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Abstract

Real-time, embedded systems and Linux are commonly used words in these
days. This thesis looks deeper into the possibility of turning Linux into a real-
time operating system. Particularly, it investigates available hard real-time
solutions for Linux, but also looks into the soft variants for completeness.
RTAI is selected as a suitable solution for Axis and is ported to ETRAX, the
in-house developed CPU designed with networking and embedded systems
in mind. A large number of performance tests are conducted during the
evaluation to make sure that the implementation meets the demands of a
real-time operating system. The evaluation shows that RTAI provides good
real-time performance, especially when compared to standard Linux.
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Chapter 1

Introduction

1.1 Motivation

Axis Communications and many other device manufacturers are turning to
Linux for embedded systems. Using a full-featured UNIX-like operating sys-
tem obviously has many advantages. However, the Linux kernel can not
support hard real-time processing, which may be required by certain embed-
ded applications. There exists a number of extensions to Linux that provide
support for hard real-time tasks.

Axis uses the ETRAX processors in most of its products and has previously
ported Linux and some real-time operating systems to ETRAX. However,
Axis and its customers have an interest in being able to combine Linux with
hard real-time, as this combination would provide both a full-featured free
UNIX-like system with many available applications, hardware drivers, etc.
and hard real-time capabilities.

1.2 Problem Description

The purpose of this thesis is to investigate available hard real-time extensions
to the Linux kernel, select a suitable one for Axis, port it to the Axis ETRAX
architecture and evaluate its real-time performance.

1.3 Problem Analysis

The investigation covers how real-time performance can be achieved in Linux
and the availability of hard real-time extensions. It describes how the ex-
tensions work technically, the ease of porting, available documentation and
licensing rules. Axis’ need for real-time is examined in order to select a suit-
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1.4. Report Outline 1. INTRODUCTION

able extension.

The major challenge in porting the selected extension is to understand how
the Linux kernel works on ETRAX in order to safely implement the archi-
tecture specific parts of the extension. It is important to keep the standard
kernel intact as far as possible.

The goals of the evaluation are to verify the functionality of the system
as well as measure its real-time performance on the ETRAX platform.

1.4 Report Outline

Chapter 2 - Investigation This chapter presents background theory and
definitions. It also describes in which ways real-time can be achieved in
Linux. An investigation of real-time extensions is made and finally a suitable
extension is selected for porting.

Chapter 3 - Implementation The design of the selected extension and
especially how it modifies the Linux kernel, is explained in this chapter. Our
implementation choices and difficulties are also described.

Chapter 4 - Evaluation Defines the tests used to evaluate the functional-
ity and performance of the system. The results are presented and discussed.

Chapter 5 - Conclusion This chapter contains our conclusions based on
the evaluation. A discussion with respect to our personal reflections and
suggestions of future enhancements is also presented.

Appendix A - Test Environment A detailed description of the test
environment is presented here. That includes the hardware used, software
versions, network configuration etc. It is possible to repeat the tests using
this information and Appendix B.

Appendix B - Test Programs In this appendix the source code of the
test programs is presented.

Appendix C - Modified Kernel Files Shows a list of files modified in
the Linux kernel by the selected extension. Also, a brief description of the
modifications is provided.

2



1. INTRODUCTION 1.4. Report Outline

Appendix D - Kernel Modules Describes essential parts of the selected
extension together with file sizes and memory usage.

Appendix E - Glossary Some acronyms and common concepts are ex-
plained shortly.
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Chapter 2

Investigation

The purpose of this chapter is to explain in short the concept of real-time
and what can be expected from a real-time operating system. The differ-
ent approaches towards providing real-time in Linux are discussed. Then a
comparison of two hard real-time extensions to Linux is made and finally a
selection of one of them is motivated, based on the requirements of Axis. The
selected extension is ported and evaluated during the following parts of the
thesis.

2.1 Real-Time Systems

A real-time system is a system in which the correctness of the system depends
not only on the logical results that the system produces, but also on the time
at which the results are produced [1]. This is a formal definition of a real-
time system. Before proceeding it is appropriate to define and explain some
other related concepts.

• The response time of an application is the time interval from when
the application receives a stimulus, usually provided via a hardware
interrupt, to when the application has produced a result based on that
stimulus [2].

• The deadline of a certain task in an application is the longest acceptable
response time for the task.

For example, say we have a robot arm picking up components from a conveyor
belt. An optical sensor informs the robot when a component is approaching
the arm. After the robot has received the information there is a certain small
amount of time available for the robot to react and for the arm to move down
to the right position over the conveyor belt. This time is the deadline for the
“move-arm”-task of the robot application. If the arm is not there in time, i.e.
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2.2. Linux and Real-Time 2. INVESTIGATION

if the deadline is missed, the component may be lost. If the arm reaches the
position in time we say that the deadline is met.

A hard real-time system is a system in which all the deadlines of the system
must be met at all times. It is the system designer’s responsibility to make
sure that the deadlines can be met, that is the system must not be over-
loaded. A soft real-time system, on the other hand, is a system in which the
deadlines usually must be met, but it may be acceptable if a small number of
deadlines occasionally are missed [2]. An example of a hard real-time system
is an air-traffic controller, here it is critical that every deadline is met. An
example of a soft real-time system is an audio sampling application where it
may be acceptable if some samples are lost from time to time, as long as it
does not happen too often.

2.2 Linux and Real-Time

A real-time operating system (RTOS) can be described as a system that
meets timing requirements of the processes under its control. Linux is not
designed to provide real-time performance. It provides a good average per-
formance for applications. For a real-time application with relatively long
deadlines it may be sufficient if the environment can be controlled properly
(fixed number of processes, well-tested drivers etc.).

However, for applications that require very low response times, or hard real-
time, the standard Linux kernel is not sufficient. It is clear that in order to
have hard real-time, guaranties must exist that no deadline is missed. This
type of guaranties require a deterministic environment. For an operating
system this means that it must be possible to predict the maximum time it
takes to perform different tasks, such as interrupt handling and scheduling.
Also, the kernel must be preemptible, that is if a lower priority process is
running a system call in the kernel, it must be possible to interrupt it if a
higher priority process is ready to run. This is currently not the case with
Linux (2.4).

Improving the Kernel

There are two different approaches towards providing real-time in Linux. In
the first one, the standard Linux kernel is improved, either by attempting
to make the kernel preemptible (by altering the kernel in different clever
ways, see [3]) or by adding preemption points to the code (i.e. checking
more often if a higher priority process is ready to run). This results in a
kernel more responsive to applications without any need for alterations in
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2. INVESTIGATION 2.2. Linux and Real-Time

these applications [3]. This approach is sometimes used together with a new
improved scheduler implementation. MontaVista [6] and TimeSys [7] provide
preemptible kernels while REDSonic [5] has preemption points [3]. It should
be noted that in the coming releases of the Linux kernel, the preemption
patches originally supplied by MontaVista (now maintained by Robert Love1)
are included by default and the functionality is available as a configure option.
Thus, the Linux kernel is expected to provide better real-time performance
in the future.

Adding a Real-Time Kernel

Another approach is to make the Linux kernel fully preemptible by adding a
hardware abstraction layer “between” the system hardware and Linux. Also
a new separate real-time scheduler is used which runs Linux as its lowest pri-
ority thread. The abstraction layer takes control over the system interrupts
and passes them on to Linux only if no real-time task is running. When
Linux tries to disable interrupts it only sets a flag in the abstraction layer
and cannot really turn off the interrupts. Thus, the real-time scheduler has
full control over the system and Linux runs virtually unmodified. A small
real-time kernel has been added to the system. The real-time tasks are writ-
ten as kernel modules and executed within kernel-space. They have access
to a special real-time API. There are two projects providing this technique,
RTLinux [13] and RTAI [8]. RTLinux is the oldest project of the two, in fact,
RTAI is based on the ideas behind RTLinux.

Discussion

The two approaches both have their pros and cons. In the preemption im-
provement approach the major disadvantage is the lack of guaranties it can
provide. Unless every possible code path in the kernel is examined, it is
impossible to provide a guarantee about the latency [4]. It is clear that ana-
lyzing all possible paths is very hard, and even if it was possible under some
restrictions, the development of the kernel and addition of new drivers etc.
would make the analysis hard to maintain. Also new code would have to
meet the requirement not to introduce additional long non-preemptible ker-
nel code paths. The motivation for the preemption improvement approach is
the fact that it improves the Linux kernel without the users having to modify
their applications.

In the approach based on a hardware abstraction layer the application is
preferably split up into two parts:

1Patches and information available at http://www.tech9.net/rml/linux/
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• The part with timing requirements (e.g. data sampling). It executes
as a real-time task in kernel-space.

• The other non time-critical part (e.g. user interface) executing in user-
space.

The different parts communicate with each other using for example FIFO-
queues or shared memory. The split often requires a new design of the
application. Also, the real-time tasks are written as kernel modules using
the special real-time API, not the standard Linux API. Writing Linux kernel
modules requires different programming skills than it does writing a Linux ap-
plication process [4]. However this is a small price to pay, since this approach
can provide the deterministic environment required for hard real-time. This
is possible mainly because the API-functions available to the real-time tasks
are well tested and analyzed, as are the internal functions of the small real-
time kernel. The amount of code which must be analyzed in this approach is
relatively small and contained, compared to the entire Linux kernel. Another
advantage with this approach is that Linux runs virtually unmodified. Thus,
it is easy to maintain this solution when new kernels and drivers are released.

To summarize, in the preemption improvement approach, all applications
can without modification benefit from an improved Linux kernel with low
latency; soft real-time can be obtained. But only the hardware abstraction
approach can provide the guarantees required to support hard real-time, with
the extra programming effort as the only major downside.

2.3 Motivation for Axis

As a developer of network cameras, video servers, print servers etc., Axis and
its customers would benefit from guaranteed response times in their systems.
Possible applications include:

• Sampling of data under time restrictions.

• Surveillance cameras that must respond quickly.

• Wireless baseband in software, for example Bluetooth implementations.

• Control loops.

As concluded in the previous section, guaranties require hard real-time and
therefore the only two alternatives available are RTAI and RTLinux. It is
also these extensions that provide the best response times. In the following
sections, RTAI and RTLinux will be further examined.
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2. INVESTIGATION 2.4. Evaluation

2.4 Evaluation

2.4.1 RTLinux

Background

Real-Time Linux (RTLinux) began as a research project in 1995 at the Dept.
of Computer Science at New Mexico Institute of Technology [13]. The im-
mediate goal was to develop a Linux kernel that would support real-time
control of scientific instruments [14]. The work by Victor Yodaiken and
Michael Barabanov resulted in a small real-time executive running Linux as
a completely preemptible task.

RTLinux was quickly adopted as the real-time processing software of choice
in a variety of production projects. In 1998, the company called Finite State
Machine Labs (or FSMLabs) was formed around RTLinux. FSMLabs now
has a number of strategic partners, one of them is Red Hat, Inc., which has
selected RTLinux as its standard approach to hard real-time Linux applica-
tion requirements.

Design

The design goals of RTLinux are stated in the (incomplete) design whitepa-
per [17]. Some of them are: reliability, predictability, performance, trans-
parency and modularity. Especially the two latter are worth mentioning.
Transparency means there should be no surprises in black boxes or hidden
components in the system. Modularity means that applications, which do
not need some system features, should be able to remove these features. All
of this applies to the basic idea that the real-time operating system should
be small and as simple as possible.

The need to meet user requirements for development tools, graphical user
interface and networking support in the real-time operating system, as well
as the pure real-time support, is satisfied by letting standard Linux run on
top of the small real-time system. This design originated from the under-
standing that it is not feasible to identify and eliminate all aspects of kernel
operation that lead to unpredictability (such as standard Linux scheduling,
device drivers and uninterruptible system calls). Instead the idea was to
construct a small predictable kernel separate from the Linux kernel, and to
make it simple enough that operations could be measured and shown to have
predictable execution [16].

