.

init.h(410L). Here are handled all ini-
tializations such as cleaning the SRAM,

setup.

dme.h(1332L). All calculation related
with the dynamic modulation error and
the trajectory controller are in this file. It
can handles the steady state stator flux
and it can calculate the present stator
flux of the machine. Also when a change
of patters is produced it can calculate the
future DME (prediction) in order to cor-
rect, when it is possible, the DME before
it occurs. The trajectory controller takes
the error and decides between a dead beat
algorithm and a step wise algorithm for
the correction.

modulador.h(2050L). Implemented in
this file was a space vector modulator
and the optimal pulse patterns modula-
tor. The optimal pulse patterns modula-
tor sends information to several functions

in the dme.h file and receives corrections
from the trajectory controller. The mod-
ulator reads the pulse tables and possible
corrections, and sends finally all switch-
ing times for the IGBT’s in the inverter.

adda.h(91L). Tt handles the informa-
tion from the micro-controller AD con-
verters and sends the data for the DA
(Digital to Analog) converters.

control.h(195L). This file is still under
development and contains algorithms for
the machine torque control and the ma-
chine speed regulation. It includes also
complex AC machine models and differ-
ent close loop controllers from a simple PI
controller to a vectorial flux corrector.

4 Experimental results.

These results were obtain using a IGBT three lev-
els inverter with a DC link of 120 [V] supplying a
33[kW] asynchronous machine. The switching fre-
quency in OPPM for this experiments was between
372[Hz] and 446[Hz]. Fig. 9 shows the alpha-beta
stator current using the optimal pulse patterns mod-
ulator at 46[Hz] fundamental frequency and with a
modulation index of 0.93. Notice that in this cur-
rent shape the harmonics are in synchronism with
the fundamental current. Fig. 13 shows the DME
alpha component in a pattern transition. The first
channel is the measured DME and the next is the
predicted DME. An addition of these provides the
DME one interrupt period before.

FIGURE 9:
with OPPM.

Alpha-Beta Stator Current

//vectors declarations
struct TVector U;
struct TVector R;
struct TVector Aux;

//vectorial PI controllers
struct TVPI Vector_PIi;
struct TVPI Vector_PI2;

//vectorial 1st order systems
struct TV_F_0_Sys Sysi;
struct TV_F_0_Sys Sys2;

//Initializations
VPiInit(&Vector_PI1,0.1,8,0,25,-25,25);
VPiInit (&Vector_PI2,0.01,0.3,0,2.7,-2.7,5);
VSysInit (&Sys1,1,tR,SFstate,255);

VSysInit (&Sys2,1,tR,RFstate,255);

int Main_Interrupt_Service_Routine(void){

//the whole system
Aux=VAction(&Sys1,VPIAction(
&Vector_PI1,VSub(R,Aux)));
U=VAction(&Sys2,VPIAction(
&Vector_PI2,VSub(Aux,U)));

return (0);

}

2 + — —_ 2
as Pl > Sysi =
R - Aux

+ — —_— 2 G
P2 > Sy i
FIGURE 10: System example. The code

for this system is commented as "the whole
system”. One can build different systems as
easy as block diagrams.

The main objective of a trajectory controller is to
force the machine stator flux and the machine stator
current to follow steady state trajectories. Fig. 11
shows the moment when a pattern change is pro-
duced. The dotted trajectory corresponds to the
steady state stator current and the difference is clear
between it and the present stator current trajectory.
One can sees that in Fig. 12, after the transition,
the trajectory controller changes the pulses in order
to correct the DME.

FIGURE 11: Current transient without
trajectory controller.

FIGURE 12:
tory controller.

Current transient with trajec-

Sosr |
j=X
= 0.6 !
w 0.4+ 4
n0.2r 4
0 ~ | |
-1 -0.5 0 0.5 1 1.5 2

oo
o ©
T
Il

Pred. DME Alpha
o o
S
T
L L

o 05 0 05 1 15 2
s
Zo8f 1
wo.6H i
Z o4t 1
To2f .
£ ‘ ‘ ‘

-1 -05 0 05 1 15 2

Time [ms]
FIGURE 13: DMFE Alpha component.

Zero seconds is the begining of the next pat-
tern. The first order response is owing to an
output filter on the DA converter.

5 Comments and conclusions.

The combination of a micro-controller and a PC
system under real time Linux proved that it can keep
the hard real time and makes it possible to have
peripherals (like AD/DA converters, PWM module,
digital ports, etc.) which can be easily handled by
the micro-controller’s software. The power of a PC
under real time Linux give us the possibility to make
almost any project in this area due to its fast inter-
rupt answers and its stability.

It would be of great personal interest to see a
powerful micro-processor or DSP running under real
time Linux. One can build a complete system with
AD/DA peripherals and ethernet for communica-
tion. There are many applications where it is nec-
essary for more than one calculation source and if
we connect these systems and a PC as a terminal
though a LAN it would be an extremely powerful
and comfortable work station for research.

Acknowledgements.

The author acknowledge the theoretic support of
the Univ.-Prof. em. Dr.-Ing. Joachim Holtz and
the Electrical Machines and Drives laboratory in the
Wuppertal University.

References [2] J. Holtz and B. Beyer, "Fast Current Trajectory

Tracking Control Based on Synchronous Opti-

[1] J. Holtz, ”Pulse width Modulation - A Sur- mal Pulsewidth Modulation”, IEEE Transaction

vey”, IEEE Transanctions on Industry Electron- on Industry Applications Vol. 31 pp. 1110-1120,
ics, Vol. 39 pp. 410-420, Oct. 1992. Sep./Oct. 1995.

