
ADSL software router with firewalling
and virtual private networking on

embedded devices with Linux on the
example of a SEGA Dreamcast

gaming console.

Christian Berger

June 11, 2003

Revision History

Revision Date Author

Revision 1.2 06/11/2003 Christian Berger (c.berger@tu-braunschweig)
Revision 1.1 04/03/2003 Christian Berger (c.berger@tu-braunschweig)
Revision 1.0 03/27/2003 Christian Berger (c.berger@tu-braunschweig)

Copyright (c) 2003 Christian Berger (c.berger@tu-braunschweig.de).

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

i

Abstract

This article describes the necessary steps and backgrounds for building a software
router with the operating system Linux on a SEGA gaming console. Therefore, it
points out the way of building and designing atoolchainfor compiling programs and
the Linux kernel in conclusion with the build of a Linux operating system from scratch
running entirely in the memory.

Today, the total costs of ownership(TCO)of a personal computer are that low, so why
am I trying to build a software router on a gaming console? More aspects wake my
curiosity to walk on the very stony way for getting Linux on the gaming console.

First, the hardware architecture is a non-x86 computer system, so the attraction for
getting in contact with a foreign platform is one reason. Next, I want to know, how to
setup and usecross compilers. If you have a running cross compiler, you’re on a very
shiny way - but, cross compiler raise (other) problems you won’t probably have if you
are just trying to compile your favorite program which was normally designed for an
x86 platform. Last but not least, I haven’t found any articles describing these steps
I’ve shortly explained above, so, I want to be the first :-)

SEGA Dreamcastgaming console.

Dedication

This document is my way to show my gratitude to the great Open Source Community
out in the world for their great work.

ii

Contents

1 Introduction and theory 1
1.1 Whatis cross compiling? . 1
1.2 Cross compiling programs . 2
1.3 Building Linux from scratch . 3
1.4 What do I need for starting with this article? 4

2 Setting up an initial toolchain 7
2.1 Setting up your workstation . 7
2.2 Setting up a cross compiling environment 7
2.3 Downloading the source packages 8
2.4 Building a cross compiler, linker and bootstrap compiler 11
2.5 Setting up the Linux kernel . 12
2.6 Building a runtime library . 14
2.7 Rebuilding thecross compiler . 15
2.8 Building the Linux kernel . 15
2.9 Building a shell (and a little bit more. . .) 15
2.10 Bundle the Linux kernel and the initrd 20
2.11 Building the bootloader . 20
2.12 Where are we? . 23

3 Setting up an initial ramdisk 25
3.1 Directory structure . 25
3.2 Where are we? . 32

4 Setting up the uClibc toolchain with two essential applications 33
4.1 Setting upuClibc . 33
4.2 Compilingbusybox-0.60.5 . 35
4.3 Compilingtinylogin-snapshot . 36
4.4 Setting upthe cook . 36
4.5 Where are we? . 37

5 Connecting the SEGA Dreamcast to an access concentrator 39
5.1 Some theory . 39
5.2 Compilingppp-2.4.1 . 39
5.3 Compilingrp-pppoe-3.3 . 41
5.4 Connecting to an access concentrator 41
5.5 Where are we? . 44

iii

Contents

6 Setting up routing and firewalling 45
6.1 Preparing the Linux kernel . 45
6.2 Compilingiptables-1.2.7a . 46
6.3 Setting upIP forwardingandMASQUERADING 47
6.4 Where are we? . 48

7 Setting up an own nameserver and DHCP - server 49
7.1 Compilingyaku-ns . 49
7.2 Compilingudhcp-0.9.8 . 51
7.3 Setting up automatic DNS . 53
7.4 Where are we? . 55

8 Setting up SSH 57
8.1 Compilingzlib-1.1.4 . 57
8.2 Compilinggmp-2.0.2.tar.gz. 58
8.3 Compilingopenssl-0.9.6e. 59
8.4 Compilingossh-1.5.12 . 60
8.5 Where are we? . 63

9 Setting up virtual private networking 65
9.1 Setting up theVPN - server. 66
9.2 Setting up theVPN - client . 67
9.3 Where are we? . 69

10 Setting up a persistent configuration 71
10.1 Changes on yourSEGA Dreamcast. 71
10.2 Persistent configuration on theVMU 72
10.3 Where are we? . 75

11 Acknowledgements 77

12 GNU Free Documentation License 79

13 Glossary 87

Bibliography 89

iv

List of Figures

2.1 The patches against the Linux kernel. 9

5.1 Diagram of the (virtual) devices while PPPoE’ing. 40

9.1 Diagram of a virtual private network between two networks over the
Internet. 65

v

List of Figures

vi

List of Tables

1.1 List of essential programs for running a kernel and a shell on your
SEGA Dreamcast. 4

1.2 Costs for getting the whole stuff. 5

2.1 Source packages, sizes and URLs. 9
2.2 Sample configuration for an ADSL software router. 13

4.1 Source package, size and URL foruclibc. 33
4.2 Configuration foruClibc for running onSEGA Dreamcast. 34
4.3 Source package, size and URL fortinylogin. 36

5.1 Source package, size and URL forppp. 40
5.2 Source package, size and URL forrp-pppoe. 41

6.1 Needed configuration for usingiptables. 46
6.2 Source package, size and URL foriptables. 46

7.1 Source package, size and URL forudhcp. 52

8.1 Source package, size and URL forzlib. 57
8.2 Source package, size and URL forgmp. 58
8.3 Source package, size and URL foropenssl. 59
8.4 Source package, size and URL forossh. 60

9.1 Source package, size and URL forpty-redir. 68

vii

List of Tables

viii

1 Introduction and theory

This chapter is about introducing to the world ofcross compilingand the associated
problems. It also describes the general differences between compiling programs and
building a Linux system from scratch for an x86 architecture and a foreign platform on
the example of the Hitachi SH7750 chipset embedded in theSEGA Dreamcast. Last
but not least it lists the hardware components that are necessary to use this article.

1.1 What is cross compiling?

A short description of cross compiling would be the following term:

Cross compiling is the procedure for building a program for a platform different
from the one on which the cross compiler runs. ”Platform” does not only mean the
hardware architecture but also software platforms, e.g. the process for building the
GNU/Hurdoperating system from sources on a running Linux for the same hardware
architecture is also a cross compiling.

But ”cross compiling” covers more than the short statement above. For using and
building a cross compiler, you need to know more than onlydownload the source ;
./configure ; make ; make install. Frequently, problems appear which you wouldn’t
expect if you just compile a package for your computer. A generic solution for arising
problems would be correcting it by installing or compiling the needed libraries - but,
mostly, thisdoesn’twork with a program which has to be cross compiled.

Personally, I would describe this process at leastrecursive. You’ve got a source code
of the famous programfoo and you notice that it depends on librarylibfoobar. So,
you get the source of this library, but then, you remember, the library itself depends on
another librarylibbar. . .

As you notice, you firstly have to compile the packagelibbar, then you can correct the
problems of librarylibfoobar and then, you can finally compile the original source of
foo.

Don’t get frightened - many programs you want to compile are well described or you
may get help from the Internet, news groups or mailing lists from all around the world.

The programs used in this article have all been tested and compiled. Mostly, they
include a patch which represents a workaround of problemxyzfor the platformSEGA
Dreamcast.

1

1 Introduction and theory

1.2 Cross compiling programs

If you want to cross compile a progam, the steps don’t obviously differ from the ones
needed to compile it for your personal computer. But there are some things to keep in
mind for avoiding getting tired or crazy.

First, the platformwhich runs the cross compiler is calledhost. The target platform,
for whichthe program is compiled, is calledtarget(really? :-).

The program, you’ve compiled doesn’t run - on your host, unless you’ve got a sim-
ulator or you’ve loaded it to the target. All the programs in this article are loaded
in the target because it doesn’t exist a simulator for Linux for theSEGA Dreamcast
unfortunately.

The following problems while cross compiling appear frequently during the writing
process of this article (ordered by difficulty):

1. The includedMakefileuses an improper compiler.

A generic solution would be customizing theMakefileby courtesy of an envi-
ronment variable:

...
christian@helicon:˜$ export CC=/usr/local/foo/cc
christian@helicon:˜$ make
...

Another possibility would be the modification of theMakefileand the change of
the entry for theCC= variable.

The examples above don’t refer only to the C - compiler but also toar, an
archiver, toranlib, an indexer for archives or to other programs used to com-
pile the source.

2. The includedMakefiledoesn’t find the proper header - files or libraries.

This problem has normally two reasons: TheMakefilesearches in the improper
directories or the library - and header - files don’t exist. The first problem can
be solved as mentioned above: You modify your environment or theMakefileof
the source - package. The latter is solved by installing the missing library.

3. The source - package doesn’t include aMakefile.

This problem is sometimes easy to solve, but sometimes you have to cheat and
bluff makethat you have a correctly constructedMakefile.

These packages often include a script calledconfigure. This script tries to build
a Makefileusing lots of templates (config.in, Makefile.in, . . .) for getting an
optimalMakefilewhich is suitable for your system. Occasionally, you can use
the configure- script for building across compiling - Makefile, but often you
will run into problems due to missing test programs because these test programs
produced by theconfigure- script can’t run on the host platform.

2

1.3 Building Linux from scratch

Sometimes, there’s a trick to runconfigure for the host platform and edit the
resultantMakefilefor the target platform.

4. The compiler complains aboutxyz.

This never looks good. The problem can be solved easily or costs nights to
be solved. Often, it’s a missing directory or program that can be added easily.
But sometimes, the compiler complains about code that can’t be compiled for
the target you wish. This is up to assembly code that won’t run on or can’t be
interpreted by the target platform. The latter is hard to solve because you have
to look for a workaround, a switch or an environment variable that prohibits the
use of native assembly code. TheREADME included in the source - package
would be a good start.

5. The source compiles well but doesn’t run on the target platform.

This problem is very hard to solve. Do you check every output of the compiling
process? Is the program executable on the target platform? Is it a problem of
rights (chmod)? Are some device nodes missed? Are some configuration files
missed? You may solve the problems by usinggdb, theGNU debugger.

As you see, cross compiling is nothing you do in five minutes, but it’s something very
interesting and challenging. The programs described in this article come along with a
patch that helps you to compile the source for the sample targetSEGA Dreamcastand
comprehend the modifications I’ve got to perform.

1.3 Building Linux from scratch

Why are we building a Linux from scratch? I’ve heard that . . .

Surely, there exist many distributions, for workstations and for embedded devices,
such asEmLinuxor ucLinux. But they have a main lack: They won’t run on the
SEGA Dreamcastbecause these distributions support only boards with a large demand
either from industry or community.SEGA Dreamcasthas ”only” a small demand of
individualists (the IRC channel contains about ten people all the time I was there).

Another point of view is that these distributions are ready-to-run, i.e. you download
or install it, burn a CD or transfer an image to a board of your choice and everything’s
down. A self-made Linux distribution does (or doesn’t) only that whatyouwant. Not
more, not less. Furthermore, you can specify which compiling options of a software
package you need. And finally you understand what your distribution is doing.

In spite of that, these distributions are also a good start for getting to know what we
need.

Why aren’t we using NetBSD? I’ve read that . . .

Certainly, you can use NetBSD for building a software router. I wasvery surprised
how faultless their userland compiles for theSEGA Dreamcast. But, a few remarks:
The NetBSD kernel is about 3,3 MBwithout the userland. You’ve got only 16 MB

3

1 Introduction and theory

in your SEGA Dreamcast. Some HowTos exist for connecting aSEGA Dreamcast
running NetBSD with an NFS server, but I don’t want to run another computer for
using mySEGA Dreamcastas a software router.