Figure 2.1 shows an RTLinux system. As shown in the figure, a hardware
abstraction layer is added between the system hardware and the standard
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Figure 2.1: An RTLinux system

Linux kernel. A preemptive fixed-priority scheduler handles the real-time
tasks as well as the Linux kernel, which runs as the lowest priority task. The
abstraction layer intercepts all hardware interrupts from the underlying sys-
tem. If an interrupt is not related to any real-time task, it is passed on to
Linux, but only when no real-time task is running.

The RTLinux executive is in itself non-preemptible. Unpredictable delays
within the RTLinux executive are eliminated by its small size and limited
operations [16].

A real-time task is written as a kernel module and when loaded it informs the
real-time scheduler about its deadline, period and release-time. A real-time
task should not make Linux system calls as that would infer unpredictabil-
ity. Also, it should be made as simple as possible and leave the non real-time
parts of the code to the user-space application.

Features

Some of the key features of RTLinux are:

• Interprocess communication using FIFO-queues or shared memory.

• The API is compatible with POSIX 1003.13 “minimal real-time oper-
ating system”.

• Synchronization is achieved through POSIX thread mutex variables,
POSIX conditional variables or POSIX semaphores.

• High precision timing (the programmable timer chip available on most
platforms is used [15]).

10



2. INVESTIGATION 2.4. Evaluation

Documentation and Licensing

The RTLinux API is well documented, especially since a big part of it is
POSIX. Installation instructions, getting started documentation and a FAQ
are available as well as a mailing list.

FSMLabs holds a patent on the basic process for real-time in RTLinux. The
patent describes the technique of using a software emulation of the inter-
rupt control hardware to prevent the non-real-time OS from causing delays
in real-time operations [13]. It is a software patent only valid in the U.S. [19].

Currently, RTLinux is available in different forms from FSMLabs. “RTLinux/-
Pro” and “RTLinux/BSD” (which have the same code-base) are commer-
cial distributions shipped with a development kit. Also, the remains of the
open-source project that RTLinux once was, are available in“OpenRTLinux”.
OpenRTLinux is released under GPL2 and OpenRTLinux Patent License [18].
Any modification of the code covered by the Open RTLinux License must be
released under GPL and it must be open and available on the web [19].

Summary

RTLinux is a widely used and tested solution. It has been around in some
form since 1995 and is now used in many applications around the world.
The technology is solid, and the use of POSIX means that an application
programmer hopefully does not have to learn yet another API.

2.4.2 RTAI

Background

Development of the DIAPM3-RTLinux variant started immediately after
RTLinux was released because the people at DIAPM were not satisfied with
the performance offered by the first version. They had been using a self made
DOS based real-time variant earlier and thought they could take some of the
techniques developed there and put them into RTLinux. They maintained
the 2.0.xx kernel-patch from RTLinux and the RTLinux scheduler base also
remained mostly untouched, but a set of new features were added. DIAPM
modified all that was related to the real-time timing, such as introducing pe-
riodic timing. They greatly improved the efficiency of the one-shot timing by
using the CPU TSC4 instead of using the timer circuit as RTLinux originally
did.

2GNU General Public License, see http://www.gnu.org/copyleft/gpl.html
3DIAPM = Dipartimento di Ingegneria Aerospaziale — Politecnico di Milano
4Time Stamp Clock
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In the beginning of 1999, the 2.2.xx kernel was available and its hardware
interaction was better organized with far less interrupt disabling/enabling.
This made it possible to patch the kernel in the way preferred by DIAPM and
in April the first version under the acronym RTAI (Real-Time Application
Interface) was released by Paolo Mantegazza.
RTAI is now an open source project with an active development community.
The only supported architecture in the first release was the x86, but now a
wide variety of architectures are supported:

• x86

• PowerPC

• ARM

• MIPS

Design

The design of RTAI is clean. It consists of an abstraction layer called Real-
Time Hardware Abstraction Layer (RTHAL) and a small real-time kernel
that runs Linux as its idle task. Both the real-time kernel and the project
itself are named RTAI. A sign of the modularity of this design is that one
must not even use the supplied RTAI kernel but can in fact use any real-time
kernel that interacts with the HAL interface. For a figure describing the de-
sign of RTAI, we refer to Figure 2.1, since the concepts are almost identical.

The RTAI project is (apart from the small patch that installs the HAL in
the kernel) entirely built upon the use of modules. This makes it easy to
maintain and extend the system at runtime.

Three primary functions are performed by the RTHAL [10]:

• Gathers pointers to the required internal data and to functions mainly
related to hardware into a single structure, rthal. The functions can
be dynamically switched to appropriate software emulation functions
by RTAI when hard real-time is needed.

• Makes available the substitutes of the above selected functions and sets
rthal pointers to point to them.

• Substitutes the affected function calls with calls through the rthal-
struct.

12



2. INVESTIGATION 2.4. Evaluation

The kernel patch changes very few lines of code in the standard Linux kernel.
As of the effect this can have on Linux, we can not say it better than the
RTAI people themselves:

At this point, it should be noted that Linux is almost uneffected
by RTHAL, except for a slight (and negigible) loss of performance
due to calling of cli and sti related functions in place of their cor-
responding hardware function calls, and due to the use of function
pointers instead of directly linked functions.5 [10]

From the moment the main RTAI module is mounted and initialized, Linux
is no longer in control of the hardware interrupts and therefore imposes no
threat to the hard real-time tasks.

Real-time tasks are created as modules, which execute in kernel-space. This
has some advantages:

• Tasks can not be swapped-out and the number of TLB6 misses are
reduced.

• Tasks are executed in processor supervisor mode and have full access
to the underlying hardware.

• The RTOS and the real-time task share execution space and the system
call mechanism is therefore implemented as simple function calls instead
of slower software interrupts.

Features

RTAI has a lot of features and some of them are:

• FIFO-queues

• Mailboxes

• Intertask Messaging

• Extended Intertask Messaging

• RPC7

• NET RPC, which is a support for making RTAI a distributed OS (func-
tions can be called remotely and operate on remote objects)

5cli and sti are used in Linux to disable and enable interrupts respectively.
6Translation Look-aside Buffer, see Appendix E
7Remote Procedure Call
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• Shared memory

• RTAI semaphores

• RTAI pthreads, which implements Posix 1003.1c API (including mutex
and conditional variables)

• RTAI pqueues, which implements the message queues section of the
Posix 1003.1d API

• Rate Monotonic Scheduling (RMS)

• Earliest Deadline First (EDF) scheduling

Miscellaneous

• Dynamic memory (rt_malloc, rt_free) with good real-time behavior,
but not hard real-time.

• Software watchdog module

• RTAI maintains compatibility with the V1 RTLinux API.

• kgdb: Source-level debugging from a host linked by a serial line.

• Linux Trace Toolkit (LTT). It is a full-featured tracing system for the
Linux kernel. It includes both the kernel components required for trac-
ing and the user-level tools required to view the traces.

• /proc-interface, showing for example the IRQs used by RTAI, infor-
mation about the tasks in the scheduler and various other information
depending on which modules are loaded.

User-space real-time

• LXRT is an API for RTAI which makes it possible to develop both hard
and soft real-time applications entirely in user-space, without having
to create kernel modules. This is useful because programming errors
will not crash the entire system, and one can also use standard debug-
gers. We will not delve deeper into the inner workings of this technique
but we note that it is well tested and used. As can be expected, the
performance is not quite as good as in kernel space [20]. So far LXRT
is only implemented on the x86 platform.

14



2. INVESTIGATION 2.4. Evaluation

Documentation and Licensing

The RTAI documentation is well written, although not quite up-to-date. The
mailing list has a lot of traffic and questions get answered quickly.

RTAI is an open-source project. It was earlier released under LGPL8 2,
but the core has recently changed to GPL 2, while the rest remains LGPL 2.
The parts of RTAI released under GPL are the parts that potentially may
be claimed to implement the teachings of the RTLinux patent. With this
move from LGPL to GPL there should be no problem with the Version 2 of
the Open RTLinux Patent License [18], which says: ”The Patented Process
may be used, without any payment of a royalty, with two types of software.
The first type is software that operates under the terms of a GPL...”. Eben
Moglen, general counsel of the Free Software Foundation appears to support
this position [12].

Summary

RTAI was derived from an early version of RTLinux, but has since followed
its own track and evolved into a mature and feature-rich environment which
is fully devoted to open source software. It is under active development in
an open community, continuously contributing to the development process.
RTAI seems to be mature enough to use with most applications and a lot of
work is devoted to further improve it.

8GNU Lesser General Public License, see http://www.gnu.org/copyleft/lesser.html
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2.5 Conclusion

This section presents our conclusions based on the investigation.

RTLinux and RTAI are based on the same idea and they work very much
alike. The performance provided is essentially the same. There are however
some more or less important differences outlined in Table 2.1.

RTAI RTLinux

RTAI uses a small kernel patch. RTLinux uses a large kernel patch.
RTAI is an open-source initiative
and is likely to continue that way.

RTLinux started as open-source,
but is commercial today. Any de-
velopment seems to be in the com-
mercial versions.

RTAI is actively developed. RTLinux development seems to
have stalled in the free versions.

RTAI has its own API, but has a
POSIX module that supports some
POSIX calls.

RTLinux API is fully compatible
with POSIX 1003.13 “minimal real-
time operating system”

RTAI has many features. RTLinux has a minimalistic ap-
proach.

Table 2.1: The essential differences between RTAI and RTLinux

Using a small kernel patch, as RTAI does, makes it easy to maintain the
system between different kernel versions. As to features it is not certain that
more are necessarily better; it could be convenient with many features but
it also makes the system more complex and harder to understand. The real-
time part of an application should be made as simple as possible and leave
the rest to the non real-time part.

It is mostly an advantage to use a standardized API such as POSIX be-
cause it may be easier for newcomers to migrate to the system. RTLinux
has full support for POSIX 1003.13 while RTAI provide only some POSIX
compatibility. However, the RTAI API is not difficult to understand.

We select RTAI as the extension of choice for the rest of this thesis. This is
mainly because of its

• commitment to open-source,

• active development

• and small modifications of the Linux kernel.
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Chapter 3

Implementation

As a part of this thesis, RTAI has been ported to CRIS1 and this chapter ex-
plains the basics of the inner workings of the port. As always in these cases,
the code itself is the most detailed documentation, but it could be helpful to
read this chapter to get an overview before trying to read it. This chapter
also gives an overview of the modifications made to the normal Linux kernel,
especially how the interrupt paths have been modified in order to make hard
real-time possible. These paths are essential and are therefore described both
before and after the modifications made by RTAI.

RTAI consists of a patch that installs the necessary hooks into the kernel and
a set of modules. These modules are primarily the rtai.o module which is
architecture specific and others which are generic and add enhanced func-
tionality such as scheduling and message handling.

3.1 Hardware Abstraction Layer

The kernel patch installs a hardware abstraction layer, called RTHAL, avail-
able as a kernel configure option. The layer acts as an interface between
Linux and the hardware. All function calls related to interrupts are gathered
in a struct named rthal (see Appendix C). For example, the cli()-macro,
which is used by Linux to disable interrupts, now goes through the struct in-
stead. When RTAI is not mounted the macro will work as before, disabling
interrupts in the hardware, but when RTAI is mounted, only a flag will be
set, which ensures that Linux does not receive any interrupts while real-time
tasks and handlers do. In this way Linux, although not aware of it, is not
allowed to perform actions that could threaten the real-time behavior of the
system.

1Code Reduced Instruction Set, the CPU architecture designed by Axis and used in its
ETRAX processors.
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Great care has been taken when patching the kernel as to not alter the
default behavior. A small performance loss in RTAI can be traced to this
approach. On the other hand, even when the hardware abstraction layer is
configured in the kernel, the behavior is unchanged as long as RTAI is not
mounted.