So, these are the reasons I describe the process of building aLinux distribution.

While reading, you will build an embedded Linuxfrom scratch, i.e. you are responsi-
ble for the steps directly after loading and executing the kernel.

But take in consideration that you’re building a Linux for an embedded device. You
want to maximize the functionality but have to minimize the need of bytes. Keep this
trade-off in mind while selecting programs you want to run on an embedded device.

As a valuable start for building a complete Linux system directly from scratch, you
probably would read the book”Linux from scratch” [Beekmans98]. This book de-
scribes the steps for building a Linux system from sources by yourself (this process is
a cross compile, do you remember?).

Reverting to our main goal, that book is a great guide for a workstation with a hard
disk drive and a lot of space for holding various programs. So, we have to build a
really smallLinux ”distribution” for our software router.

The following table points out somereally essential programs for running a kernel and
a shell on yourSEGA Dreamcast:

Package Size License Why?

linux-2.4.18.tar.bz2 23 MB GPLv2 The kernel.
busybox-0.60.5.tar.gz 767 KB GPLv2 A login shell (among others).

Table 1.1: List of essential programs for running a kernel and a shell on yourSEGA
Dreamcast

Two sources? Yes, you’re right. You need only these two packages for getting an
embbed Linux distribution. But don’t be glad too early, it’s much work for getting
these both packages compiled and loaded by theSEGA Dreamcast.

1.4 What do I need for starting with this article?

You need at least the following stuff to get along with the next two chapters:

• Of course, aSEGA Dreamcastgaming console.

• A personal computer with a running Linux distribution. I’m using the Debian
GNU/Linux distributionWoody, but any other distribution with theGNU Com-
piler Collection would do the job. It’s possible to do the job with any other
Unix you want to (for example NetBSD, FreeBSD) or even Microsoft Windows

4

1.4 What do I need for starting with this article?

with Cygwin extensions, but I’ll describe in this article the steps using (Debian)
GNU/Linux, so keep this in your mind.

• A CD burner for transferring the software to yourSEGA Dreamcast.

The following things make your life easier:

• A Coder’s Cable. This is a serial cable for connecting aSEGA Dreamcastgam-
ing console through a serial port with your host.

• A VGA box. This is an adapter for using your computer screen with aSEGA
Dreamcast.

For a complete ADSL software router with firewalling and virtual private networking,
you have to be in need of the following components:

• An ethernet networking adapter for theSEGA Dreamcast. Either theSEGA
Broad Band Adapter(based on the RTL8139 chipset) or theSEGA LAN Adapter/HIT-
0300(based on the MB86967) would do the job.

• Of course, the whole xDSL stuff: DSL modem, switch or hub, cables . . .

The following table gives you a short overview of the costs for getting your feet messed
up with this fun:

Component Costs

SEGA Dreamcast 80 $
Coder’s Cable 15 $
VGA box 25 $
SEGA Broad Band Adapter 110 $
SEGA LAN Adapter/HIT-0300 145 $

Table 1.2: Costs for getting the whole stuff.

As you see, you will start your work for an ADSL software router with firewalling and
virtual private networking for about 190$. Surely, it’s much more as you would pay
for a hardware router, but are you able to re-program your hardware router let alone to
run your own Linux distribution?

5

1 Introduction and theory

6

2 Setting up an initial toolchain

This chapter describes the necessary steps for installing the Linux kernel and busybox
mentioned above on yourSEGA Dreamcast. It’s based on Bill Gatliff’s great article
[Gatliff01]. This chapter doesn’t want to replace Bill’s article but it wants to update,
complete and exchange some steps of his article.

2.1 Setting up your workstation

For proceeding, it’s necessary to have the proper software installed. At least, you
needa C - compiler with the building environment (all libraries and headers) and
the Concurrent Versions System for getting the Linux kernel patches from their CVS
repositories. Please check this and refer to your distribution handbook for help.

2.2 Setting up a cross compiling environment

You’ll need up to twelve packages plus some build directories. So, I suggest creating
a special directory to collect all needed packages and seperate them from the rest of
your system:

christian@helicon:˜$ mkdir -p Dreamcast/toolchain

This is just a proposal. You may install your toolchain in/usr/local , but according
to my experience it’s better to seperate the additional software for your workstation
located in/usr/local from the toolchain.

For the future, I omitchristian@helicon:˜ from my prompt to save space. The
next step is to set up some environment variables:

$ export TARGET=sh4-linux
$ export PREFIX=/home/christian/Dreamcast/toolchain
$ export PATH=$PREFIX/bin:$PATH

Note, while you were logging out, your environment settings got lost! But you can
create a file named̃/.dcenv for example and let your̃/.bash_profile set
your environment if you login:

7

2 Setting up an initial toolchain

export TARGET=sh4-linux
export PREFIX=/home/christian/Dreamcast/toolchain
export PATH=$PREFIX/bin:$PATH

In your ˜/.bash_profile , you simply add:

.

.

.

source ˜/.dcenv

.

.

.

Now, you’re ready to download the initial stuff.

2.3 Downloading the source packages

Table 2.1 lists the package, size and URL, where you can download the source pack-
ages. A good choice is the download into a folder of our new cross compiling environ-
ment:

$ mkdir SRC

The next step is downloading and patching the Linux kernel. This is organized in three
substeps:

1. Download the Linux kernel, version 2.4.18.

2. Fetch the sh - patches through CVS

These patches are SuperH specific and the basic layer for theSEGA Dreamcast
patches.

3. Fetch theSEGA Dreamcastpatches through CVS

Figure 2.1 illustrates how these patches interact.

The first step mentioned above is fetching the Linux kernel sources. The kernel is
licensed under the terms of the GNU Public License, Version 2 and about 23.0 MB. A
nice program for the job iswget :

8

2.3 Downloading the source packages

Package Size License URL

binutils-2.11.2 9,701 KB (L)GPLv2 ftp://ftp.gnu.org/gnu/binutils/binutils-2.11.2.tar.gz
gcc-3.0.1 17,631 KB (L)GPLv2 ftp://ftp.gnu.org/gnu/gcc/gcc-3.0.1/gcc-3.0.1.tar.gz
glibc-2.2.4 16,023 KB (L)GPLv2 ftp://ftp.gnu.org/gnu/glibc/glibc-2.2.4.tar.gz
busybox-0.60.5 767 KB GPLv2 http://www.busybox.net/downloads/busybox-

0.60.5.tar.gz
sh-boot-
20010831-1455

233 KB LGPLv2 http://www.linuxdevices.com/files/article020/sh-
boot-20010831-1455.tar.gz

binutils (Patch) 92 KB – http://www.linuxdevices.com/files/article020/binutils-
2.11.2-sh-linux.diff

gcc (Patch) 101 KB – http://www.linuxdevices.com/files/article020/gcc-
3.0.1-sh-linux.diff

glibc (Patch) 617 KB – http://www.linuxdevices.com/files/article020/glibc-
2.2.4-sh-linux.diff

sh-boot (Patch) 35 KB – http://www.linuxdevices.com/files/article020/sh-
boot-20010831-1455.diff

Table 2.1: Source packages, sizes and URLs.

$ cd Dreamcast
$ mkdir BUILD
$ mkdir KERNEL
$ cd KERNEL
$ wget http://www.kernel.org/pub/linux/kernel\

/v2.4/linux-2.4.18.tar.bz2

The backslash\ indicates that the following line belongs to the end of the actual line.
The next step is the download of the linux-sh patches from the CVS repository (located
at www.sourceforge.net). CVS will ask for a password, just press enter, no password
is required:

$ cvs -d:pserver:anonymous@cvs.linuxsh.sourceforge.net:\
/cvsroot/linuxsh login

$ cvs -z3 -d:pserver:anonymous@cvs.linuxsh.sourceforge.net:\

Patch set for Hitachi SH chipset (linux−sh)

Linux kernel, 2.4.18

Patch set for SEGA Dreamcast (linux−sh−dc)

Figure 2.1: The patches against the Linux kernel.

9

2 Setting up an initial toolchain

/cvsroot/linuxsh co -r linux-2_4_18 linux
$ cvs -d:pserver:anonymous@cvs.linuxsh.sourceforge.net:\

/cvsroot/linuxsh logout
$ mv linux linux-sh

The last step is the download of the linux-sh-dc patches from the CVS repository
(located atwww.sourceforge.net):

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:\
/cvsroot/linuxdc login

$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:\
/cvsroot/linuxdc co -r linux-sh-dc-2_4_18 linux-sh-dc

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:\
/cvsroot/linuxdc logout

Now, the tricky moment begins. You have to remove the CVS control directories to
avoid annoying warnings and errors during kernel compilation and merge all three
sources together:

$ cd linux-sh
$ for i in $(find . -type d -name "CVS" -print); do rm -fr $i; done
$ cd ..
$ cd linux-sh-dc
$ for i in $(find . -type d -name "CVS" -print); do rm -fr $i; done
$ cd ..
$ bunzip2 -c linux-2.4.18.tar.bz2 | tar -xv
$ cd linux-sh
$ cp -fr . ../linux
$ cd ..
$ cd linux-sh-dc
$ cp -fr . ../linux
$ cd ..

The next step is correcting a compiler switch in the sh - architectureMakefile:

$ cat linux/arch/sh/Makefile | \
sed s/CFLAGS.*\+\=\ \-m4\ \-mno\-implicit\-fp/\
CFLAGS+=\-m4\ \-m4\-nofpu/ > ./Makefile.old

$ cat ./Makefile.old | \
sed s/AFLAGS.*\+\=\ \-m4\ \-mno\-implicit\-fp/\
AFLAGS+=\-m4\ \-m4\-nofpu/ > ./linux/arch/sh/Makefile

The last step is patching the Linux kernel with the LAN adapter device driver:

10

2.4 Building a cross compiler, linker and bootstrap compiler

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
lan_adapter-0.0.7-linuxsh-2.4.18.patch.tar.bz2

$ bunzip2 -c lan_adapter-0.0.7-linuxsh-2.4.18.patch.tar.bz2 | \
tar -xv

$ cd linux
$ patch -p1 < ../lan_adapter-0.0.7-linuxsh-2.4.18/\

lan_adapter-0.0.7.patch

Hopefully, you will have now a linux-sh-dc 2.4.18 synchronized and patched kernel
source tree.

2.4 Building a cross compiler, linker and bootstrap
compiler

Now, we’re ready to compile our cross compiler,linker andbootstrap compiler. The
first step is the build of thebinutils-2.11.2 . This package contains programs
for archiving (ar), archive indexing (ranlib) and much more essential:

$ cd ../..
$ cd BUILD
$ tar -xvzf ../SRC/binutils-2.11.2.tar.gz -C .
$ patch -p0 < ../SRC/binutils-2.11.2-sh-linux.diff
$ mkdir build-binutils
$ cd build-binutils
$../binutils-2.11.2/configure --target=$TARGET \

--prefix=$PREFIX
$ make all install
$ cd ..

Following, we’re able to build theGNU Compiler Collection:

$ tar -xvzf ../SRC/gcc-3.0.1.tar.gz -C .
$ patch -p0 < ../SRC/gcc-3.0.1-sh-linux.diff
$ mkdir build-gcc
$ cd build-gcc
$../gcc-3.0.1/configure --target=$TARGET \

--prefix=$PREFIX --without-headers \
--with-newlib --disable-shared \
--enable-languages=c

$ make all-gcc install-gcc
$ cd ..