For a complete list of files that are modified by the kernel patch, please
refer to Appendix C.

3.1.1 Interrupt Handling on Linux/CRIS

The major responsibility of the hardware abstraction layer is to catch inter-
rupts from the hardware and if appropriate send them to Linux or to real-time
handlers (such as scheduler functions). If Linux has disabled interrupts in
the abstraction layer, it should not receive any interrupts until it re-enables
them later.

This described mechanism of interrupt handling requires very careful mod-
ifications of the inner workings of the kernel. It is vital to understand how
the interrupt handling is normally performed to be able to safely make the
modifications. This section presents the results of a technical investigation,
which was essentially made by reading code and trying to understand the
functionality.

Interrupt Paths

In Figure 3.1 a schematic view of the interrupt paths in the Linux kernel
for CRIS is shown. In most cases an interrupt will cause the processor to
start executing at one of the IRQxx_interrupt-routines2. The routine will
start by saving registers and disable interrupts (as they are not disabled au-
tomatically). Then the interrupt is masked. If it had not been masked and
interrupts were re-enabled before the specific interrupt had been acknowl-
edged, an infinte loop would have been triggered.

The C-routine do_IRQ will be called with the interrupt number as a pa-
rameter. It will execute an interrupt handler, which should also acknowledge
the interrupt. Normally interrupts are kept disabled during execution of the
handler, but depending on how the handler was installed it may run with
interrupts enabled. This approach is possible since the interrupt was masked
previously. When the handler has finished, the IRQxx_interrupt-routine

2These routines are entered in the interrupt vector whenever a handler for the interrupt
“xx” has been installed, e.g. by a hardware driver.
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Figure 3.1: Interrupt handling paths in the Linux kernel on CRIS
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continues and unmasks the interrupt.

The path just described is the most important one to understand, but it
is also important to see what happens afterwards. Some routines are worth
an explanation.

• ret_from_intr checks whether the processor was in user or kernel (su-
pervisor) mode when the interrupt occurred. User mode means e.g.
that it was executing an application in user-space and kernel mode
that it was running some kernel code, such as a driver. In user-mode a
somewhat longer path is taken before returning.

• _ret_with_reschedule checks whether the current process has any
signals pending or a schedule is needed. If so the appropriate routines
are called.

• _Rexit is responsible for restoring registers previously saved and return
to the code executed by the processor when the interrupt occurred. All
interrupt handling ends with the return through this routine.

Special Cases

• IRQ 0: Hardware breakpoint (hwbreakpoint) is used only for debug.

• IRQ 1: Interrupt from the watchdog. If the watchdog is enabled in the
kernel config the IRQ1_interrupt-routine will print out debug infor-
mation and later the chip will be reset. The routine will also be called
when resetting the chip from software as the watchdog is used to do
this.

• IRQ 2: For timer interrupts, a special routine called IRQ2_interrupt

is used. It works like the other IRQxx_interrupt-routines except that
it does not mask (block) the irq. This is because do_IRQ also runs
any pending soft-interrupts (by calling do_softirq) after the actual
interrupt handler. do_softirq enables interrupts during execution of
handlers and during this time a new timer interrupt could be processed
but only if it is not masked. The timer interrupt is crucial and should
always be processed as soon as possible since the watchdog must be
reset and the system clock updated.

• IRQ 14: The MMU bus fault occurs for example when an instruc-
tion tries to access a memory address, for which the virtual-to-physical
translation is not cached in the TLB. When a fault occurs the mmu_bus-
_fault-routine is called. It saves registers and disables interrupts
in a way similar to a normal interrupt. Then it calls the C-routine
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handle_mmu_bus_fault, which is supposed to fix the fault, whichever
it might be. Upon return, ret_from_intr is called, but instead of
_Rexit, a special function _RBFexit is used. It will restore registers
and restart the instruction that caused the fault originally.

• IRQ 15: The multiple interrupt occurs when there are several interrupts
active at the same time. The multiple_interrupt-routine will first
save registers, disable interrupts and then process the first individual
interrupt waiting by calling its shortcut into the IRQxx_interrupt-
routine as shown in the figure. The shortcut is called since registers
are already saved. The interrupt is then processed in a normal way
and if there are still more than one interrupt active afterwards, mul-
tiple_interrupt will be called again to process the next one.

3.1.2 Interrupt Handling on Linux/CRIS with RTAI

So far, the normal interrupt handling paths in Linux/CRIS have been de-
scribed. It is now time to introduce the hardware abstraction layer, RTHAL,
in the kernel. When doing so, some factors have to be considered:

• The longer interrupts are disabled in the kernel, the longer worst-case
latencies will show up in the system. It is important to have interrupts
disabled only when absolutely required. Otherwise a real-time handler
may be blocked longer than necessary.

• It is important that the code running when interrupts are disabled is
time-predictable and not dependent on the state of the Linux kernel.

• As said earlier, when the kernel is configured to include RTHAL it
should still (as far as possible) operate as usual when RTAI is not
mounted. When RTAI is mounted the layer should provide the neces-
sary functionality.

Interrupt Paths with RTHAL

In Figure 3.2, the interrupt handling paths with RTHAL present in the kernel
are shown. The following changes and additions have been made, compared
to the plain kernel:

• The call to do_IRQ has been replaced with a call through the rthal-
struct, i.e. rthal.do_IRQ.

• For the timer interrupt rthal.do_timer_IRQ is called instead.

• In IRQxx_interrupt the “unmask interrupt” has been replaced with a
call to rthal.unmask_if_not_rtai.
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Figure 3.2: Interrupt handling paths with RTHAL present
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• In ret_from_intr a call to rthal.ei_if_rtai has been added.

Table 3.1 shows what the added functions do with and without RTAI mounted.

rthal-
function

RTAI not mounted RTAI mounted

do_IRQ A call to the standard
do_IRQ-function.

A call to dispatch_irq in
the RTAI module.

do_timer_IRQ A call to the standard
do_IRQ-function.

A call to dispatch_timer-

_irq in the RTAI module.
unmask_if-

_not_rtai

Unmasks the interrupt. Does nothing.

ei_if_rtai Does nothing. Enables interrupts.

Table 3.1: Functions added by RTHAL to the interrupt handling paths

Motivation

By letting the calls to do_IRQ go through the rthal-struct, minimal changes
have to be made to the low-level interrupt handling which saves registers
etc. Then, when RTAI is mounted it is easy to redirect the calls to RTAI
functions instead.

Since an interrupt may be pended by the dispatch_irq-function, the in-
stalled Linux interrupt handler that normally would acknowledge the inter-
rupt is not always run directly. The interrupt can therefore not be unmasked
as usual if RTAI is mounted. Thus the need for unmask_if_not_rtai.
Pended interrupts are unmasked after they have been delivered to Linux.
However, if a real-time handler is installed it is run directly and has the re-
sponsibility to acknowledge and then the interrupt is unmasked directly.

If the processor was in user-mode when an interrupt occurred and a schedule
is needed then the path where interrupts are disabled is quite long and more
importantly unpredictable3. Should an interrupt occur during this time, its
processing would have to wait until interrupts are re-enabled (in either _sig-
nal_return or _Rexit). Without RTAI this is not the case since the schedule
and soft-irq functions enable interrupts at certain points, but when RTAI is
mounted these instructions will only be soft, i.e. setting a flag; the real inter-
rupts would remain disabled. It is crucial that an installed real-time handler
is not delayed. To prevent the unpredictable delay ei_if_rtai is called in
ret_from_intr, thus hard-enabling interrupts at an early stage. It should

3The time for schedule and possible soft-irq processing.
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be safe to do so since schedule and do_softirq protect themselves during
some critical parts by disabling interrupts soft, during these parts RTAI will
not send any interrupts to the Linux kernel. A nested interrupt would not
take the path through ret_with_reschedule again, as all these routines are
called from kernel mode.

3.2 RTAI Kernel Module

RTAI consists of a set of modules working together. Some of them add the
functionality of a real-time scheduler and FIFO queues, while others add for
example the POSIX pThreads and pQueues API. The most significant one
though is the main, architecture specific, module called rtai.o. It contains
for example the functions for mounting RTAI, trapping interrupts, installing
real-time handlers etc. In this section the basic functionality of the module
will be described.

Before RTAI has been mounted, all interrupt-related calls go through the
rthal-struct, but they do the same thing as usual, for example hard-disabling
and enabling interrupts. As RTAI is mounted the old rthal-struct is saved
and a new one installed. The new rthal will direct the calls to various in-
ternal functions in the RTAI module instead, thus allowing RTAI to take
control over the system.

Some of the internal key functions in the RTAI module are:

• linux_cli: The call rthal.disint is directed to this function. It only
sets the flag, which says that Linux has disabled interrupts. After a call
to this function, Linux will not receive any interrupts to its handlers.
Before RTAI was mounted, interrupts would have been hard-disabled
when rthal.disint was called.

• linux_sti: The call rthal.enint is directed to this function. It clears
the flag, which says that Linux has disabled interrupts. Any pending
interrupts will be delivered to Linux (by calling the standard do_IRQ-
function for each one) and afterwards Linux will receive interrupts as
soon as possible again. Before RTAI was mounted, interrupts would
have been hard-enabled when rthal.enint was called.

• dispatch_irq: As mentioned before in section 3.1.2, a call to rthal.do_IRQ
is directed to this function. So, when an interrupt occurs and RTAI is
mounted, this function will be called. It checks whether there is a RT-
handler installed on the specific interrupt and if so calls that handler.
If instead there is no RT-handler installed, the interrupt is pended to
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Linux. At the end of dispatch_irq there is a check to see if Linux
has its interrupts enabled (indicated by the flag) and if so linux_sti is
called, which as described previously will deliver the interrupt to Linux.

• dispatch_timer_irq: This is similar to dispatch_irq but is used for
timer-interrupts. The timer interrupt must be acknowledged directly
since the real-time scheduler is dependent upon this interrupt. The
watchdog must also be reset if it is configured in the kernel. Finally,
the interrupt can be pended for Linux as usual or a RT-handler called.

• linux_save_flags: In many cases Linux disables interrupts before en-
tering a critical region. Sometimes it wants to be able to restore them
afterwards (if they were on before the critical region they should be
enabled again). Then the CPU flags must be saved. When RTAI is
not mounted, a call to rthal.getflags will return the real CPU flags,
but when RTAI is mounted, linux_save_flags is called instead. It will
only return the interrupt disable/enable-flag set by linux_cli/linux_sti.

• linux_restore_flags: This function is called to restore the flags saved
previously by linux_save_flags. If the flags indicate that interrupts
should be enabled for Linux, linux_sti is called and otherwise the flag
is set to disable interrupts for Linux.

Other vital functions in the RTAI module are of course the API functions,
such as rt_request_global_irq for installing a real-time interrupt handler
and rt_pend_linux_irq for pending an interrupt to Linux from a real-time
handler.

3.3 Implementation Choices

This section is intended to highlight some implementation choices made.

3.3.1 Timers and Cycle Counter

The ETRAX 100LX processor provides two general timers in hardware, each
one has an 8-bit counter, which is loaded with a value before the timer is
started. The timer then counts down to one from the programmed value and
generates a timer interrupt. The counter then “wraps”, i.e. it starts over
again with the loaded value. The clock frequency of the timer, i.e. how often
the counter is decremented, can also be adjusted within certain limitations.

Normally, in Linux/CRIS, only one timer is used and the other one is avail-
able to e.g. device drivers. The timer used is run at 25 kHz and the counter
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is loaded with 250, this will generate a timer interrupt every 10 ms.