Theconfigure- script configures this package for theSEGA Dreamcastonly with the
specified (only theC language) compiler and their runtime libraries,--without-headers

11

2 Setting up an initial toolchain

prohibits the use of cross compiler header files (they actually don’t exist!) and the use
of the newlib C - library as the target C - library. This library will be replaced by
uClibc in a later stage.

2.5 Setting up the Linux kernel

Now, you’ve got the first half of a C - compiler. The next step is the setup of the Linux
kernel:

$ cd ..
$ cd KERNEL/linux
$ make ARCH=sh CROSS_COMPILE=sh4-linux- menuconfig

Please consider the dash next tosh4-linux.

The following list is a sample configuration for an ADSL software router with fire-
walling and an ethernet networking adapater:

Option Type

CONFIG_EXPERIMENTAL *
CONFIG_MODULES *
CONFIG_KMOD *
CONFIG_SH_GENERIC (Dreamcast)
CONFIG_CPU_SUBTYPE_SH7707 SH7750
CONFIG_CPU_LITTLE_ENDIAN *
CONFIG_NET *
CONFIG_PCI *
CONFIG_SYSVIPC *
CONFIG_SYSCTL *
CONFIG_KCORE_ELF (ELF)
CONFIG_BINFMT_ELF *
CONFIG_MTD M
CONFIG_MTD_BLOCK M
CONFIG_MTD_VMU M
CONFIG_BLK_DEV_LOOP *
CONFIG_BLK_DEV_RAM *
CONFIG_BLK_DEV_SIZE (4096)
CONFIG_BLD_DEV_INITRD *
CONFIG_PACKET *
CONFIG_NETFILTER *
CONFIG_UNIX *
CONFIG_INET *
CONFIG_IP_MULTICAST *
CONFIG_IP_NF_CONNTRACK M
CONFIG_IP_NF_FTP M

12

2.5 Setting up the Linux kernel

CONFIG_IP_NF_IRC M
CONFIG_IP_NF_IPTABLES M
CONFIG_IP_NF_MATCH_LIMIT M
CONFIG_IP_NF_MATCH_STATE M
CONFIG_IP_NF_FILTER M
CONFIG_IP_NF_NAT M
CONFIG_IP_NF_TARGET_MASQUERADE M
CONFIG_IP_NF_TARGET_LOG M
CONFIG_NETDEVICES *
CONFIG_NET_ISA *
CONFIG_LAN_ADAPTER M
CONFIG_NET_PCI *
CONFIG_8139TOO M
CONFIG_8139TOO_DREAMCAST *
CONFIG_PPP *
CONFIG_PPP_ASYNC *
CONFIG_PPP_SYNC_TTY *
CONFIG_SLIP *
CONFIG_SLIP_COMPRESSED *
CONFIG_CD_NO_IDESCSI *
CONFIG_SEGA_GDROM *
CONFIG_INPUT *
CONFIG_INPUT_KEYBDEV *
CONFIG_MAPLE *
CONFIG_VT *
CONFIG_VT_CONSOLE *
CONFIG_SH_SCI *
CONFIG_SERIAL_CONSOLE *
CONFIG_UNIX98_PTYS *
CONFIG_UNIX98_PTY_COUNT (256)
CONFIG_MAPLE_KEYBOARD *
CONFIG_INPUT_MAPLE_CONTROL *
CONFIG_MINIX_FS *
CONFIG_PROC_FS *
CONFIG_DEVPTS_FS *
CONFIG_EXT2_FS *
CONFIG_FB *
CONFIG_FB_PVR2 *
(CONFIG_SOUND *)
(CONFIG_SOUND_AICA *)

Table 2.2: Sample configuration for an ADSL software router.

We have now a Linux kernel configuration.configand some other files set up by the
make command mentioned above.

13

2 Setting up an initial toolchain

2.6 Building a runtime library

This section describes the necessary steps for building a C - library. This library con-
tains many essential functions such asprintf() for C - sources:

$ cd ../..
$ cd BUILD
$ tar -xvzf ../SRC/glibc-2.2.4.tar.gz -C .
$ patch -p0 < ../SRC/glibc-2.2.4-sh-linux.diff
$ mkdir build-glibc
$ cd build-glibc
$ mkdir $PREFIX/$TARGET/include

Now, we copy the Linux kernel header files and assembly files to this include directory:

$ cp -r ../../KERNEL/linux/include/linux \
$PREFIX/$TARGET/include

$ cp -r ../../KERNEL/linux/include/asm-sh \
$PREFIX/$TARGET/include/asm

Now, we’re ready to configure and compile this C - library. Theconfigure- script
configures the sources for theSEGA Dreamcast, looks for kernel header files in the
directory $PREFIX/$TARGET/include , dispenses with profiling informationen
build in along with debug information and disables examinations of the build programs
(you remeber chapter one, common cross compiling problems?):

$ CC=sh4-linux-gcc ../glibc-2.2.4/configure \
--host=$TARGET --prefix=$PREFIX \
--disable-debug --disable-profile \
--disable-sanity-checks \
--with-headers=$PREFIX/$TARGET/include

$ make

The next command saves time by bluffing the glibc of having already build unneces-
sary programs:

$ touch iconv/iconv_prog login/pt_chown
$ make install_root=$PREFIX/$TARGET prefix="" install
$ echo "GROUP (libc.so.6 libc_nonshared.a)" \

> $PREFIX/$TARGET/lib/libc.so

14

2.7 Rebuilding thecross compiler

2.7 Rebuilding the cross compiler

The last necessary step for building the Linux kernel or any other application is the
rebuild of the intrinsic compiler. Just change directory und rebuild the wholegcc-3.0.1
source package:

$ cd ..
$ mkdir build-gcc2
$../gcc-3.0.1/configure --target=$TARGET \

--prefix=$PREFIX --enable-languages=c,c++
$ make all install

That’s all. We have now a complete C - cross compiler.

2.8 Building the Linux kernel

Now, we’re ready to compile the heart of a Linux distribution: the Linux kernel.

$ cd ../..
$ cd KERNEL/linux
$ make ARCH=sh CROSS_COMPILE=sh4-linux- clean dep zImage modules
$ cd ../..

You wonder, why we don’t complete the Linux kernel build withmodules_install ?
The answer is simple: We don’t have a target where the modules might go. . .

So, we round out this build in a later stage, be patient.

From this point, you’ve got two possibilities to go on. Either, you read on, build a first
application and load the whole stuff to yourSEGA Dreamcastor, you skip the next
sections and go directly to sectionBuilding the bootloader.

I suppose most readers want to see the fruits of their work and thus they read on :-)

2.9 Building a shell (and a little bit more. . .)

This section completes your work and glues everything together.

At first, we need a basic directory structure, containing the binaries. We orientate
us to [FHS01], but at this point, we only use some of the proposed directories. This
basic directory structure including the binaries will be calledinitrd or initial ramdisk
because it’ll be loaded by the Linux kernel itself directly during the boot process. So,
we archive this directory in a later stage into one single file, which we glue with the
Linux kernel:

15

2 Setting up an initial toolchain

$ mkdir INITRD
$ export INITRD=‘pwd‘/INITRD
$ cd INITRD
$ mkdir -p proc dev/pts etc
$ cd ..

The/proc - directory help us for gathering basic and extend system information. The
/dev contains all necessary device nodes. Now, we’re building the first application
for theSEGA Dreamcast:

$ cd BUILD
$ tar -xvzf ../SRC/busybox-0.60.5.tar.gz -C .
$ cd busybox-0.60.5

For compilingbusybox-0.60.5 , you have to configure your needs in the fileConfig.h .
Here’s my proposal:

#define BB_BASENAME
#define BB_CAT
#define BB_CHGRP
#define BB_CHMOD
#define BB_CHOWN
#define BB_CLEAR
#define BB_CP
#define BB_DATE
#define BB_DF
#define BB_DIRNAME
#define BB_DMESG
#define BB_DU
#define BB_ECHO
#define BB_FREE
#define BB_GREP
#define BB_HALT
#define BB_HEAD
#define BB_HOSTID
#define BB_HOSTNAME
#define BB_IFCONFIG
#define BB_INIT
#define BB_INSMOD
#define BB_KILL
#define BB_KILLALL
#define BB_KLOGD
#define BB_LOADKMAP
#define BB_LN
#define BB_LOGGER
#define BB_LS

16

2.9 Building a shell (and a little bit more. . .)

#define BB_LSMOD
#define BB_MKDIR
#define BB_MKFS_MINIX
#define BB_MODPROBE
#define BB_MORE
#define BB_MOUNT
#define BB_MSH
#define BB_MV
#define BB_PIDOF
#define BB_PING
#define BB_PS
#define BB_PWD
#define BB_REBOOT
#define BB_RESET
#define BB_RM
#define BB_RMDIR
#define BB_RMMOD
#define BB_ROUTE
#define BB_SED
#define BB_SLEEP
#define BB_SYNC
#define BB_SYSLOGD
#define BB_TAIL
#define BB_TAR
#define BB_TEST
#define BB_TIME
#define BB_TOUCH
#define BB_TRACEROUTE
#define BB_TRUE_FALSE
#define BB_TTY
#define BB_UMOUNT
#define BB_UNAME
#define BB_UPTIME
#define BB_VI
#define BB_WGET
#define BB_WHICH
#define BB_WHOAMI
#define BB_YES

#define BB_FEATURE_SH_IS_MSH
#define BB_FEATURE_VERBOSE_USAGE
#define BB_FEATURE_AUTOWIDTH
#define BB_FEATURE_LS_USERNAME
#define BB_FEATURE_LS_TIMESTAMPS
#define BB_FEATURE_LS_FILETYPES
#define BB_FEATURE_LS_SORTFILES
#define BB_FEATURE_LS_RECURSIVE

17

2 Setting up an initial toolchain

#define BB_FEATURE_LS_FOLLOWLINKS
#define BB_FEATURE_LS_COLOR
#define BB_FEATURE_FANCY_PING
#define BB_FEATURE_USE_INITTAB
#define BB_FEATURE_LINUXRC
#define BB_FEATURE_REMOTE_LOG
#define BB_FEATURE_FANCY_TAIL
#define BB_FEATURE_MOUNT_FORCE
#define BB_FEATURE_TAR_CREATE
#define BB_FEATURE_TAR_EXCLUDE
#define BB_FEATURE_SORT_REVERSE
#define BB_FEATURE_SORT_UNIQUE
#define BB_FEATURE_COMMAND_EDITING
#define BB_FEATURE_COMMAND_TAB_COMPLETION
#define BB_FEATURE_SH_FANCY_PROMPT
#define BB_FEATURE_ASH_JOB_CONTROL
#define BB_FEATURE_NEW_MODULE_INTERFACE
#define BB_FEATURE_IFCONFIG_STATUS
#define BB_FEATURE_IFCONFIG_SLIP
#define BB_FEATURE_WGET_STATUSBAR
#define BB_FEATURE_WGET_AUTHENTICATION
#define BB_FEATURE_HUMAN_READABLE
#define BB_FEATURE_FIND_TYPE
#define BB_FEATURE_FIND_PERM
#define BB_FEATURE_FIND_MTIME
#define BB_FEATURE_FIND_NEWER
#define BB_FEATURE_TFTP_PUT
#define BB_FEATURE_TFTP_GET
#define BB_FEATURE_VI_COLON
#define BB_FEATURE_VI_YANKMARK
#define BB_FEATURE_VI_SEARCH
#define BB_FEATURE_VI_USE_SIGNALS
#define BB_FEATURE_VI_DOT_CMD
#define BB_FEATURE_VI_READONLY
#define BB_FEATURE_VI_SETOPTS
#define BB_FEATURE_VI_SET
#define BB_FEATURE_VI_WIN_RESIZE
#define BB_FEATURE_TELNET_TTYPE

Everything else found as options in this file might be disabled, using following com-
menting style:

//#define BB_FEATURE_EXTRA_QUIET

Now, it’s time for compiling:

18

2.9 Building a shell (and a little bit more. . .)

$ make CROSS=sh4-linux- DOSTATIC=true \
CFLAGS_EXTRA="-I $PREFIX/$TARGET/include" \
PREFIX=$INITRD clean all install

With the command above, we forcemake into building astatic program since we
don’t a dynamic linker let alone a shared C - library on our target platform.