In the RTAI implementation on CRIS, both available timers are used in
a cascade mode that results in a 16-bit counter instead of an 8-bit when us-
ing only one timer. When RTAI is loaded the cascaded timer is programmed
to run at 6.25 MHz, which gives the real-time scheduler the possibility to
program an interrupt with a theoretical accuracy of 0.16 µs. Compared to
the default configuration where the accuracy would be 40 µs this is a great
improvement. By default the counter is loaded with a value of 62500 and
this setting will generate an interrupt every 10 ms. In this way the standard
time interval is not affected when no real-time tasks require it.

The timer cascade-mode in RTAI can be disabled in the kernel config, for
example if one of the timers is needed in a device driver. However, disabling
this functionality will result in a significant loss of accuracy.

There is a potential problem related to the fact that ETRAX, as many other
architectures, does not have a cycle counter4 implemented in hardware. A
cycle counter is used to keep track of time. In the implementation of RTAI,
the same counter used in the timer has been used to count cycles5. Although
this approach is acceptable, it has the problem that the function updating
the cycle counter has to be called at least once in every time window (i.e.
between two timer-counter wraps) or else the cycle counter will become cor-
rupt. The normal time window in Linux/CRIS is 10 ms, but when using
periodic real-time tasks, this can be set to any arbitrary value. If the time
window is very small, then it could happen that the interrupts are disabled
over the whole time window and therefore corrupting the cycle counter. A
solution to this problem could be to implement either a cycle counter or a
larger timer counter in hardware in future products.

3.3.2 Unaffected Interrupts

As shown in Figure 3.2 the interrupts with numbers 0 and 1 are not caught
and pended. This is because they are related to debug and watchdog respec-
tively.

3.4 Limitations

Because of the limited time available for this project there are some archi-
tecture specific parts of RTAI that are still not ported to CRIS, they are:

4An internal counter which increments with the clock frequency of the CPU.
5Actually the cycles counted here are the clock cycles of the timer, not the CPU.
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• Shared Memory (communication primitive)

• LXRT (hard real-time support in user-space)

• RTAI System Requests. This is a way to install a function that can
later be called from user-space but will run in kernel-space. The call
is similar to normal system requests, but arbitrary functions can be
installed. The parts necessary in the main module is implemented but
the calling mechanism is not.

There are also a number of examples shipped with RTAI which show how to
use the API, most of these examples can be compiled although they are not
always applicable to CRIS.

As of this writing the MMU bus fault is not pended, but is instead run di-
rectly. The handle_mmu_bus_fault-routine (which handles the fast TLB-fill)
must be run directly, otherwise the execution would not be able to continue.
Hence, the interrupt can not be caught and pended in the normal way. Some
architectures handle the TLB-fill in hardware so that it may look as if the
whole interrupt is pended. This is not the case on CRIS since the data struc-
tures are implemented in software. It could however be further investigated
if it is possible to pend the slow do_page_fault-part of this interrupt in an
easy way.

Normally a pointer to the pt_regs-struct is sent to do_IRQ, but as no inter-
rupt handler called through this routine is using the struct, no effort has been
made to save it when pending and then later send it along when dispatching
the interrupt to Linux. Instead a “dummy” struct is used and this is also the
case on at least the ARM and PPC architectures. This approach improves
interrupt latency performance, as the whole struct would otherwise have to
be copied, since it is saved on the kernel stack and would have been destroyed
before being used. The MMU bus fault is using the struct, but this interrupt
is not pended as mentioned above.

3.5 Known Problems

There is one known stability problem with the implementation of RTAI on
CRIS. It usually makes Linux stop responding, although most times the real-
time tasks are allowed to continue. The problem only shows up under heavy
network load and can be triggered by running two flood pings (ping -f) si-
multaneously towards the developer board. Besides this problem, which has
only shown up under flood pings, the port seems very stable.
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It should be noted that as of this writing the rtai.o module is actually
linked directly into the kernel on the CRIS port. This is not the customary
way to do it, instead it should be loaded as a module. The approach has
been taken because it minimized the stability problem mentioned above.

As to real-time scheduling, the period of a periodic task is sometimes not
correct. This only occures when cascaded timers are disabled in the kernel
config and the scheduler is set to run in oneshot mode. The period has then
been seen to be both one half and sometimes one third of the desired period.
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Chapter 4

Evaluation

In order to evaluate the performance and verify the basic functionality of the
RTAI port a number of tests were conducted. This chapter describes how
these tests are defined and performed. When the tests are applicable also to
standard Linux, a comparison is made. Finally, the results are presented and
discussed.

Two standard PC workstations (referred to as PC1 and PC2), one devel-
oper board with an ETRAX processor and a logic analyzer have been used
during the tests. For a full description of the test environment (hardware
configuration, software versions, load definitions etc.) see Appendix A. In
Appendix B the source code for the test programs can be found.

4.1 Definitions and Measurement Approaches

4.1.1 Interrupt Latency

Interrupt latency is the amount of time between when an interrupt is gen-
erated (internally or by an external device) and when an installed interrupt
handler starts to execute. When the system is in an idle state this time is
very short, but will be longer when for example other interrupts are processed.

Interrupt latency is a very important measurement in a real-time system.
It affects many other performance aspects such as scheduling precision and
interrupt task latency. A worst case interrupt latency yields for example a
lower boundary for the worst case interrupt task latency. The most interest-
ing tests are those with load as the worst latencies show up under load.

In order to measure interrupt latency, a signal from the parallel port of PC1
is changed from high to low. The signal is connected to a pin on a general I/O
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port of the developer board. The general I/O port is configured to generate
an interrupt when the signal is low. An installed interrupt handler will send
a response on the parallel port of the developer board when it is run. PC1
will change the signal back to high again when it receives the response and
wait some time before repeating the process. The timing sequence is shown
in Figure 4.1.

The time interval between when the PC changes its signal and when the
interrupt handler responds on the developer board is taken as a measure-
ment of interrupt latency. The process is repeated many times and the time
intervals are recorded by the logic analyzer.

Figure 4.1: Interrupt latency timing

Measurements are performed using four different configurations, all with and
without load (coming from PC2 in this case):

• RTAI mounted with a real-time interrupt handler.

• RTAI mounted with a standard Linux interrupt handler.

• Without RTAI but with the hardware abstraction layer present and
compiled into the kernel.

• Without RTAI and a plain Linux kernel.

4.1.2 Interrupt Task Latency

Consider an example of a real-time system which uses an external device that
generates data and signals to the system via an interrupt when this data is
ready. A high-priority real-time task reads the data and processes it within
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a certain amount of time. Other lower priority tasks may be executing in
the system, such as user-interface tasks, but they are not time critical. The
amount of time between when the external device is ready and signals with
an interrupt and when the task is run and can start processing the data is of
importance. This time interval is defined as interrupt task latency.

Figure 4.2: Interrupt task latency timing

In order to measure interrupt task latency a signal is generated on the par-
allel port of PC1. The signal triggers an interrupt on the developer board
and an installed handler will respond with a high signal on a response pin
on the parallel port. The handler will set another response pin high before
signaling a semaphore on which a high priority task is waiting. The task
should now start running as soon as possible, since it has the highest priority
and its waiting condition has been fulfilled. When the task starts to run, it
immediately clears the second response pin and then waits on the semaphore
again, thus allowing the interrupt handler to finish and take down the first
response pin. In Figure 4.2 the whole timing sequence is depicted. The time
interval between when the PC signal is generated and when the second re-
sponse pin is cleared by the task, is measured by the logic analyzer and taken
as a measurement of the interrupt task latency.

The measurements are also performed on standard Linux, except that the
task is a kernel thread and the semaphore is replaced with a wait queue.

Both tests are performed with and without load. The load will in this case
come from PC2.
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4.1.3 Scheduling Latency

A high priority real-time task ready to run should preempt any lower priority
tasks that may be executing. The amount of time it takes for the scheduler
to preempt a lower priority task, select the high priority task and start it is
called scheduling latency, that is, the time between when the high priority
task is ready to run and when it actually starts to run. There are different
ways in which a task can be made ready to run. Two cases have been studied.
In both cases, measurements are made with and without load.

Case 1: Using a semaphore

A low priority task signals a semaphore on which a high priority task is wait-
ing. A pin is set high on the parallel port before the semaphore is signaled.
When the high priority task starts to run, it immediately clears the pin and
waits for the semaphore again.

Case 2: Using suspend/resume

In this case, a low priority task resumes a high priority task that previously
suspended itself. A pin is set high on the parallel port before the high priority
task is resumed. When the high priority task starts to run, it immediately
clears the pin and then suspends itself again.

Figure 4.3: Scheduling latency timing

4.1.4 Scheduling Precision

Scheduling precision is a measurement of how well the scheduler is able to
maintain a desired fixed time-period for a task.

For example, if the period of a periodic real-time task is set to be T µs
and the task is started at t = 0 µs, then ideally it should run at times t =
T,2T,3T,... µs regardless of any lower priority tasks (such as Linux) that
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may be running in between. It is likely that it will not run exactly at these
points in time. The first time it will execute will most likely be at t = T+h
µs where h is a small non-zero time interval. This deviation from the correct
time is known as scheduling jitter. The scheduling jitter depends on how
often the scheduler is run which in turn depends on the granularity of the
timer, processing of interrupts etc.

Figure 4.4: Scheduling precision timing

Scheduling jitter is measured by letting a periodic real-time task toggle a
pin on the parallel port of the developer board and then wait the rest of its
period. The time intervals between the toggles are measured by the logic
analyzer. These intervals are compared to the desired period and the de-
viation is taken as a measurement of the scheduling jitter. Note that this
differs slightly from what is shown in Figure 4.4. If the task is delayed, the
measured period will be too long. Even if the next execution starts at the
correct time, the next measured period will be too short.

Two tests are performed, one without any load and one when a number
of lower priority real-time tasks are added to the load used in the other tests.

The scheduler is set to periodic mode and some different periods are tested.

4.1.5 Communication Overhead

When sending data from a real-time task or handler to a Linux process it is
interesting to see how large the overhead is. That is how much processing
time does it take to read from or write to a communication primitive such as
a FIFO buffer. Besides FIFO buffers can for instance shared memory be used
to communicate, but at the time of this writing it is not yet ported to CRIS.
Therefore FIFO buffers will be used in the following tests. From within a
real-time task a FIFO buffer is accessed using API function calls and from
Linux it is accessed through an entry in the /dev-directory using normal file
operations such as open, close, read and write.
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This test is not really a test of the real-time performance of the system,
but will present results that can be useful when designing such a system.
The results can for example be used to make sure that the system is not
overloaded when sending data from RT-tasks running in kernel-space to pro-
cesses running in user-space.

To measure the communication overhead one small and one large message
is sent and read a number of times by an RTAI task. A pin of the parallel
port is used to signal when the reading and writing starts and stops. Note
that it is the same message that is first written and then read by the task.
The interrupts are hard-disabled during the reading and writing to obtain
the correct times. The time intervals obtained in this test will be the actual
times it takes to put or get something to or from the buffer.

In addition to these measurements, an approach to measure the whole com-
munication process overhead between a user-space Linux process and a real-
time task will be performed. Messages of varying size will be sent from the
real-time task and read in the user-space process and then the message is
sent back again to the real-time task. A pin on the parallel port is set high
by the real-time task before sending a message and set low when the message
has been read back by the task. The time interval is measured by the logic
analyzer. This test will be performed without any other system load in order
to obtain a good estimate of the time it takes to use FIFO buffers as a means
of communication between user-space and real-time.

4.2 Results and Discussion

All values presented in this section are in µs if not stated otherwise.

4.2.1 Interrupt Latency

As mentioned earlier, the measurements are performed using four different
configurations, all with and without load:

1. RTAI mounted with a real-time interrupt handler.

2. RTAI mounted with a standard Linux interrupt handler.

3. Without RTAI but with the hardware abstraction layer present and
compiled into the kernel.

4. Without RTAI and a plain Linux kernel.
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A comparison between Linux and RTAI is made in this section. The compar-
ison is based upon the two normal configurations: RTAI with an RT-handler
(1) and plain Linux (4). The other two configurations are motivated to see
how RTAI affects the Linux kernel and are only present in the interrupt
latency measurements.