Now, two things are absent: The device nodes and the kernel modules. So, we correct
these points by:

$ cd ../..
$ cd KERNEL/linux
$ su -c "make ARCH=sh CROSS_COMPILE=sh4-linux- \

INSTALL_MOD_PATH=/home/christian/Dreamcast/\
INITRD modules_install"

Don’t be disturbed by the error message at the end: We don’t have adepmod utility
that handles modules for foreign hardware architectures, so simply ignore it.

Now, change directory to the initial ramdisk and correct the libraries folder:

$ cd ../..
$ cd INITRD
$ cd lib/modules/2.4.18-sh-dc

Remove every file and directory except the directorykernel - it contains our kernel
modules.

Following, we create the essential device nodes and theinittab:

$ cd ../../..
$ cd dev
$ su -c "mknod console c 5 1"
$ cd ..
$ cd etc

Edit the (not existing) fileinittab :

Starts an askfirst shell:

::askfirst:-/bin/sh

Finally, leave the initial ramdisk:

$ cd ../..

19

2 Setting up an initial toolchain

2.10 Bundle the Linux kernel and the initrd

Now, we are ready to collect everything we’ve just build and carry that bundle to
our SEGA Dreamcast. So, we create a single file that will contain the content of the
directory$INITRD .

But firstly, we have tochown everything to root:root for avoiding error messages
during the boot process.

$ su
cd INITRD
chown -R 0.0 *
cd ..
dd if=/dev/zero of=initrd.img bs=1k count=4096
mke2fs -F -v -m0 initrd.img
mkdir initrd.DIR
mount -o loop initrd.img initrd.DIR
(cd INITRD ; tar -cf - .) | (cd initrd.DIR ; tar -xvf -)
umount initrd.DIR
gzip -c -9 initrd.img > initrd.bin
exit

The commandmke2fs -f -vm0 initrd.img forces the formatting process even
if we’re using a file instead of a block device. The option-m0 prohibits the creation of
the reserved space for the super user. Now, you’ve archived everything into one single
file.

2.11 Building the bootloader

Everything’s ready to get glued together. The only thing we need is a bootloader that
helps us to get our stuff into the memory and execute it:

$ cd BUILD
$ tar -xvzf ../SRC/sh-boot-20010831-1455.tar.gz -C .
$ patch -p0 < ../SRC/sh-boot-20010831-1455.diff

The next steps create a file kernel-boot.bin that contains the Linux kernel and the initial
ramdisk.So, these steps have to be done every time, you change either the Linux kernel
or something within the initial ramdisk (e.g. copy a new program to it or modify the
configuration):

$ cd sh-boot/tools/dreamcast
$ cp ../../../../KERNEL/linux/arch/sh/boot/zImage \

./zImage.bin
$ cp ../../../../initrd.bin .
$ make scramble kernel-boot.bin

20

2.11 Building the bootloader

Now, you’ve got two possibilities.

• Either you burn a CD-R (theSEGA Dreamcastcan’t read CD-RW without any
modification) by the following commands (probably as root, depends on your
system configuration):

Edit the fileroast.sh and change the value CDRECORD for your needs (i.e.
the SCSI device id). Afterwards, insert a CD-R and burnyour first embedded
Linux distributionby typing:

$./roast.sh kernel-boot.bin

Insert the disc in yourSEGA Dreamcastand hit the power button. Hopefully,
you’ll see the Linux-SH penguin in the upper left corner of your screen while
theSEGA Dreamcastwaits for your login.

• Or you’ve got the Coder’s Cable. Then, you can save money and transfer the
image through aserial loader.

First, you have to download the server and client tools for enjoying saving
money.

$ cd ../../../../SRC
$ wget http://adk.napalm-x.com/dc/\

dcload-serial/dcload-1.0.3-1st_read.zip
$ wget http://adk.napalm-x.com/dc/\

dcload-serial/dc-tool-serial-1.0.3-linux.gz
$ gunzip dc-tool-serial-1.0.3-linux.gz
$ mkdir ../LOADER
$ mv dc-tool-serial-1.0.3-linux ../LOADER
$ chmod u+x ../LOADER/dc-tool-serial-1.0.3-linux
$ mkdir ../BUILD/server.disc
$ unzip dcload-1.0.3-1st_read.zip -d ../BUILD/server.disc
$ cd ../BUILD/server.disc

Now, you have to create the server disc. Following Marcus Comstedt’s HowTo
[Comstedt00], a bootable CD-R for theSEGA Dreamcastshould have two ses-
sions. The first should contain only a normal audio track. The second session
should contain a CD/XA data track (mode 2 form 1). This data track ought
to contain a regular ISO9660 file system, and in the first 16 sectors a correct
bootstrap (IP.BIN).

First you have to burn the audio session. The simplest option is just to create 4
seconds (the minimum track length) of silence, like:

$ dd if=/dev/zero bs=2352 count=300 of=audio.raw

21

2 Setting up an initial toolchain

Next, insert a blank CD-R (theSEGA Dreamcastcan’t read CD-RW without any
modification) and burn the audio track. Make sure that you leave the disc open
for further sessions, the-multi option to cdrecord takes care of that:

$ cdrecord dev=0,1,0 -multi -audio audio.raw

Please take care that you’re allowed to burn the disc and that you’re using the
right device. Now that the audio track has been burned, it is possible to create
the ISO filesystem image. But first, you have to find out the offset where you
can start off the data track. To find out this number, run

$ cdrecord dev=0,1,0 -msinfo

with the disc still in the drive. You should get two numbers separated by comma
(for example 0,11700). Remember these numbers. Now create the ISO image
with mkisofs:

$ mkisofs -l -C x,y -o tmp.iso \
./dcload-1.0.3-1st_read/scrambled/1st_read.bin

where x,y is the pair of numbers you got with-msinfoearlier. Make sure you get
them correctly, or the image won’t work.

The first 16 sectors of an ISO9660 filesystem are blank, to leave room for boot-
straps. This is where IP.BIN (32768 bytes) goes. So, we glue thetmp.isoto-
gether with the IP.BIN file:

$ (cat ./dcload-1.0.3-1st_read/IP.BIN ; \
dd if=tmp.iso bs=2048 skip=16) > data.raw

Finally, you’re ready to burn the second session and complete the disc. This
track has to be burned as CD/XA with form 1 sectors (2048 bytes per sector).
Use the-xa1option to cdrecord:

$ cdrecord dev=0,1,0 -multi -xa1 data.raw

Now, you only have to insert yourserial loader server discinto your dreamcast
and hit the power button. After a while, you’ll see theidle. . . prompt. Now, on
your host, you have to invoke the loading process by typing:

$ cd ../../LOADER
$./dc-tool-serial-1.0.3-linux\

-t /dev/ttyS1 -e -b 115200 -x \
../BUILD/sh-boot/tools/dreamcast/kernel-boot.bin

Please note, that you probably have to change the serial port/dev/ttyS? .
Wait a moment and, hopefully, you’ll see yourSEGA Dreamcastis booting your
Linux kernel and your initial ramdisk.

Congratulations. You overcome the first steps.

22

2.12 Where are we?

2.12 Where are we?

Let’s summarize what we’ve done already. We’ve downloaded theGNU Compiler
Collectionwith all needed tools. Then, we’ve downloaded and plurally patched the
Linux kernel 2.4.18. Following, we’ve build a statically linked applicationbusybox
(size is about 789 KB) and created a firstinitial ramdisk.

Finally, we’ve completed the build with the bootloader.

We have right now the tools by the hand we need for compiling and running applica-
tions. But do you notice the size of the application? It’s about 789 KB (up to your
setup). Imagine, we compilepppd, pppoe, iptables, sshd,. . . in the same way likebusy-
box. Unfortunately, we run out of memory. So, we have to consider an essential thing:
We have to get apart from the ”big monster”glibc and take a leightweight C - library.

This work will be done in the next chapters. First, we discuss a generally directory
layout for ourinitial ramdisk. Then, we compile and install theuClibc, a minimalistic
C - library for our needs. And finally, we try to compile and install the programs,
needed by an ADSL software router with firewalling and virtual private networking.

23

2 Setting up an initial toolchain

24

3 Setting up an initial ramdisk

Assuming that you have read through the first two chapters, we’re ready to set up the
layout of our final initial ramdisk. We try to be as close as possible on the proposals of
theFilesystem Hierarchy Standard[FHS01].

3.1 Directory structure

As seen in chapter two, themake install of busyboxhas created some directories
containing dozens of symlinks. We’ve only created two directories:/dev/ptsand/proc.

Now, it’s time to set up all the other needed directories.

$ cd /home/christian/Dreamcast
$ cd INITRD
$ ls
bin dev etc linuxrc proc sbin usr
$

The Filesystem Hierarchy Standard proposes the following directories:

• /bin Essential user command binaries (for use by all users).For example, our
/bin containscp , df , rm,. . .

• /boot Static files of the boot loader.We don’t need this directory due to the
use of a sh-specific, external bootloader.

• /dev Device files.Here, we create all device nodes, we need to communicate
with the kernel.

• /etc Host-specific system configuration.This folder will contain the configu-
ration files, such aspasswd , inittab among others.

• /home User home directories (optional).We’ll create this directory ”on the
fly”, i.e. if the user plugs in theVMU.

• /lib Essential shared libraries and kernel modules.This directory will only
contain the kernel modules caused by the lack of adynamic loaderfor dynamic
libraries.

25

3 Setting up an initial ramdisk

• /mnt Mount point for a temporarily mounted filesystem.We need this folder
for mounting theVMU.

• /opt Add-on application software packages.We don’t need this folder.

• /root Home directory for the root user (optional).We create this directory for
the super user.

• /sbin System binaries.This directory contains essential system software, such
asinsmod , ifconfig and others.

• /tmp Temporary files.

• /usr/bin Most user commands.This Folder containscut , du ,. . .

• /usr/sbin Non-essential standard system binaries.This folder will contain
sshd and other service tools.

• /var/lib Variable state information.This directory will contain files about
DHCP.

• /var/log Log files and directories.This folder contains logging information.

• /var/run Run-time variable data.Here, some process create some kind of
”cookies”, often theirprocess id.

As you notice, we don’t cover all proposed directories due to the limited amount of
free inodes.

Let’s go and create all needed directories and configuration files. Remember, that
you’ve chown ’ed all files to the super user, so change your user userid to the super
user:

$ su
#

1. /dev

First, we create the device nodes and set up their mode and ownership:

cd dev

chmod 600 console
chown 0.1 console

mknod gdrom0 b 250 0
chmod 640 gdrom0
chown 0.2 gdrom0

mknod mtdblock0 b 31 0

26

3.1 Directory structure

chmod 660 mtdblock0
chown 0.2 mtdblock0

mknod null c 1 3
chmod 666 null
chown 0.0 null

mknod ppp c 108 0
chmod 660 ppp
chown 0.3 ppp

mknod ptmx c 5 2
chmod 666 ptmx
chown 0.1 ptmx

mknod random c 1 8
chmod 666 random
chown 0.0 random

mknod tty c 5 0
chmod 600 tty
chown 0.0 tty

mknod tty0 c 4 0
chmod 600 tty0
chown 0.0 tty0

mknod tty1 c 4 1
chmod 600 tty1
chown 0.0 tty1

mknod tty2 c 4 2
chmod 600 tty2
chown 0.0 tty2

mknod tty3 c 4 3
chmod 600 tty3
chown 0.0 tty3

mknod tty4 c 4 4
chmod 600 tty4
chown 0.0 tty4

mknod ttySC0 c 204 8
chmod 600 ttySC0
chown 0.3 ttySC0

27

3 Setting up an initial ramdisk

mknod ttySC1 c 204 9
chmod 600 ttySC1
chown 0.3 ttySC1

mknod urandom c 1 9
chmod 444 urandom
chown 0.0 urandom

mknod zero c 1 5
chmod 666 zero
chown 0.0 zero

cd ..

As you notice, we’ve set different group ids. These ids have to correspond with
our entries in/etc/group later.

2. /etc

This directory comprises the configuration files. So, be careful with your entries
and chmodes!

cd etc

cat <<. >group
root:x:0:
tty:x:1:
disk:x:2:
dip:x:3:
shadow:x:4:
.
chmod 644 group

cat <<. >gshadow
root:*::
tty:!::
disk:!::
dip:!::
shadow:!::
.
chmod 640 gshadow
chown 0.4 gshadow

cat <<. >hosts
127.0.0.1 localhost
192.168.1.1 dreamcast.localdomain dreamcast
.
chmod 640 hosts

28

3.1 Directory structure

mkdir init.d
cd init.d
cat <<. > rcS
#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

echo "Mounting /proc filesystem..."
mount -t proc none /proc

echo "Mounting /dev/pts filesystem..."
mount -t devpts none /dev/pts

echo "Loading eth0 module..."
modprobe lan_adapter
modprobe mii
modprobe 8139too

echo "Loading mtd modules..."
modprobe mtdcore 2>&1 > /dev/null
modprobe mtdblock 2>&1 > /dev/null
modprobe chipreg 2>&1 > /dev/null
modprobe vmu-flash 2>&1 > /dev/null

echo "Loading netfilter modules..."
for mod in ip_conntrack ip_conntrack_ftp \

ip_conntrack_irc ip_tables iptable_filter \
iptable_nat ipt_limit ipt_state ip_nat_ftp \
ip_nat_irc ipt_LOG ipt_MASQUERADE;

do
modprobe $mod 2>&1 > /dev/null

done

echo "Setting up routing..."
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

echo "Setting hostname..."
hostname dreamcast

echo "Configuring lo..."
ifconfig lo 127.0.0.1 up

echo "Configuring eth0..."
ifconfig eth0 192.168.1.1 up

29

3 Setting up an initial ramdisk

echo "Starting klogd..."
klogd

echo "Starting syslogd..."
syslogd

#echo "Starting udhcpd..."
#udhcpd

#echo "Starting yaku-ns..."
#/usr/yaku-ns/yaku-ns -c \
/usr/yaku-ns/yaku-ns.conf -l \
/usr/yaku-ns/yaku-ns.log -u yaku -d

#echo "Starting sshd..."
#sshd -f /etc/ssh/sshd_config

/bin/sleep 1

echo "Everything’s done. Have fun."
.
chmod 744 rcS

The file /etc/init.d/rcS starts all initial services. As you notice, some
services are disabled by# because we haven’t compiled them yet.

cd ..
cat <<. >inittab
Initial startup file

::once:/etc/init.d/rcS

Start four ask first login prompts
tty1::askfirst:/bin/login
tty2::askfirst:/bin/login
tty3::askfirst:/bin/login
tty4::askfirst:/bin/login

::ctrlaltdel:/sbin/reboot

.
chmod 644 inittab

cat <<. >passwd
root:x:0:0:root:/root:/bin/sh
.
chmod 644 passwd

30

3.1 Directory structure

cat <<. >shadow
root:*:12091:0:99999:7:::
nobody:*:12091:0:99999:7:::
.
chmod 640 shadow
chown 0.4 shadow

Theshadow andpasswd contain the usernames and passwords. If you need
the same usernames and passwords like your host, just copy the files/etc/passwd ,
/etc/shadow , /etc/gshadow and/etc/group to your initial ramdisk.

mkdir ppp

touch resolv.conf
chmod 644 resolv.conf

cat <<. >services
tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
ftp-data 20/tcp
ftp 21/tcp
fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
smtp 25/tcp mail
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
www 80/tcp http # WorldWideWeb HTTP
www 80/udp # HyperText Transfer Protocol
pop3 110/tcp pop-3 # POP version 3
pop3 110/udp pop-3
ntp 123/tcp
ntp 123/udp # Network Time Protocol

.
chmod 644 services

mkdir ssh

cd ..

Now, you have a correct configure/etc - directory.

3. /home

31

3 Setting up an initial ramdisk

mkdir /home

4. /mnt

mkdir /mnt

5. /root

mkdir root
chmod 700 root

6. /tmp

mkdir /tmp

7. /var/lib

mkdir -p /var/lib

8. /var/log

mkdir /var/log

9. /var/run

mkdir /var/run

Now, you’ve got a proper set up initial ramdisk directory layout.

3.2 Where are we?

Our initial ramdisk looks a little bit like anormaldistribution. We’ve layed the direc-
tory structure out and created essential configuration files.

Now, it’s time for compiling the new C - libraryuClibc for saving more space on
our SEGA Dreamcast. Following, we have to recompilebusybox-0.60.5 against
uClib, i.e. with the new C - library, for shrinking its size. Then, we compiletinylogin
for allowing that more than one user may login at the same time.

32

4 Setting up the uClibc toolchain with
two essential applications

In this chapter, you’ll set up anew toolchain based on theuClibc C - library. You
wonder, why we’re setting up a new one? The simple reason is: The size ofbusybox
is now about 789 KB. If you compilebusyboxagainst the new C - library, its size
will shrink to about 290 KB. You save valuable 500 KB! In this and the next chapters,
every program will be linked against this new C - library. With this technique, we
maximize the functionality of our software router while controlling the growth of the
single programs.

4.1 Setting up uClibc

First, we need to download the appropriate source package:

Package Size License URL

uClibc-0.9.19 1.4 MB LGPLv2 http://www.uclibc.org/downloads/uClibc-
0.9.19.tar.bz2

Table 4.1: Source package, size and URL foruclibc.

I’m assuming, you’ll collect the package sources under˜/Dreamcast/SRC , so we
can unpack the archive with:

$ cd Dreamcast/BUILD
$ bunzip2 -c ../SRC/uClibc-0.9.19.tar.bz2 | \

tar -xv -C .
$ cd uClibc-0.9.19

Now, we have to set up some environment variables for getting the correct options in
the configuration menu:

$ export TARGET_ARCH=sh
$ export NATIVE_CC=gcc
$ export CROSS=sh4-linux-
$ export KERNEL_SOURCE=/home/christian/Dreamcast\

/KERNEL/linux

33

4 Setting up theuClibc toolchain with two essential applications

If you’ve logged out meanwhile, you have to set up the correct$PATHand$PREFIXenvironment
settings:

$ export PREFIX=/home/christian/Dreamcast\
/toolchain

$ export PATH=$PREFIX/bin:$PATH

Now, we’re ready for setting up theMakefilefor uClibc:

$ make menuconfig

Please select the following options for running programs compiled againstuClibc on
yourSEGA Dreamcast:

Option Type

Target Processor Type SH4
Target Processor Endianness Little Endian
Target CPU has MMU *
Enable floating point number
support

*

Please check the correct location of the
kernel headers.
POSIX Threading Support *
Malloc Implementation malloc
Shadow Password Support *
Regular Expression Support *
Support only Unix 98 PTYs *
Assume that /dev/pts is a
devpts or devfs filesystem

*

Remote Procedure Call (RPC)
support

*

Full RPC support *

Table 4.2: Configuration foruClibc for running onSEGA Dreamcast.

Please check also that the optionuClibc development environmentis set to:

$PREFIX/$(TARGET)-linux-uclibc

Any option not mentioned in table 4.2 has to be unselected. Now it’s time for compil-
ing and installing:

$ make all
$ su -c "make install"
$ cd ..

34

4.2 Compilingbusybox-0.60.5

You should have a new toolchain located under:

$PREFIX/sh-linux-uclibc/*

These last steps are necessary for compiling the following sources without any errors:

$ unset TARGET_ARCH
$ unset NATIVE_CC
$ unset CROSS
$ unset KERNEL_SOURCE
$ export UCLIBC=/home/Dreamcast\

/toolchain/sh-linux-uclibc

Next, it’s time for testing our new toolchain.

4.2 Compiling busybox-0.60.5

I don’t explain again, why we re-compile the famous package, we just do it :-) Please
assure that you’re in the correct folder∼/Dreamcast/BUILD:

$ cd busybox-0.60.5

First, we clean up the directory from any oldmakepass:

$ make clean

Now, we’re able to re-compilebusyboxagainstuClibc. Please make your choice for
any user programs you wantbusyboxto have in its configuration fileConfig.h or
simply take the ones I’ve given in chapter two. First, we have to correct a setting in the
Makefilefor using the correct compiler (in our case thecc - wrapperof uClibc):

$ cat Makefile | sed s/CC\ =\ \$\(CROSS\)gcc/\
CC\ =\ \$\(CROSS\)cc/ > Makefile.new

$ rm -f Makefile && mv Makefile.new Makefile

Following, just invoke the compiling process:

$ make CROSS=$UCLIBC/usr/bin/ all
$ su -c "make PREFIX=/home/christian\

/Dreamcast/INITRD install"
$ cd ..

That’s all! Please compare, if it’s possible, the actual size ofbusyboxwith its old one.
You’ll probably determine it has shrunken under about 300 KB.

35

4 Setting up theuClibc toolchain with two essential applications

4.3 Compiling tinylogin-snapshot

tinylogin is a similar program tobusybox: It also bundles some essential tools found
in normal Linux distribution in one single file and creates tons of symbolic links.
Tinyloginprovides for examplelogin or su .

First, we need to download the appropriate source package:

Package Size License URL

tinylogin-snapshot 91 KB GPLv2 http://tinylogin.busybox.net/downloads
/snapshots/tinylogin-snapshot.tar.bz2

Table 4.3: Source package, size and URL fortinylogin.

Now, unpack the downloaded archive:

$ bunzip2 -c ../SRC/tinylogin-snapshot.tar.bz2 | \
tar -xv -C .

$ cd tinylogin

And finally, compile and install the binaries:

$ make CROSS=$UCLIBC/usr/bin/ all
$ su -c "make PREFIX=/home/christian\

/Dreamcast/INITRD install"
$ cd ..

That’s all. Easy, huh? But, believe me, tinylogin is at least the problematic source at
all. I’m very surprised that I don’t have to modify itsMakefileor patch something.
But, why should problems always occur?