Table 4.1: Interrupt latency without load

Min Max Mean Median Std. Dev. #Values

1. RTAI RT-handler 5.3 25.9 5.8 5.6 0.4 225110
2. RTAI Linuxhandler 16.0 384.0 18.9 17.9 4.7 206995
3. Linux RTHAL 7.5 44.7 9.3 9.3 0.8 217201
4. Linux plain 3.5 32.5 4.3 3.9 0.9 254033

Table 4.2: Interrupt latency with load

Min Max Mean Median Std. Dev. #Values

1. RTAI RT-handler 4.4 64.9 17.9 18.5 5.7 223559
2. RTAI Linuxhandler 15.8 1209.0 182.8 115.6 165.9 246465
3. Linux RTHAL 6.6 154.3 23.0 22.7 7.8 243723
4. Linux plain 5.2 162.9 14.3 11.3 6.4 476052

RTAI RT-handler (1) vs. Plain Linux (4)

The difference between RTAI and Linux is small without system load. RTAI
has a slightly higher mean value (5.8 µs compared to 4.3 µs for Linux), which
is due to the hardware abstraction layer. It imposes a slight, predictable in-
crease in latency. This increase is visible when looking at the distribution in
Figure 4.5. It appears not much has been gained with RTAI when there is
no system load.

As load is applied, the difference becomes more obvious. While Linux still
has a better average, the worst case measured latency is 2.5 times higher
for Linux compared to RTAI (162.9 µs for Linux and 64.9 µs for RTAI).
Figures 4.7 and 4.8 are plots of measured latencies for Linux and RTAI re-
spectively. The samples appear more limited in RTAI, Linux has for example
several samples over 70 µs while RTAI has none.

The distribution is shown in Figure 4.6. The larger average latency in RTAI
can be explained by the interrupt dispatching function. It is mainly a loop
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running with interrupts disabled until an active Linux interrupt is found.
The routine can be optimized in future versions.

RTAI with a Linux Interrupt Handler (2)

RTAI is mounted in this test, but the measurements are performed on a Linux
interrupt handler. By comparing the results with those of plain Linux, it can
be seen how much a standard Linux interrupt handler is delayed by RTAI.
As seen in Tables 4.1 and 4.2 there is a significant performance loss, espe-
cially when observing maximum values. The increased latencies are mainly
the result of RTAI pending interrupts for Linux.

When RTAI is mounted, a normal Linux interrupt handler is not run di-
rectly, but the interrupt is still processed at a low-level and pended to Linux.
Before the interrupt handler is run, interrupts are enabled in the hardware.
Thus, a number of interrupts which all require low-level processing, could
occur between when a specific interrupt is pended and when the handler is
run. When load is applied, many interrupts will occur and the handler will
be delayed even further. Note that it is not until the handler is run that the
response pin is changed and the measurement value taken.

In plain Linux, interrupts are disabled from the moment the interrupt oc-
curs to when the handler gets to run and therefore is not delayed in this
way.

Linux with RTHAL Present (3)

The third test shows the slight overhead that the hardware abstraction layer
imposes on the kernel by substituting some assembler macros for function
calls. Note that RTAI is not mounted in these tests.

36



4. EVALUATION 4.2. Results and Discussion

Figure 4.5: Interrupt latency distribution without load, Linux vs. RTAI

Figure 4.6: Interrupt latency distribution with load, Linux vs. RTAI
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Figure 4.7: Interrupt latency, Linux with load (220 000 samples)

Figure 4.8: Interrupt latency, RTAI with load (220 000 samples)
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4.2.2 Interrupt Task Latency

Table 4.3: Interrupt task latency without load

Min Max Mean Median Std. Dev. #Values

RTAI 28.0 68.0 33.2 31.0 4.3 20496
Linux (plain) 44.8 332.3 49.7 49.4 5.2 10363

Table 4.4: Interrupt task latency with load

Min Max Mean Median Std. Dev. #Values

RTAI 37.6 142.0 63.0 63.3 9.4 12883
Linux (plain) 57.0 84585.0 3147.5 471.0 6393.7 10226

When comparing RTAI to Linux, one immediately notes the big difference in
the load tests. Interrupt task latency is composed of essentially two different
time intervals as shown in Figure 4.2. The first is interrupt latency and
the second is scheduling latency. While the difference in interrupt latency is
relatively small with load (mean 17.9 µs for RTAI and 14.3 µs for Linux),
the difference in interrupt task latency is large (mean 63.0 µs for RTAI and
3147.5 µs for Linux). This is due to how the Linux kernel thread is scheduled.
When the semaphore is signaled in RTAI by the RT-handler, it immediately
schedules while interrupts remain disabled. In Linux, the interrupt handler
finishes and interrupts are reenabled before the kernel thread is scheduled.
This means that during heavy load a lot of interrupts will be processed before
the thread is actually started.

4.2.3 Scheduling Latency

Table 4.5: Scheduling latency without load

Min Max Mean Median Std. Dev. #Values

Semaphore 18.5 29.2 20.9 19.3 2.7 23784
Suspend/Resume 10.5 18.4 11.8 10.6 1.9 17279

Tables 4.5 and 4.6 show that signaling a semaphore is slower than directly
resuming the high priority task. However, using a semaphore is much more
realistic in applications containing many threads.
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Table 4.6: Scheduling latency with load

Min Max Mean Median Std. Dev. #Values

Semaphore 24.7 57.7 30.5 29.8 3.3 15167
Suspend/Resume 17.6 46.1 21.4 20.8 2.7 18155

The min values of 18.5 µs (semaphore) and 10.5 µs (suspend/resume) in the
tests without load are probably close to the actual times it takes to schedule.
However, as interrupts are enabled during these tests, the time increases as
shown in Table 4.6 when load is applied. Interrupts can occur after the low
priority task has set the response pin high, but before the schedule function
has had a chance to disable interrupts. Hence the increase in measured time
intervals. Actually, the mean values increases by 9.6 µs in both test cases.
This increase is close to the increase in mean values observed when applying
load to the interrupt latency tests (12,1 µs).

4.2.4 Scheduling Precision

The values shown in the tables below are the jitter of the task periods and
not the periods themselves. In order to obtain the jitter, the desired period
was subtracted from the sampled values. In all but the plots, the absolute
value of the deviation is used and shown. Note that, despite the period being
written in ms in the tables, the measured values are in µs. In the test where
the task period equals 1 ms, the timer is also programmed to give interrupts
with this period. In the other tests, the timer is programmed with Linux
standard value of 10 ms.

Table 4.7: Scheduling jitter without load

Period Min Max Mean Median Std. Dev. #Values

1 ms 0.00 35.09 1.03 0.27 1.80 135522
50 ms 0.00 34.86 2.55 2.37 1.53 21070
200 ms 0.16 23.87 9.56 9.56 2.42 15005

Table 4.8: Scheduling jitter with load

Period Min Max Mean Median Std. Dev. #Values

1 ms 0.00 33.97 3.22 2.55 2.72 253415
50 ms 0.00 90.19 10.50 6.77 10.72 22723
200 ms 0.00 83.22 13.42 10.78 10.56 12012
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Figure 4.9: 1 ms without load and with load (see comments on next page)

Figure 4.10: 50 ms without load and with load

Figure 4.11: 200 ms without load and with load
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Comment: The load script was not run on the developer board during the 1
ms load test because of stability problems.

As can be seen in Table 4.7 and Table 4.8, the jitter is much worse when
the system is under heavy load. This comes from the fact that the system
disables all interrupts a short time when receiving new interrupts. If a new
interrupt is generated when the interrupts are disabled, it will not be handled
by the system until the interrupts are reenabled again. Periodic tasks can be
delayed this small fraction of time because they are started from the timer
interrupt.

In Figure 4.9, Figure 4.10 and Figure 4.11 the first 2000 measurements with
the desired period withdrawn is shown, both without and with load. It can
be seen that the median drifts upwards when the period increases. There is
a slight offset in Figure 4.9, a slightly larger one in Figure 4.10 and in Fig-
ure 4.11 it seems to be around 10 µs. In a perfect system this offset should
be zero. There is however no drifting in the period, it is constant over time.
In the 200 ms period test case, a period of 200.00956 ms appears to be used
instead. It is a very small offset from the desired value, but nevertheless an
offset. We believe this behaviour to be caused by an internal clock that does
not oscillate with the desired frequency of exactly 25 MHz, but instead has
a very slight offset. However, as long as this offset is constant it should not
cause any real problems as it can be compensated for.

The maximum deviation from the correct period is 83.22 µs. While this
may sound like a large value at first, it as actually less than 0.09 ms. Most
of the measured jitter comes from the interrupt latency. The worst case in
the scheduling precision test corresponds to the worst case in the interrupt
latency test.

In this test, no comparison to Linux has been made because Linux can only
schedue tasks with a granularity of 10 ms while RTAI has a granularity of
one timer tick (approximately 0.16 µs in RTAI/CRIS).
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4.2.5 Communication Overhead

Table 4.9: Communication Overhead, Write

Size Min Max Mean Median Std. Dev. #Values

4 bytes 15.80 28.36 16.32 16.00 0.76 17823
1024 bytes 53.96 71.56 55.40 54.34 1.87 14774

Table 4.10: Communication Overhead, Read

Size Min Max Mean Median Std. Dev. #Values

4 bytes 7.72 10.72 8.01 7.80 0.56 17823
1024 bytes 33.52 35.22 34.97 34.96 0.15 14774

As can be seen in Table 4.9 and Table 4.10, writing takes more time than
reading does. This is probably caused by some extra checks required in the
write case. Both the write and read functions copy the message when called.
The difference in time between writing and reading different message sizes is
not linear in the size of the message. There is a small constant offset involved
in calling the function, disabling the interrupts and some checks.

Table 4.11: Communication Overhead, rt-task to user-space and
back again

Size Min Max Mean Median Std. Dev. #Values

4 bytes 189.63 610.87 198.88 196.81 7.40 15040
1024 bytes 334.22 671.01 345.37 343.94 7.06 18271

In Table 4.11, it is the minimum values that show the most accurate time
as the interrupts are enabled. The test tries to measure the time it takes to
send a message from a rt-task to a user-space task which reads it and then
sends it back again for the rt-task to read. Thus, it is the total time to and
from user-space which is measured.
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Chapter 5

Final Improvements

This chapter describes modifications made to the implementation after the
tests in the evaluation were made and most of the report written. It contains
some important results.

Motivation

When looking at the test results in Chapter 4, it was obvious to us that
the implementation could be improved. For example, the interrupt latency
distribution in Figure 4.6 shows a big difference between RTAI and Linux.
RTAI has most of its samples in the second peak while Linux has most of
them in the first.

Modification

As mentioned in section 4.2.1, there is a long loop running with interrupts
disabled in the interrupt dispatch function. This loop has now been modified
to enable interrupts once every cycle.

Improvements

As a result of the modification, the stability has improved significantly. It
was previously possible to bring down the system almost immediately by
running two ping floods towards the developer board. This is not possible
any more. In fact, the system has been running the interrupt latency test for
several days under three ping floods without any problem. However, some
stability problem still exists. It is for example possible to trigger it by run-
ning the scheduling precision test for a few minutes with a period of 1 ms
and a number of ping floods present.

Although no changes to the logic of the program was made during the im-
provement, the timing was altered. This further implies that the stability
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problem is not due to a direct programming error in the RTAI code itself,
but rather to the behaviour introduced by RTAI in the kernel.

5.1 Test results

Due to time constraints, we were only able to rerun a small subset of the
tests in Chapter 4.

5.1.1 Interrupt Latency

Figure 5.1 shows the interrupt latency distribution before and after the mod-
ifications. It is a clear improvement. There are now many more samples
in the first peak and the distribution is also more concentrated around the
peaks.

Figure 5.1: Interrupt latency distribution, before and after the modifications.

Table 5.1 shows a small improvement in mean and median values. The mea-
sured maximum value is slightly higher in the modified version, but still
much smaller than for Linux. It should be noted that many more samples
were taken in the last test and it was therefore more likely that a higher
maximum value should be discovered.
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Table 5.1: Interrupt latency with load

Min Max Mean Median Std. Dev. #Values

Linux 5.2 162.9 14.3 11.3 6.4 476052
RTAI before changes 4.4 64.9 17.9 18.5 5.7 223559
RTAI after changes 4.1 68.5 14.3 15.6 6.0 918598

5.1.2 Scheduling Precision

The major difference between these results and those presented earlier in
section 4.2.4 is that the load script could be applied without breaking the
system. The values are otherwise very similar to those obtained earlier.

Table 5.2: Scheduling jitter

Period Min Max Mean Median Std. Dev. #Values

1 ms, no load 0.00 24.81 1.06 0.17 1.95 425893
1 ms, load 0.00 74.14 3.17 2.31 3.74 454880

Figure 5.2: 1 ms without load and with load
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Chapter 6

Conclusion

The evaluation leads to three primary conclusions:

• The basic functionality of RTAI is working on ETRAX.

• The interrupt latency in RTAI is much more limited than in Linux. The
measurement shows a 2.5 times higher worst case interrupt latency in
Linux compared to RTAI.

• All measurements indicate a good average real-time performance in
RTAI.

To sum up, it can be said that RTAI is a solution that provides good real-time
performance, while preserving the entire functionality of Linux.

6.1 Discussion

Porting a system such as RTAI is not easy. The documentation available at
this level for both RTAI and Linux is very limited. In order to fully under-
stand, one can not rely on written documentation, but must instead read the
code itself. This is a time consuming task. The process of debugging the
kernel in an embedded system is also very time consuming and the addition
of RTAI does not make it any easier.

The functionality of the RTAI system was tested only through the perfor-
mance tests. While basic functionality, such as installing handlers and run-
ning periodic tasks are tested, a lot of testing remains in order to verify the
functionality of the entire system.

In order to make RTAI a commercially attractive solution for the ETRAX
platform, some of the limitations mentioned in sections 3.4 and 3.5 could
need further attention. The stability problem, although much smaller now
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as described in Chapter 5, would for example have to be solved.

When one compares real-time performance, RTAI is much better than Linux
as can be seen in Chapters 4 and 5. The improved performance is visible in
all of the tests. For example, in the interrupt latency test where the plain
Linux kernel had a maximum response time of 163 µs, RTAI never went over
68 µs.

Although many samples were taken during the evaluation, there is no guar-
antee that the measured worst cases correspond to the actual worst cases of
the system. However, the measured values should not be far off. Guaranties,
as required by hard real-time, require a full code-path analysis. Such an
analysis is possible in RTAI because of its limited size and operations, but is
beyond the scope of this master thesis.

6.2 Summary

This thesis started with a brief overview of real-time systems in Chapter 2.
An investigation into how real-time can be achieved on Linux was made. It
was found that two major approaches existed; One that improved the stan-
dard Linux kernel in some way and one that added a small real-time kernel
in combination with a hardware abstraction layer. It was concluded that the
first approach is good because it improves Linux without the users having to
modify their applications. However, it can not offer any guaranties required
for hard real-time. The second approach makes it necessary to split applica-
tions into one real-time part and one user-space part, but the approach can
deliver hard real-time.

As said in the problem description for this thesis, hard real-time extensions
should be investigated and therefore only projects based on the second ap-
proach were considered. It was found that two such projects existed, RTLinux
and RTAI. They were both evaluated and it was found that, although they
provide essentialy the same performace, RTAI is more actively developed and
is open-source. Hence, RTAI was chosen as the extension to port to ETRAX.

The implementation of RTAI on ETRAX was described in Chapter 3. It
started with the hardware abstraction layer. In order to introduce the layer
into the Linux kernel, the interrupt paths were studied in detail and an in-
vestigation of how the paths could be safely modified by a kernel patch was
made. Some function calls were substituted and others added. The impor-
tant factors of not disabling interrupts when it is not absolutely necessary
and not running unpredictable code during this time, were considered.
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For the real-time scheduler to be precise, it was necessary to configure the
two hardware timers in cascaded mode. This yielded a granularity of 0.16
µs, which compared to the default configuration with an accuracy of 40 µs
is a big improvement.

The MMU bus fault is not handled by RTAI on ETRAX and it was con-
cluded that a further investigation can be made into whether it is possible
to handle the MMU bus fault, or parts of it, in an easy way.

A thorough evaluation was made in Chapter 4. A number of tests were
designed and test programs written. Real-time performance such as inter-
rupt latency and scheduling jitter was measured and also a basic functionality
verification was achieved through the tests. The results concluded that RTAI
provides good real-time performace, especially compared to standard Linux.

Chapter 5, which was written after the evaluation was made, described
changes to the implementation. Besides better performance, the stability
of the implementation improved significantly.
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Appendix A

Test Environment

The RTAI version used is 24.1.9 and it is configured to use the uniproces-
sor scheduler with the default scheduling algorithm. The tests in Chapter 4
are performed on revision R1 0 0 of the implementation on CRIS. It can be
obtained from the CVS repository at Axis upon request. The Linux kernel
version used is revision R2 4 20 021202 and the compilation tools are those
shipped in cris-dist 1.24-1 i386.deb, also available from Axis.

The following hardware has been used during the tests:

• PC1: Standard PC (Pentium III 600MHz, 256MB SDRAM, 100Mbit
Ethernet adapter) running Debian GNU/Linux 3.0.

• PC2: Standard PC (Pentium III 650MHz, 256MB SDRAM, 100Mbit
Ethernet adapter) running Debian GNU/Linux 3.0.

• An ETRAX 100LX-based developer board with 8MB RAM running
Linux.

• Tektronix TLA 715 Logic Analyzer.

Some tests are conducted under load. By load we mean:

• A PC sends a flood ping to the developer board (ping -f).

• A script is running in a loop on the developer board, reading files in
the /proc-directory.

The developer board is disconnected from the network when a test is run
without load. When load is applied, all three computers (PC1, PC2 and
the developer board) are connected to a 100 Mbps Ethernet switch (from
PLANET Technology Corp, model SW-800). This little network is isolated
during the tests.
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Appendix B

Test Programs

B.1 Interrupt Latency

B.1.1 RT-Handler
#include <linux/module.h>

#include <linux/sched.h>

#include <linux/init.h>

#include <linux/proc_fs.h>

#include <asm/io.h>

#include <asm/sv_addr.agh>

#include <asm/rtai.h>

#include "test.h"

/* The real-time interrupt handler */

void handler(void)

{

set_response_pin1_high();

// Wait for PC to take "down" the pin

while ((*R_PORT_PA_READ&0x80)==0x80);

set_response_pin1_low();

}

static __init int init_testhandler(void)

{

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

// Make sure the interrupt is masked at first

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Set General Port PA to input direction, pin 7

// This is a write-only register!!! Must use shadow-reg!

REG_SHADOW_SET(R_PORT_PA_DIR, port_pa_dir_shadow, 7, 0);

// Mount (init & mount) rtai

rt_mount_rtai();

// Install and enable irq-handling

rt_startup_irq(PA_IRQ);

rt_enable_irq(PA_IRQ);

57



B.1. Interrupt Latency B. TEST PROGRAMS

// Request rt-irq

rt_request_global_irq(PA_IRQ, handler);

// Enable the external interrupt on General Port PA

*R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, pa7, set);

printk("*** intlat installed on irq %d ***\n", PA_IRQ);

return 0;

}

static __exit void cleanup_testhandler(void)

{

// Disable the external interrupt on General Port PA

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Disable and remove irq-handling

rt_disable_irq(PA_IRQ);

rt_shutdown_irq(PA_IRQ);

set_response_pin1_low();

set_response_pin2_low();

// Release the rt-irq

rt_free_global_irq(PA_IRQ);

rt_umount_rtai();

printk("*** intlat unloaded ***\n");

}

module_init(init_testhandler);

module_exit(cleanup_testhandler);

B.1.2 Linux-Handler
#include <linux/module.h>

#include <linux/sched.h>

#include <linux/init.h>

#include <linux/proc_fs.h>

#include <asm/io.h>

#include <asm/sv_addr.agh>

#include <linux/ptrace.h>

#include "test.h"

/* The interrupt handler */

void handler(int irq, void* dev_id, struct pt_regs* regs)

{

set_response_pin1_high();

// Wait for PC to take "down" the pin

while ((*R_PORT_PA_READ&0x80)==0x80);

set_response_pin1_low();

}

static __init int init_testhandler(void)

{

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

// Make sure the interrupt is masked at first
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*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Set General Port PA to input direction, pin 7

REG_SHADOW_SET(R_PORT_PA_DIR, port_pa_dir_shadow, 7, 0);

// Install and enable irq-handling

if (request_irq(PA_IRQ, handler, SA_INTERRUPT, "testhandler", NULL)) {

printk("Error: intlat_linux could not grab the irq!\n");

return 1;

}

// Unmask the external interrupt on General Port PA

*R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, pa7, set);

// Mount RTAI (in some test cases)

//rt_mount_rtai();

printk("*** intlat_linux installed on irq %d ***\n", PA_IRQ);

return 0;

}

static __exit void cleanup_testhandler(void)

{

// Umount RTAI

//rt_umount_rtai();

// Disable the external interrupt on General Port PA

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

set_response_pin1_low();

set_response_pin2_low();

// Release irq

free_irq(PA_IRQ, NULL);

printk("*** intlat_linux unloaded ***\n");

}

module_init(init_testhandler);

module_exit(cleanup_testhandler);

B.2 Interrupt Task Latency

B.2.1 RT-Task
#include <linux/kernel.h>

#include <linux/module.h>

#include <asm/io.h>

#include <rtai.h>

#include <rtai_types.h>

#include <rtai_sched.h>

#include "test.h"

// Set to 0 if suspend/resume is wanted instead of wait/signal

#define USE_SEMAPHORE 1

#define STACK_SIZE 500

#define HIGH_PRIO 0

#if USE_SEMAPHORE

static SEM sem;

#endif

static RT_TASK high_prio_task;
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/* High prio task function */

static void high_prio_fun(int data)

{

while(1) {

set_response_pin2_low();

#if USE_SEMAPHORE

rt_sem_wait(&sem);

#else

rt_task_suspend(&high_prio_task);

#endif

}

}

/* Interrupt handler */

void handler_fun(void)

{

set_response_pin1_high();

set_response_pin2_high();

#if USE_SEMAPHORE

rt_sem_signal(&sem);

#else

rt_task_resume(&high_prio_task);

#endif

set_response_pin1_low();

}

int init_module(void)

{

#if USE_SEMAPHORE

RTIME start;

#endif

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

// Make sure the interrupt is masked at first

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Set General Port PA to input direction, pin 7

REG_SHADOW_SET(R_PORT_PA_DIR, port_pa_dir_shadow, 7, 0);

rt_mount_rtai();

// Install and enable irq-handling

rt_startup_irq(PA_IRQ);

rt_enable_irq(PA_IRQ);

// Request rt-irq

rt_request_global_irq(PA_IRQ, handler_fun);

// Initalize the task

rt_task_init(&high_prio_task, high_prio_fun, 0, STACK_SIZE,

HIGH_PRIO, 0, 0);

#if USE_SEMAPHORE

rt_sem_init(&sem, 0);

start = rdtsc() + nano2count(1000000000); // 1s from now

rt_task_make_periodic(&high_prio_task, start, nano2count(1000000000));

start_rt_timer(0); // Start with default value

#endif

// Enable the external interrupt on General Port PA

*R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, pa7, set);

return 0;