4.4 Setting up the cook

This section describes the creation of a short script that helps us creating the file we
can transfer to ourSEGA Dreamcast. Remeber, you always have to do the same many
steps for building this file. So, we just bundle these commands in one single script:

$ cat <<. > cook.sh
#!/bin/sh

OLDPW=$(pwd)

cd ˜/Dreamcast

36

4.5 Where are we?

dd if=/dev/zero of=initrd.img bs=1k count=4096
mke2fs -F -vm0 initrd.img
mount -o loop initrd.img initrd.DIR

(cd INITRD ; tar -cvf - .) | (cd initrd.DIR ; tar xvf -)

umount initrd.DIR

gzip -c -9 initrd.img > initrd.bin

cp ./KERNEL/linux/arch/sh/boot/zImage \
./BUILD/sh-boot/tools/dreamcast/zImage.bin

cp initrd.bin ./BUILD/sh-boot/tools/dreamcast

cd ./BUILD/sh-boot/tools/dreamcast
make clean scramble kernel-boot.bin

mv kernel-boot.bin kernel-boot-\
.‘date +"%d.%m.%Y-%X"‘-.bin

cd $OLDPWD
.
$ chmod u+x cook.sh

Consider, you run this script as thesuper userdue to the use of privileged commands
in this script:

$ su -c "./cook.sh"

The last line in this script creates for every file being transferred to theSEGA Dream-
castan own time stamp. That helps, believe me :-)

4.5 Where are we?

Our own Linux distribution takes shape: We’ve a resonable C - library for compiling
all the programs we need and keep their size small at the same time. Next, we can
handle multiple logins to ourSEGA Dreamcastdue to the use oftinylogin. Last but
not least, we’ve created a small helper script for packing all our work in one single file
to execute on theSEGA Dreamcast.

37

4 Setting up theuClibc toolchain with two essential applications

38

5 Connecting the SEGA Dreamcast to
an access concentrator

This chapter describes the steps for connecting theSEGA Dreamcastto an access con-
centrator necessary for using ADSL with our gaming console. Therefore, we compile
and configure the source packagesppp-2.4.1 andrp-pppoed-3.3 . At the end
of this chapter, you’ll be able to ”surf” the Internet - newly :-) Unfortunately, we don’t
have any browser, so we just ”ping” some hosts or may download some software with
”wget”. But that stage is absolutely necessary to establish the next steps to complete a
router with a firewall.

5.1 Some theory

Why do we need two programs for connecting to the Internet?

Normally, if you googlefor a HowTo that helps you to connect a personal computer
with the Internet over ADSL, you are proposed to use two ethernet networking adapters
if you wish to act as an gateway for a small home network. But ourSEGA Dreamcast
only has one single extension slot. So, where should we take this second adapter?

But, RFC 2516 [RFC2516] helps us. That Request for Comments describes how to
build PPP sessions and encapsulate PPP packets over Ethernet. That memo describes
the theoretical backgrounds necessary for implementing such a protocol. And even
that is the key for us.PPPoEis ”only” a protocol. Thus, nothing contradicts the use of
only one adapter due to the use of multiple protocols assigned to that adapter. We just
load multiple protocols for this adapter: TheTCP/IPand thePPPoEprotocol.

It’s up to the protocol and the Linux kernel to distinguish ”simple” TCP/IP - packets
from PPPoE packets (see figure 5.1). We cause a lot of traffic on that adapter and in
the LAN, but ADSL has only a limited downstream of 768 kbps (about 90 kBytes/s),
so, those carry no weight.

5.2 Compiling ppp-2.4.1

As seen in the previous section, we needppp for transferring data packets from one
point to another point. An implemention of this protocol is the one, we compile in this
section. Additionally, we need a patch for getting the source compiled.

39

5 Connecting theSEGA Dreamcastto an access concentrator

pppd

/dev/pts/?

pppoe

ppp?

eth?

Figure 5.1: Diagram of the (virtual) devices while PPPoE’ing.

Package Size License URL

ppp-2.4.1 524 KB BSD/GPL ftp://cs.anu.edu.au/pub/software/ppp/ppp-
2.4.1.tar.gz

Table 5.1: Source package, size and URL forppp.

But first, we need to download the appropriate source package:

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
ppp-2.4.1-uclibc-dreamcast.patch

The patch corrects some problems with thestrip command. This program is used
for removing some information needed for debugging a program. Since we need really
small programs, we just remove such sections.

Now, we’re ready to compileppp-2.4.1 :

$ cd ../BUILD
$ tar -xvzf ../SRC/ppp-2.4.1.tar.gz -C .
$ cd ppp-2.4.1
$ patch -p1 < ../../SRC/\

ppp-2.4.1-uclibc-dreamcast.patch
$./configure
$ make CROSS=$UCLIBC/usr/bin/ all
$ su -c "make DESTDIR=/home/christian/Dreamcast/\

INITRD install"
$ cd ../../SRC

If you really want to save space, you can delete the programspppstats andpppdump
from your initial ramdisk. Both programs are needed for debugging a connection or
for billing information.

40

5.3 Compilingrp-pppoe-3.3

5.3 Compiling rp-pppoe-3.3

The last source package for an ADSL connection is the implementation of RFC 2516
[RFC2516]. Several implementations of this protocol exist, therefore I’ve decided to
takerp-pppoe-3.3 because of the recommendation found in the documentation of
uClibc.

First, we need to download the appropriate source package:

Package Size License URL

rp-pppoe-3.3 167 KB GPLv2 http://www.roaringpenguin.com/pppoe/rp-
pppoe-3.3.tar.gz

Table 5.2: Source package, size and URL forrp-pppoe.

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
rp-pppoed-3.3-uclibc-dreamcast.patch

The patch creates a scriptadsl-connect with some specific options. Besides, the
patch also corrects some problems with thestrip command and the setting of some
environment variables.

Now, we’re ready to compilerp-pppoe-3.3 :

$ cd ../BUILD
$ tar -xvzf ../SRC/rp-ppp-3.3.tar.gz -C .
$ cd rp-pppoe-3.3
$ patch -p1 < ../../SRC/\

rp-pppoed-3.3-uclibc-dreamcast.patch
$./configure
$ make CROSS=$UCLIBC/usr/bin/
$ su -c "make PREFIX=/home/christian/Dreamcast/\

INITRD install"
$ su -c "cp scripts/adsl-connect /home/christian\

Dreamcast/INITRD/usr/sbin"
$ cd ..

That’s all. Now, we’re ready to connect.

5.4 Connecting to an access concentrator

We’ve now compiled all needed programs for getting a connection to an access con-
centrator. For doing so, connect the DSL - modem into the so calledUPLINK port of

41

5 Connecting theSEGA Dreamcastto an access concentrator

your switch or hub, and connect yourSEGA Dreamcast, if not already done, to your
switch or hub, too.

Transfer the new initial ramdisk to yourSEGA Dreamcast. Please refer tocook.sh
in chapter four and chapter two.

If you’ve booted yourSEGA Dreamcast, don’t wonder of some error messages, if
you’ve got the setup of chapter three: Some of the programs invoked by/etc/init.d/rcS
aren’t installed yet. Now, you can check your connection with the access concentrator.
Please log in asroot and type in:

root@hercules:˜ # pppoe -A -I eth0
Access-Concentrator: BRAX11-erx
Got a cookie: b7 33 1e cf 5e e8 05 23 e0 89 14 90 bc 27 fe 89
--
AC-Ethernet-Address: 00:90:1a:10:0f:f2
--
root@hercules:˜ #

Your output may vary. If you don’t get similar messages, please check your cables.

Now, that we’ve got a cookie from the access concentrator, we’ve to set up some
essential configuration files. The first file is/etc/ppp/options and the easiest,
too:

root@hercules:˜ # :> /etc/ppp/options

That’s all. The documentation ofrp-pppoe suggest an emptyppp configuration
file. The next file is/etc/ppp/pppoe.conf :

root@hercules:˜ # cat <<. > /etc/ppp/pppoe.conf
ETH=eth0
ADSL user name.
USER=your_username
DEMAND=no
DNSTYPE=SERVER
USEPEERDNS=yes
DNS1=
DNS2=
DEFAULTROUTE=yes
CONNECT_TIMEOUT=30
CONNECT_POLL=2
ACNAME=
SERVICENAME=
PING="."
CF_BASE=‘/usr/bin/basename $CONFIG‘
PIDFILE="/var/run/$CF_BASE-adsl.pid"

42

5.4 Connecting to an access concentrator

SYNCHRONOUS=no
CLAMPMSS=1412
LCP_INTERVAL=20
LCP_FAILURE=3
PPPOE_TIMEOUT=80
PPPOE_EXTRA=""
PPPD_EXTRA=""
.
root@hercules:˜ # chmod 640 /etc/ppp/pppoe.conf

For further configuration options or information beyond, please read eitherREADME
or the corresponding documentation file of this source package.

Later, we’ll set up a configuration with an automatic dynamic local nameserver, but
for now, this sample configuration will do its job.

The last file is/etc/ppp/pap-secrets :

root@hercules:˜ # cat <<. > /etc/ppp/pap-secrets
your_username * your_password *
.
root@hercules:˜ # chmod 600 /etc/ppp/pap-secrets

Please ensure, the username inpppoe.conf corresponds to the one found in the
configuration file shown above.

Now, it’s time for rock’n’roll. On virtual terminal 1 (ALT-F1), you start the connection:

root@hercules:˜ # /usr/sbin/adsl-connect
Connect: ppp0 <--> /dev/pts/0
Local IP address changed to aaa.bbb.ccc.ddd
Remote IP address changed to eee.fff.ggg.hhh
nameserver iii.jjj.kkk.lll
nameserver mmm.nnn.ooo.ppp
...

You should get some output here about an IP change of the deviceppp0 as well as the
message of the nameserver that should have to be used.

On virtual terminal 2 (ALT-F2), you have to set at least one nameserver printed on
virtual terminal 1:

root@hercules:˜ # cat <<. > /etc/resolv.conf
nameserver iii.jjj.kkk.lll
.

Now, you should be able to test your connection:

43

5 Connecting theSEGA Dreamcastto an access concentrator

root@hercules:˜ # ping www.google.com
PING www.google.com (216.239.39.99): 56 data bytes
64 bytes from 216.239.39.99: icmp_seq=0 ttl=53 time=126.5 ms
64 bytes from 216.239.39.99: icmp_seq=1 ttl=53 time=126.2 ms
64 bytes from 216.239.39.99: icmp_seq=2 ttl=53 time=127.8 ms
64 bytes from 216.239.39.99: icmp_seq=3 ttl=53 time=126.8 ms
...

If you get a similar output, you’re on the way. Congratulations! If you don’t get such
an output, please check all cables and read carefully the last steps of this article or read
the includedREADMEfiles in theppp-2.4.1andrp-pppoe-3.3source package.

5.5 Where are we?

Well, we see the finish line :-) We’ve got a connection to the access concentrator, so
we can already surf the net on theSEGA Dreamcastgaming console. But for our
aim to share an internet connection, we have to compile some other source packages
to determine, which host may send which packets to the internet and vice versa, and
for offering network address translation (NAT), known asMASQUERADING. So, the
next chapter introducesiptables , the new routing and firewall generation for Linux
kernels 2.4.x.

44

6 Setting up routing and firewalling

This chapter describes the compiling and setting up ofiptables , the new routing
tool for Linux kernels 2.4.x. This chapter doesn’t want to introduce in the world of
building hard corefirewalling systems nor discuss a reliable und reasonable security
level for gateways. For such reasons, please read Oskar Andreasson’s great tutorial for
iptables [Andreasson02]. This chapter merely wants to show the necessary steps
for compiling and installing the needed tools for using the tutorial mentioned above.
Beyond, we create one simplefirewalling rule for using theSEGA Dreamcastas a
MASQUERADINGrouter for LANs.