}
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void cleanup_module(void)

{

// Disable the external interrupt on General Port PA

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Disable and remove irq-handling

rt_disable_irq(PA_IRQ);

rt_shutdown_irq(PA_IRQ);

// Release the rt-irq

rt_free_global_irq(PA_IRQ);

set_response_pin1_low();

set_response_pin2_low();

rt_task_delete(&high_prio_task);

#if USE_SEMAPHORE

stop_rt_timer();

rt_sem_delete(&sem);

#endif

rt_umount_rtai();

}

B.2.2 Kernel-Thread
#include <linux/kernel.h>

#include <linux/module.h>

#include <asm/io.h>

#include <asm/smplock.h>

#include <linux/sched.h>

#include <linux/init.h>

#include <asm/io.h>

#include <linux/ptrace.h>

#include "test.h"

static int kthread_shutdown = 0;

DECLARE_WAIT_QUEUE_HEAD(kthread_wait_queue_interrupt);

DECLARE_WAIT_QUEUE_HEAD(kthread_wait_queue_shutdown);

/* High prio task function */

static int high_prio_fun(void * whatever)

{

// Detach from the original process

sprintf(current->comm,"High prio fun");

lock_kernel();

exit_mm(current);

// While the module is not unloaded

while(!kthread_shutdown) {

set_response_pin2_low();

interruptible_sleep_on(&kthread_wait_queue_interrupt);

}

return 0;

}

/* Interrupt handler */

static void handler_fun(int irq, void* dev_id, struct pt_regs* regs)

{

set_response_pin1_high();

set_response_pin2_high();
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wake_up_interruptible(&kthread_wait_queue_interrupt);

set_response_pin1_low();

}

int init_module(void)

{

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

// Make sure the interrupt is masked at first

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

// Set General Port PA to input direction, pin 7

REG_SHADOW_SET(R_PORT_PA_DIR, port_pa_dir_shadow, 7, 0);

// Install and enable irq-handling

if (request_irq(PA_IRQ, handler_fun, SA_INTERRUPT, "handler", NULL)) {

printk("Error: inttasklat_linux could not grab the irq!\n");

return 1;

}

// Enable the external interrupt on General Port PA

*R_IRQ_MASK1_SET = IO_STATE(R_IRQ_MASK1_SET, pa7, set);

// Fork the main thread

kernel_thread(high_prio_fun, NULL, 0);

return 0;

}

void cleanup_module(void)

{

// Tell the kernel thread to stop

kthread_shutdown = 1;

// Simulate an interrupt to awaken the kernel thread.

wake_up_interruptible(&kthread_wait_queue_interrupt);

// Disable the external interrupt on General Port PA

*R_IRQ_MASK1_CLR = IO_STATE(R_IRQ_MASK1_CLR, pa7, clr);

set_response_pin1_low();

set_response_pin2_low();

// Release irq

free_irq(PA_IRQ, NULL);

}

B.3 Scheduling Latency
#include <linux/kernel.h>

#include <linux/module.h>

#include <rtai.h>

#include <rtai_types.h>

#include <rtai_sched.h>

#include "test.h"

#define STACK_SIZE 500 // Task stack size

#define HIGH_PRIO 0

#define LOW_PRIO 1
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#define HIGH_PRIO_PERIOD 1000000000 // 1s, not interesting in this case.

#define LOW_PRIO_PERIOD 200000000 // 0.2s, time between reschedules.

// Define if interrupts should be disabled during tests.

//#define NO_INTERRUPTS

// Set to 0 if suspend/resume is wanted instead of wait/signal

#define USE_SEMAPHORE 1

static RT_TASK high_prio_task;

static RT_TASK low_prio_task;

#if USE_SEMAPHORE

static SEM sem;

#endif

/* High prio task function */

static void high_prio_fun(int data)

{

while(1) {

set_response_pin1_low();

#if USE_SEMAPHORE

rt_sem_wait(&sem);

#else

rt_task_suspend(0);

#endif

}

}

/* Low prio task function */

static void low_prio_fun(int data)

{

while(1) {

set_response_pin1_high();

#if USE_SEMAPHORE

rt_sem_signal(&sem);

#else

rt_task_resume(&high_prio_task);

#endif

rt_task_wait_period();

}

}

int init_module(void)

{

RTIME now, high_prio_start, low_prio_start;

// Setup parallel port

initialize_port();

set_response_pin1_low();

rt_mount_rtai();

// Initalize tasks

rt_task_init(&high_prio_task, high_prio_fun, 0, STACK_SIZE,

HIGH_PRIO, 0, 0);

rt_task_init(&low_prio_task, low_prio_fun, 0, STACK_SIZE,

LOW_PRIO, 0, 0);

#if USE_SEMAPHORE

rt_sem_init(&sem, 0);

#endif

// Start timer with default value

start_rt_timer(0);
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now = rdtsc();

high_prio_start = now + nano2count(1000000000); // 1s from now.

low_prio_start = now + nano2count(2000000000); // 2s from now.

rt_task_make_periodic(&high_prio_task, high_prio_start,

nano2count(HIGH_PRIO_PERIOD));

rt_task_make_periodic(&low_prio_task, low_prio_start,

nano2count(LOW_PRIO_PERIOD));

return 0;

}

void cleanup_module(void)

{

stop_rt_timer();

rt_task_delete(&high_prio_task);

rt_task_delete(&low_prio_task);

#if USE_SEMAPHORE

rt_sem_delete(&sem);

#endif

rt_umount_rtai();

}

B.4 Scheduling Precision
#include <linux/kernel.h>

#include <linux/module.h>

#include <rtai.h>

#include <rtai_types.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include "test.h"

#define STACK_SIZE 2000 // Task stack size

#define HIGH_PRIO 0

#define LOW_PRIO 1

//#define TIMER_PERIOD 1000000 // 1.0 ms

//#define TASK_PERIOD 1000000 // 1.0 ms

#define TIMER_PERIOD 500000 // 500us

#define TASK_PERIOD 500000 // 500us

// Define if lower priority tasks should run concurrently

#define LOAD

static RT_TASK high_prio_task;

#ifdef LOAD

static RT_TASK low_prio_task_1;

static RT_TASK low_prio_task_2;

#endif

/* High prio task function */

static void high_prio_fun(int whatever)

{

while (1) {

toggle_response_pin1();

rt_task_wait_period();

}

}

#ifdef LOAD

/* Low prio task function */
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static void low_prio_fun(int whatever)

{

while (1) {

rt_task_wait_period();

}

}

#endif

int init_module(void)

{

RTIME now, start_1, start_2;

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

rt_mount_rtai();

// Initalize tasks

rt_task_init(&high_prio_task, high_prio_fun, 0, STACK_SIZE,

HIGH_PRIO, 0, 0);

#ifdef LOAD

rt_task_init(&low_prio_task_1, low_prio_fun, 0, STACK_SIZE,

LOW_PRIO, 0, 0);

rt_task_init(&low_prio_task_2, low_prio_fun, 0, STACK_SIZE,

LOW_PRIO, 0, 0);

// Let the tasks be preemptive even in oneshot mode

rt_preempt_always(1);

#endif

start_rt_timer(nano2count(TIMER_PERIOD));

// Start the task

now = rdtsc();

start_1 = now + nano2count(1000000000);

start_2 = now + nano2count(1000000000) - nano2count(200000);

rt_task_make_periodic(&high_prio_task, start_1,

nano2count(TASK_PERIOD));

#ifdef LOAD

rt_task_make_periodic(&low_prio_task_1, start_2,

nano2count(TASK_PERIOD));

rt_task_make_periodic(&low_prio_task_2, start_1,

nano2count(TASK_PERIOD));

#endif

return 0;

}

void cleanup_module(void)

{

stop_rt_timer();

rt_task_delete(&high_prio_task);

#ifdef LOAD

rt_task_delete(&low_prio_task_1);

rt_task_delete(&low_prio_task_2);

#endif

rt_umount_rtai();

}
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B.5 Communication Overhead

B.5.1 Between RT-Tasks

#include <linux/kernel.h>

#include <linux/module.h>

#include <rtai.h>

#include <rtai_types.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include "test.h"

// Message size of 4 or 1024 bytes.

//#define FIFO_SIZE 4

//#define MESSAGE_SIZE 4

#define FIFO_SIZE 1024

#define MESSAGE_SIZE 1024

#define STACK_SIZE 500 // Task stack size

#define HIGH_PRIO 0

#define FIFO_NBR 0

#define HIGH_PRIO_PERIOD 100000000 // 0.1s, time between messages

static RT_TASK high_prio_task;

static int data[FIFO_SIZE];

/* High prio task function */

static void high_prio_fun(int whatever)

{

while (1) {

unsigned long flags;

flags = rt_global_save_flags_and_cli();

// Write data

set_response_pin1_high();

rtf_put (FIFO_NBR, data, MESSAGE_SIZE);

set_response_pin1_low();

// Read data

set_response_pin2_high();

rtf_get (FIFO_NBR, data, MESSAGE_SIZE);

set_response_pin2_low();

rt_global_restore_flags(flags);

rt_task_wait_period();

}

}

int init_module(void)

{

RTIME now, high_prio_start;

// Setup parallel port

initialize_port();

set_response_pin1_low();

set_response_pin2_low();

rt_mount_rtai();

rtf_create(FIFO_NBR, FIFO_SIZE);

// Initalize task

rt_task_init(&high_prio_task, high_prio_fun, 0, STACK_SIZE,
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HIGH_PRIO, 0, 0);

rt_set_oneshot_mode();

start_rt_timer(0);

now = rdtsc();

high_prio_start = now + nano2count(1000000000); // 1s from now.

rt_task_make_periodic(&high_prio_task, high_prio_start,

nano2count(HIGH_PRIO_PERIOD));

return 0;

}

void cleanup_module(void)

{

stop_rt_timer();

rtf_destroy (FIFO_NBR);

rt_task_delete(&high_prio_task);

rt_umount_rtai();

}

B.5.2 RT-Task to User-Space
#include <linux/kernel.h>

#include <linux/module.h>

#include <rtai.h>

#include <rtai_types.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include "test.h"

#include "test_fifo_complete.h"

#define STACK_SIZE 500 // Task stack size

#define HIGH_PRIO 0 // Task priority

#define HIGH_PRIO_PERIOD 200000000 // 0.2s, time between messages

static RT_TASK high_prio_task;

static void high_prio_fun(int whatever)

{

while (1) {

// Write data

set_response_pin1_high();

rtf_put (FIFO_OUT, data, MESSAGE_SIZE);

rt_task_wait_period();

}

}

int fifo_read_handler(unsigned int fifo)

{

// Read data

rtf_get (FIFO_IN, data, MESSAGE_SIZE);

set_response_pin1_low();

return 0;

}

int init_module(void)

{

RTIME now, high_prio_start;

// Setup parallel port
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initialize_port();

set_response_pin1_low();

set_response_pin2_low();

// Create FIFOs

rtf_create (FIFO_OUT, FIFO_SIZE);

rtf_create (FIFO_IN, FIFO_SIZE);

// Start and mount rtai

rt_mount_rtai();

rtf_create_handler(FIFO_IN, fifo_read_handler);

// Initalize task

rt_task_init(&high_prio_task, high_prio_fun, 0, STACK_SIZE, HIGH_PRIO, 0, 0);

// Start timer

rt_set_oneshot_mode();

start_rt_timer(0);

// Start the task

now = rdtsc();

high_prio_start = now + nano2count(1000000000); // Start in 1s.

rt_task_make_periodic(&high_prio_task, high_prio_start,

nano2count(HIGH_PRIO_PERIOD));

return 0;

}

void cleanup_module(void)

{

rtf_destroy (FIFO_OUT);

rtf_destroy (FIFO_IN);

stop_rt_timer();

rt_task_delete(&high_prio_task);

rt_umount_rtai();

}

B.5.3 User-Space to RT-Task
#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/time.h>

#include <sys/types.h>

#include <fcntl.h>

#include <signal.h>

#include <time.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <rtai_fifos.h>

#include "test_fifo_complete.h"

static int end;

static void endme(int dummy) { end = 1;}

int main(int argc, char *argv[])

{

int fd0;

int fd1;
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signal(SIGINT, endme);

// Input

if ((fd0 = open("/dev/rtf0", O_RDONLY)) < 0) {

fprintf(stderr, "Error opening /dev/rtf0\n");

exit(1);

}

// Output

if ((fd1 = open("/dev/rtf1", O_WRONLY)) < 0) {

fprintf(stderr, "Error opening /dev/rtf1\n");

exit(1);

}

while (!end) {

read(fd0, &data, MESSAGE_SIZE);

write(fd1, data, MESSAGE_SIZE);

}

close(fd0);

close(fd1);

return 0;

}

B.6 Load Program
#!/bin/sh

cd /proc

while true

do

cat cmdline

cat cpuinfo

cat devices

cat dma

cat execdomains

cat fasttimer

cat filesystems

cat iomem

cat ioports

cat ksyms

cat loadavg

cat locks

cat meminfo

cat misc

cat modules

cat mtd

cat partitions

cat slabinfo

cat stat

cat swaps

cat uptime

cat version

done

B.7 Interrupt generator
/* This program is executed on PC1 in the interrupt latency and interrupt task latency tests.