6.1 Preparing the Linux kernel

The iptables tool controls firewalling rules implemented in the kernel. Therefore,
we need a kernel with an appropriate set up. If you don’t select the proposed kernel
options in chapter two, please adjust your Linux kernel first:

$ cd ˜/Dreamcast/KERNEL/linux
$ make ARCH=sh CROSS_COMPILE=sh4-linux- menuconfig

Table 6.1 points out the necessary options.

If you’ve selected these options, you have to rebuild your kernel:

$ make ARCH=sh CROSS_COMPILE=sh4-linux- \
clean dep zImage modules

Finally, you’ve to install the kernel modules:

$ su -c "make ARCH=sh CROSS_COMPILE=sh4-linux- \
INSTALL_MOD_PATH=/home/christian/Dreamcast/INITRD modules_install"

Don’t be disturbed by the error message at the end: We don’t have adepmod utility
that handles modules for foreign hardware architectures, so simply ignore it.

Now, change directory to the initial ramdisk and correct the libraries folder:

45

6 Setting up routing and firewalling

Option Type

CONFIG_PACKET *
CONFIG_NETFILTER *
CONFIG_UNIX *
CONFIG_INET *
CONFIG_IP_MULTICAST *
CONFIG_IP_NF_CONNTRACK M
CONFIG_IP_NF_FTP M
CONFIG_IP_NF_IRC M
CONFIG_IP_NF_IPTABLES M
CONFIG_IP_NF_MATCH_LIMIT M
CONFIG_IP_NF_MATCH_STATE M
CONFIG_IP_NF_FILTER M
CONFIG_IP_NF_NAT M
CONFIG_IP_NF_TARGET_MASQUERADE M
CONFIG_IP_NF_TARGET_LOG M

Table 6.1: Needed configuration for usingiptables.

$ cd ../..
$ cd INITRD
$ cd lib/modules/2.4.18-sh-dc

Remove every file and directory except the directorykernel - it contains our kernel
modules. Now, we’re ready for compiling the tooliptables .

6.2 Compiling iptables-1.2.7a

This source package contains the essential tool for controlling every packet leaving or
arriving theSEGA Dreamcast.

First, we need to download the appropriate source package:

Package Size License URL

iptables-1.2.7a 115 KB GPLv2 http://www.netfilter.org/files/iptables-
1.2.7a.tar.bz2

Table 6.2: Source package, size and URL foriptables.

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
iptables-1.2.7a-uclibc-dreamcast.patch

46

6.3 Setting upIP forwardingand MASQUERADING

The patch forces the build of a statically linked version due to the lack of a dynamic
loader. Furthermore, it disables theIPv6 support. Last, but not least, it corrects prob-
lems with thestrip command.

Now, we’re ready to compileiptables-1.2.7a :

$ cd ../BUILD
$ bunzip -c ../SRC/iptables-1.2.7a.tar.bz2 | \

tar -xv -C .
$ cd iptables-1.2.7a
$ patch -p1 < ../../SRC/\

iptables-1.2.7a-uclibc-dreamcast.patch
$./configure
$ make CROSS=$UCLIBC/usb/bin/ \

KERNEL_DIR=/home/christian/Dreamcast/KERNEL/linux \
DESTDIR=/home/christian/Dreamcast/INITRD

That’s all. Now, copy the fileiptables to your initial ramdisk and ensure it’s exe-
cutable:

$ su -c "cp iptables ../../INITRD/sbin"
$ su -c "chmod 744 ../../INITRD/sbin/iptables"

6.3 Setting up IP forwarding and MASQUERADING

Now, we’ve all needed packages and tools for acting as a router with full IP forwarding
and network address translation.

For using these features, we have to set up the configuration of/etc/init.d/rcS ,
if you don’t already create this file as suggested in chapter three.

Please edit/etc/init.d/rcS of your initial ramdisk and add the following lines:

echo "Setting up routing..."
/sbin/iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

The last line enables IP forwarding in the Linux kernel, whereas theiptables com-
mand allows the users of your LAN to use programs such asIRC without having
installed a proxy or a socks server on your gateway. For further and more complex
firewalling rules, please consult the following tutorial [Andreasson02].

For testing your installation, you can create and transfer a new image file for your
SEGA Dreamcastusingcook.sh. Please refer to chapter four and chapter two.

47

6 Setting up routing and firewalling

6.4 Where are we?

Now, we’re ready to use ourSEGA Dreamcastas a router with firewalling for a LAN.
But we’ve got some problems: The given nameservers have to be set up by hand as
well as the configuration of every client in the LAN. To make our life easier, we alter
the actual configuration and provide an own nameserver together with aDHCPserver,
that takes over the configuration of the connected clients. These steps are the theme of
the next chapter.

48

7 Setting up an own nameserver and
DHCP - server

This chapter helps you to set up your ownnameserver. In combination with aDHPC -
server, you as an administrator minimize your effort setting up every client connected
to your LAN. Therefore, we download anameserverwhose origin bases on source
code for an embedded nameserver. At the end of this chapter, we’ll modify our start
script and ADSL connecting script for using dynamic assigned nameservers.

7.1 Compiling yaku-ns

Even if the author of this source code warns on his homepage [Sanfilippo02] using this
code because it’s experimental, I’ve got no problems so far running the nameserver.

First, we need to download the appropriate source package. Because of its ”experi-
mental state”, there’s no official released source package. So, we have to download
the complete source via CVS. CVS will ask for a password, just press enter, no pass-
word is required:

$ cd ˜/Dreamcast/BUILD
$ cvs -d:pserver:anonymous@cvs.hping2.sourceforge.net:\

/cvsroot/hping2 login
$ cvs -z3 -d:pserver:anonymous@cvs.hping2.sourceforge.net:\

/cvsroot/hping2 checkout yaku-ns
$ cvs -d:pserver:anonymous@cvs.hping2.sourceforge.net:\

/cvsroot/hping2 logout
$ cd yak-ns

Now, we may remove the CVS control directories:

$ for i in $(find . -type d -name "CVS" -print); do rm -fr $i; done

Now, we’re ready to compileyaku-ns :

$ make CC=$UCLIBC/usr/bin/cc \
AR=$UCLIBC/usr/bin/ar CFLAGS="-Os -I. -Wall"

49

7 Setting up an ownnameserverand DHCP - server

Following, we copy the binary to our initial ramdisk:

$ mkdir ../../INITRD/usr/yaku-ns
$ cp yaku-ns ../../INITRD/usr/yaku-ns

Now, we configure the nameserver. First, we have to create a user and group named
yaku:

$ cd ../../INITRD
$ cd etc
$ su
cat <<. >>passwd
yaku:x:99:99::/usr/yaku-ns:/bin/sh
.
cat <<. >>shadow
yaku:*:12091:0:99999:7:::
.
cat <<. >>group
yaku:x:99:
.
cat <<. >>gshadow
yaku:!::
.

Please ensure that you use unuseduser-andgroup-ids. Next, we create the configura-
tion and set up somechmod’es:

cd ../usr
chown 99.99 /usr/yaku-ns
chmod 700 /usr/yaku-ns
chown 0.0 /usr/yaku-ns/*
chmod 755 /usr/yaku-ns/yaku-ns
touch /usr/yaku-ns/yaku-ns.log
chown 99.99 /usr/yaku-ns/yaku-ns.log
chmod 644 /usr/yaku-ns/yaku-ns.log

Now, we set up the configuration file:

cd yaku-ns
cat <<. > yaku-ns.conf
acl dns.allow 192.168.1.
acl dns.deny $
nameserver aaa.bbb.ccc.ddd
.
chown 0.0 /usr/yaku-ns/yaku-ns.conf
chmod 644 /usr/yaku-ns/yaku-ns.conf
exit

50

7.2 Compilingudhcp-0.9.8

As you see, only three lines and you’ve got your own nameserver. Please change the
IP addressaaa.bbb.ccc.dddto one provided by theadsl-connect script in chapter
five.

For further configuration options or deepening information, please read eitherREADME
or the corresponding documentation file of this source package.

Now, you’ve got to edit the file/etc/init.d/rcS for starting up the nameserver
automagically at system boot. If you’ve set up your/etc/init.d/rcS like in
chapter three, you only have to remove the# at the beginnig of the following lines:

.

.

.

#echo "Starting yaku-ns..."
#/usr/yaku-ns/yaku-ns -c \
/usr/yaku-ns/yaku-ns.conf -l \
/usr/yaku-ns/yaku-ns.log -u yaku -d

.

.

.

Otherwise, simply add the following lines to/etc/init.d/rcS :

.

.

.

echo "Starting yaku-ns..."
/usr/yaku-ns/yaku-ns -c \

/usr/yaku-ns/yaku-ns.conf -l \
/usr/yaku-ns/yaku-ns.log -u yaku -d

.

.

.

Now, our nameserver will be started at system boot.

7.2 Compiling udhcp-0.9.8

This source package contains the client and server tools needed for usingDHCP.

First, we need to download the appropriate source package:

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

51

7 Setting up an ownnameserverand DHCP - server

Package Size License URL

udhcp-0.9.8 43 KB GPLv2 http://udhcp.busybox.net/downloads/udhcp-
0.9.8.tar.gz

Table 7.1: Source package, size and URL forudhcp.

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
udhcp-0.9.8-uclibc-dreamcast.patch

The patch corrects problems with thestrip command and sets some environment vari-
ables.

Now, we’re ready to compileudhcp-0.9.8 :

$ cd ../BUILD
$ tar -xvzf ../SRC/udhcp-0.9.8.tar.gz -C .
$ cd udhcp-0.9.8
$ patch -p1 < ../../SRC/\

udhcp-0.9.8-uclibc-dreamcast.patch
$ make CROSS=$UCLIBC/usr/bin/

That’s all. Now, copy the fileudhcpd to your initial ramdisk an ensure that it’s
executable:

$ su -c "cp udhcpd ../../INITRD/usr/sbin"
$ su -c "chmod 744 ../../INITRD/usr/sbin/udhpcd"
$ cd ../../INITRD
$ su
#

Now, we edit the file/etc/init.d/rcS for starting up theDHCP - server au-
tomagically at system boot. If you’ve set up your/etc/init.d/rcS like in chapter
three, you only have to remove the# at the beginnig of the following lines:

.

.

.

#echo "Starting udhcpd..."
#udhcpd

.

.

.

52

7.3 Setting up automatic DNS

Otherwise, simply add the following lines to/etc/init.d/rcS :

.

.

.

echo "Starting udhcpd..."
udhcpd

.

.

.

Finally, we have to create the configuration file forudhpcd :

cd etc
cat <<. >udhcpd.conf
start 192.168.1.100
end 192.168.1.254
interface eth0
lease_file /var/lib/udhcpd.leases
pidfile /var/run/udhcpd.pid

option subnet 255.255.255.0
option router 192.168.1.1
option dns 192.168.1.1
option domain localdomain
option lease 864000
.
chmod 644 udhcpd.conf
touch ../var/lib/udhcpd.leases

For further configuration options or deepening information, please read eitherREADME
or the corresponding documentation file of this source package.

Now, we’ve got aDHCP - server for our LAN.

7.3 Setting up automatic DNS

Up to now, we don’t have to set up any clients for using ourSEGA Dreamcastas gate-
way or as nameserver. But we have to set up the gaming console itself with the given
nameserver in/etc/resolv.conf and in /usr/yaku-ns/yaku-ns.conf .
In this section, we’ll modify some scripts to let theSEGA Dreamcastdo this job.