It generates a signal on the parallel port within a random time interval. */

#include <module.h> // for versions etc.

#include <asm/io.h> // for inb and outb

69



B.7. Interrupt generator B. TEST PROGRAMS

#define DEV_MAJOR 126

#define BASE_OUT 0x378

#define BASE_IN 0x379

/* The longest loop count a spike may take. If

this limit is reached the generator stops */

#define SAFETY_SPIKE_LIMIT 100000UL

/* The time interval (in seconds) of the delay between spikes */

#define DELAY_LOW 0.2

#define DELAY_HIGH 0.5

/* Global flag indicating run-condition */

volatile unsigned int running = 0;

static void start_spikes(void);

static void stop_spikes(void);

static void do_spikes(void);

/*

* NOTE: The below implementation of pseudo-random number

* generator is not good, but it is fast and simple and

* should suffice in our application.

*/

// ------------------------------------------------------

#define RAND_MAX 32767

unsigned long int next = 1;

int rand(void)

{

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

// ------------------------------------------------------

/* Handles writes on the device registered with this module */

static ssize_t handle_dev_write(struct file *file, const char *buf,

size_t count, loff_t *off)

{

if (count>1 && buf[0]==’G’ && buf[1]==’O’) {

start_spikes();

} else if (count>1 && buf[0]==’N’ && buf[1]==’O’) {

stop_spikes();

} else {

printk("spike: Unknown command received.\n");

}

return count;

}

/* Device opperations */

static struct file_operations dev_fops = {

write: handle_dev_write,

};

/* Generates spikes periodically as long as "running" is true */

static void do_spikes(void)

{

unsigned long j;

unsigned long flags;

unsigned long safety;

unsigned int counter = 0;

char curr;
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float delay_interval = DELAY_HIGH - DELAY_LOW;

while (running) {

// Read current state of cris response pin

curr = inb(BASE_IN)&0x40;

// Disable interrupts

__save_flags(flags);

__cli();

// Set data low

outb(0, BASE_OUT);

// Wait until dev.board changes the response pin

safety = 0;

while ((inb(BASE_IN)&0x40)==curr && ++safety<SAFETY_SPIKE_LIMIT);

// Safety check in case of RTAI failure

if (safety>=SAFETY_SPIKE_LIMIT) {

printk("spike: *** WARNING: SAFETY LIMIT REACHED ***\n");

stop_spikes();

}

// Set data high

outb(255, BASE_OUT);

// Restore interrupts

__restore_flags(flags);

// Increase counter

++counter;

if (counter%10==0) {

printk("spike: %d spikes has been generated.\n", counter);

}

// Wait delay between spikes

j = jiffies + ((rand()/(RAND_MAX+1.0))*delay_interval + DELAY_LOW)*HZ;

while (jiffies < j)

schedule();

}

}

/* Starts generating spikes if they are not already started */

static void start_spikes(void) {

if (!running) {

running = 1;

printk("spike: +++ Starting spikes +++\n");

do_spikes();

}

}

/* Stops generating spikes */

static void stop_spikes(void) {

running = 0;

printk("spike: --- Stopping spikes ---\n");

}

/* Initializes the module */

static __init int init_parapc(void)

{

// Register device

if (register_chrdev(DEV_MAJOR, "spike", &dev_fops)<0) {

printk("Unable to get major %d for spike\n", DEV_MAJOR);

return 1;

71



B.7. Interrupt generator B. TEST PROGRAMS

}

// Set data high

outb(255, BASE_OUT);

// Not running yet

running = 0;

printk("SPIKE GENERATOR module inserted\n");

return 0;

}

/* Clean-up of the module */

static __exit void cleanup_parapc(void)

{

// Unregister device

unregister_chrdev(DEV_MAJOR, "spike");

// Set data high

outb(255, BASE_OUT);

printk("SPIKE GENERATOR module removed\n");

}

module_init(init_parapc);

module_exit(cleanup_parapc);
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Appendix C

Modified Kernel Files

This appendix describes files modified by the kernel patch and briefly how
they are modified. This is not intended to be an in-depth description explain-
ing all details; for that kind of information we direct the interested reader to
the patch itself.

linux/Makefile

Only changed when linking the rtai.o-module directly into the kernel. This
is currently the case as described in 3.5.

linux/arch/cris/config.in
linux/Documentation/Configure.help
linux/arch/cris/defconfig

Adds a few configuration alternatives for enabling or disabling RTHAL in
the kernel. Also an option for turning off the cascaded timer mode used in
RTAI is added.

linux/include/asm-cris/irq.h

Adds RTHAL to the low-level IRQxx_interrupt-routines as described in
section 3.1.2. This is done by modifying the macros that create the routines.

linux/arch/cris/kernel/entry.S

Adds RTHAL to the interrupt paths as described in section 3.1.2.

linux/arch/cris/kernel/ksyms.c

Adds some exported symbols that the RTAI modules need.
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linux/arch/cris/kernel/irq.c

Initializes the rthal-struct. The interrupt related calls will go through the
struct after this initialization, but the functions that are installed will per-
form as usual until RTAI is mounted.

Also, some functions for handling the interrupt vector are made available.

linux/arch/cris/kernel/time.c

Adds a timer interrupt handler that is used when pending the timer interrupt.
This is to speed things up because some of the things done in the normal
timer handler is now done in RTAI before the interrupt is pended to Linux.

linux/arch/cris/mm/fault.c

Changes a sti()-call in the do_page_fault-routine into a hard_sti() that
really enables the interrupts on the hardware level.

linux/include/asm-cris/system.h

The rthal-struct is defined in this file and it looks like this:

struct rt_hal {

void (*do_IRQ) (int, struct pt_regs*); /* 0 */

void (*do_timer_IRQ)(int, struct pt_regs*); /* 4 */

long long (*do_SRQ) (int, unsigned long); /* 8 */

void (*disint)(void); /* 12 */

void (*enint)(void); /* 16 */

unsigned long (*getflags)(void); /* 20 */

void (*setflags)(unsigned long); /* 24 */

unsigned long (*getflags_and_cli)(void); /* 28 */

void (*ei_if_rtai)(void); /* 32 */

void (*unmask_if_not_rtai)(unsigned int); /* 36 */

};

Also all macros that are related to interrupts are redefined so that they go
through the rthal-struct.

linux/arch/cris/mm/ioremap.c
linux/mm/vmalloc.c
linux/include/asm-cris/pgalloc.h

The modifications to these files are only needed when the MMU bus fault is
handled by RTAI and when rtai.o is used as a module. Since neither of this
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is the case presently, the files are not patched.

The patch propagates the modifications of the kernel memory map to all
existing processes in the system. Kernel mappings, as created by vmalloc()

and the like, modify the kernel memory map only. Usually, existing processes
don’t receive this mapping. Should they ever need it, it is added to their map
later upon a page-fault.

Should RTAI install a new interrupt dispatcher even for the do_page_fault

part of the MMU bus fault, as mentioned in section 3.4, it is necessary to
propagate the kernel memory map modifications to all processes that existed
before RTAI was loaded. Otherwise the system would run in a double page
fault: Some page is not there -> page fault -> page fault and so on.
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Appendix D

Kernel Modules

Table D.1 describes essential kernel modules in RTAI and their respecive file
sizes and memory footprints. The figures are in bytes and the memory foot-
print is as reported by lsmod.

Note that the main module is currently not used as a module, but instead
linked directly into the kernel as said in 3.5.

Module File Size Memory
Footprint

Comments

rtai.o 13933 5528 The main module
rtai.o 15276 14664 The main module linked

with rt_printk1

rtai_sched_up.o 56779 41596 The real-time uniproces-
sor scheduler linked with
rt_mem_mgr2

rtai_fifos.o 29328 17464 Adds FIFO queue support
for communication between
Linux and RTAI

rtai_pqueue.o 22186 17216 Adds support for POSIX
pQueues

rtai_pthread.o 51607 47808 Adds support for POSIX
pThreads

rtai_utils.o 1451 452 Some utilities needed by
rtai_pthread.o

Table D.1: Kernel Modules

1This is a service for doing console printouts without affecting real-time performance.
2Real-Time Memory Manager. This service tries to implement a somewhat real-time

safe memory allocation. It can be excluded and then the standard kmalloc is used instead.
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Appendix E

Glossary

ARM A processor architecture. RTAI has been ported to this
architecture.

CRIS Code Reduced Instruction Set, the CPU architecture de-
signed by Axis and used in its ETRAX processors.

Deadline The longest acceptible response-time for a task in an
application.

ETRAX A family of processors developed by Axis and based on
CRIS. The processor is designed with networking and
embedded systems in mind.

Cycle Counter An internal counter that increments with the clock fre-
quency of the CPU.

DIAPM Dipartimento di Ingegneria Aerospaziale - Politecnico di
Milano. The place of origin for RTAI.

FPU Floating Point Unit

GPL GNU General Public License, see
http://www.gnu.org/copyleft/gpl.html.

Hard Real-time In a hard real-time system, all the deadlines of the sys-
tem must be met att all times.

Kernel-Space Most device drivers and the kernel itself run in kernel-
space. Code running in kernel-space does not have mem-
ory protection, access restrictions etc. In short it has
access to whatever it wants. See also user-space.

LGPL GNU Lesser General Public License, see
http://www.gnu.org/copyleft/lesser.html.
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LXRT RTAI service that provides support for hard real-time
from Linux user-space.

MIPS A processor architecture. RTAI has been ported to this
architecture.

MMU Memory Management Unit. A vital part of the processor
providing memory protection, address translation etc.

PPC PowerPC, a processor architecture. RTAI has been
ported to this architecture.

POSIX Portable Operating System Interface for UNIX.

Response Time The time interval from when an application receives a
stimulus to when the application has produced a result
based on that stimulus.

RPC Remote Procedure Call.

RTAI Real-Time Application Interface.

RTHAL Real-Time Hardware Abstraction Layer.

RTOS Real-Time Operating System.

Soft Real-time In a soft real-time system, the deadlines of the system
must usually be met, but it is acceptible if a small num-
ber of deadlines are missed occasionally.

TLB Translation Look-aside Buffer. Provides a cache of ad-
dress translations. On CRIS, if a translation that is
needed is not cached, an MMU bus fault occurs and the
TLB must be filled by software.

TSC Time Stamp Clock.

User-Space This is where standard applications such as web
browsers, command shells, etc. run. Each application
process has its own protected memory area where it can
not interfer with other processes. See also kernel-space.
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