The first file is/usr/yaku-ns/yaku-ns.conf.in :

53

7 Setting up an ownnameserverand DHCP - server

cd ..
cd usr/yaku-ns
cat <<. >yaku-ns.conf.in
acl dns.allow 192.168.1.
acl dns.deny $
nameserver __NAMESERVER__
.
chmod 644 yaku-ns.conf.in

As you see, we’ve change the real nameserver address with a wildcard. Now, we have
to edit /usr/sbin/adsl-connect for filling up this wildcard. Please add the
following lines directly after

echo "$!" > $PPPD_PIDFILE

in thewhile loop:

.

.

.

Dynmaic nameserver implementation
Read given nameserver
head -n1 /etc/ppp/resolv.conf | \

sed s/nameserver\ // > /tmp/nameserver 2> /dev/null
NAMESERVER=‘cat /tmp/nameserver‘

Ensure, $NAMESERVER is non-zero for
avoiding to kill the nameserver
if [! -z $NAMESERVER]; then

Alter yaku-ns configuration
cat /usr/yaku-ns/yaku-ns.conf.in | \

sed s/__NAMESERVER__/$NAMESERVER/ > \
/usr/yaku-ns/yaku-ns.conf

Exist a yaku-ns process?
pidof yaku-ns 2>&1 > /dev/null
if ["$?" == "0"]; then

Inform yaku-ns of the
configuration change.
kill -SIGHUP ‘pidof yaku-ns‘

else
yaku-ns process doesn’t exist.
So, we have to restart the nameserver.

/usr/yaku-ns/yaku-ns -c \
/usr/yaku-ns/yaku-ns.conf \
-l /usr/yaku-ns/yaku-ns.log \

54

7.4 Where are we?

-u yaku -d
fi

fi

rm -f /tmp/nameserver

.

.

.

This script fragment reads the first given nameserver and replaces the wildcard in the
configuration ofyaku-ns. Finally, it sends a signal to theyaku-nsprocess forcing the
local nameserver to re-read its configuration.

For testing your installation, you can create and transfer a new image file for your
SEGA Dreamcastusingcook.sh. Please refer to chapter four and chapter two.

7.4 Where are we?

Our router is almost complete. We’ve an own nameserver that’s configured automagi-
cally by theSEGA Dreamcastitself. Additionally, we deliver a valid IP address con-
figuration (IP address, gateway address, nameserver address,. . .) with DHCP to any
client that wants to surf the Internet.

But one thing is still missing: A remote shell for configuring theSEGA Dreamcast
without having to burn a new CD or transferring a new image file to the gaming console
every time we change something.

Thus, the next chapter describes, how to compile and install a SSH implementation.

55

7 Setting up an ownnameserverand DHCP - server

56

8 Setting up SSH

If you want to administer a host over a connection, you have to use a remote shell.
In the past, one has takentelnet for this job. But today, it’s unavoidable to use
an encrypted connection due to the tasks done by the super userroot. This chapter
describes how to compile and installossh-1.5.12 , an implementation of the SSH
protocol version 1.

Due to the very complicated legal situation about cryptographic software,PLEASE
READ CAREFULLY THE INCLUDED ”COPYING” IN THE SOURCE PACK-
AGE OF ossh-1.5.12 ! I AM NOT RESPONSIBLE FOR ANY LEGAL CON-
SEQUENCES CONCERNING YOU (THE READER) WHEN USING THE SOFT-
WARE! PLEASE DECIDE YOURSELF, IF YOU ARE ALLOWED TO USE
THIS SOFTWARE! ONCE AGAIN: READ CAREFULLY THE INCLUDED COPY-
ING IN THE SOURCE PACKAGE! I PROVIDE ONLY THE TECHNICAL BACK-
GROUNDS NECESSARY FOR COMPILING THIS SOURCE!

8.1 Compiling zlib-1.1.4

This source package provides some basic compressing and uncompressing algorithms
needed byossh-1.5.12 .

First, we need to download the appropriate source package:

Package Size License URL

zlib-1.1.4 176 KB free ftp://ftp.info-zip.org/pub/infozip/zlib/zlib-
1.1.4.tar.gz

Table 8.1: Source package, size and URL forzlib.

Now, we’re ready to compilezlib-1.1.4 (assuming yourpwd points to∼/Dreamcast/SRC):

$ cd ../BUILD
$ tar -xvzf ../SRC/zlib-1.1.4.tar.gz -C .
$ cd zlib-1.1.4
$ prefix=$UCLIBC CC=$UCLIBC/usr/bin/cc \

AR="$UCLIBC/usr/bin/ar rc" \
RANLIB="$UCLIBC/usr/bin/ranlib" CFLAGS="-Os"\

./configure

57

8 Setting upSSH

$ make all install
$ cd ..

That’s all. You’ll have a library for statically linking calledlibz.a besides a header
file zlib.h being installed to your$UCLIBC toolchain.

8.2 Compiling gmp-2.0.2.tar.gz

This source package provides ”Arithmetic without limitations” following their adver-
tise :-) Well,gmpprovides a library for doing mathematical operations, needed byossh
e.g. for the computing of primes.

First, we need to download the appropriate source package:

Package Size License URL

gmp-2.0.2 361 KB LGPLv2 http://gd.tuwien.ac.at/gnu/gnusrc/gmp/gmp-
2.0.2.tar.gz

Table 8.2: Source package, size and URL forgmp.

Following, we have to remove the sh machine definitions for forcing the use of no
assembly code. They don’t work with our Dreamcast.

$ tar -xvzf ../SRC/gmp-2.0.2.tar.gz -C .
$ cd gmp-2.0.2/mpn
$ mv sh sh-old
$ cd ..

Now, we’re ready to compilegmp-2.0.2 :

$ PATH=$UCLIBC:$PATH ./configure --nfp --host=sh
$ PATH=$UCLIBC:$PATH make

The temporary environment variable setting avoids applying a short patch. Now, copy
the resulting library to your appropriate toolchain directory, e.g.

$ cp libgmp.a $UCLIBC/lib

And finally, copy the header - file to your appropriate toolchain directory, e.g.

$ cp gmp.h $UCLIBC/include

That’s all. Now, we’re ready to compile the encrypting and decrypting libraryopenssl.

58

8.3 Compilingopenssl-0.9.6e

8.3 Compiling openssl-0.9.6e

This source package bundles several encrypting algorithms, used byossh.

First, we need to download the appropriate source package:

Package Size License URL

openssl-0.9.6e 2,108 KB OpenSSL / SLeay http://www.openssl.org/source/openssl-
0.9.6e.tar.gz

Table 8.3: Source package, size and URL foropenssl.

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
openssl-0.9.6e-uclibc-dreamcast.patch

Now, we’re ready to configureopenssl-0.9.6e :

$ cd ../BUILD
$ tar -xvzf ../SRC/openssl-0.9.6e.tar.gz -C .
$ cd openssl-0.9.6e
$ patch -p1 < ../../SRC/\

openssl-0.9.6e-uclibc-dreamcast.patch
$./Configure --prefix=$UCLIBC \

--openssldir=$UCLIBC/openssl \
no-shared no-asm linux-elf-sh

The build process will fail for applications and test programs, because we’re on a cross
building process. So, we just delete the appropriate folders:

$ rm -fr apps test

Following, it’s time for compiling and installingopenssl-0.9.6e :

$ make CC=$UCLIBC/usr/bin/cc \
AR="$UCLIBC/usr/bin/ar r" \
RANLIB=$UCLIBC/usr/bin/ranlib

$ make install

Now, you’ve got the librarylibcrypto.a as well aslibssl.a besides the header
files installed in$UCLIBC/include/openssl . At this point, all necessary li-
braries and header files are present for compilingossh.

59

8 Setting upSSH

8.4 Compiling ossh-1.5.12

This source package contains the client and server tools needed for usingSSH.

First, we need to download the appropriate source package:

Package Size License URL

ossh-1.5.12 350 KB free http://gd.tuwien.ac.at/privacy/munitions
/software/mirrors/ossh/ossh-1.5.12.tar.gz

Table 8.4: Source package, size and URL forossh.

Next, fetch the needed patch (assuming yourpwd points to∼/Dreamcast/SRC):

$ wget http://www.tu-bs.de/˜y0018536/dc/src/\
ossh-1.5.12-uclibc-dreamcast.patch

The patch creates a correctMakefilefor theSEGA Dreamcastbesides a correctCon-
fig.hwith some necessary#define ’s. Furthermore, it disables theget canonicalhostname()
- function for connecting hosts that causes very long timeouts even in LANs. If you
don’t want this to be disabled, don’t invokemakewith the parameter-DNORESOLVING.

Now, we’re ready to compileossh :

$ cd ../BUILD
$ tar -xvzf ../SRC/ossh-1.5.12.tar.gz -C .
$ cd ossh-1.5.12
$ patch -p1 < ../../SRC/\

ossh-1.5.12-uclibc-dreamcast.patch
$ make CROSS=$UCLIBC/usr/bin/ \

CFLAGS="-Os -Wall -I. -I$UCLIBC/include \
-I$UCLIBC/include/openssl -DNORESOLVING"

Now, copy at least the filesshd to your initial ramdisk and set it executable:

$ su -c "cp sshd ../../INITRD/usr/sbin"
$ su -c "chmod 744 ../../INITRD/usr/sbin/sshd"

Following, you have to create a so calledhost key pair. Either, you do this step on your
SEGA Dreamcast, or you use your host to create this pair. I’ll describe the latter.

Therefore, you need a SSH implementation running on your host. Just useosshitself
(you have to re-compile the source for running on your host), or you use another SSH
implementation.

On my host, I found a SSH implementation version 2, your host may vary:

60

8.4 Compilingossh-1.5.12

OpenSSH_3.4p1 Debian 1:3.4p1-1, \
SSH protocols 1.5/2.0, OpenSSL 0x0090603f

So, I don’t compileosshagain. I just invoke the key creation with:

$ cd ../../INITRD
$ su
cd etc
mkdir ssh
cd ssh
ssh-keygen -f ./ssh_host_key -t rsa -P ""
chmod 644 ssh_host_key.pub
chmod 600 ssh_host_key

This host key pair identifies theSEGA Dreamcastwhen connecting withSHH. Next,
we have to create a suitable configuration for SSH:

cat <<. >sshd_config
Port 22
ListenAddress 0.0.0.0
HostKey /etc/ssh/ssh_host_key
RandomSeed /etc/ssh/ssh_random_seed
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin yes

Don’t read ˜/.rhosts and ˜/.shosts files
IgnoreRhosts yes
StrictModes yes
QuietMode no
X11Forwarding yes
FascistLogging no
PrintMotd yes
KeepAlive yes
SyslogFacility DAEMON
RhostsAuthentication no

For this to work you will also need
host keys in /etc/ssh/ssh_known_hosts
RhostsRSAAuthentication no

RSAAuthentication yes

To disable tunneled clear text passwords,
change to no here!

61

8 Setting upSSH

PasswordAuthentication yes
PermitEmptyPasswords no

AllowHosts *.our.com friend.other.com
DenyHosts lowsecurity.theirs.com *.evil.org evil.org
.
chmod 644 sshd_config
exit
$ cd ..

Last, but not least, you have to enable theSHH service. Therefore, you have to edit
/etc/init.d/rcS . If you’ve set up your/etc/init.d/rcS like in chapter
three, you only have to remove the# at the beginnig of the following lines:

.

.

.

#echo "Starting sshd..."
#sshd -f /etc/ssh/sshd_config

.

.

.

Otherwise, simply add the following lines to/etc/init.d/rcS :

.

.

.

echo "Starting sshd..."
sshd -f /etc/ssh/sshd_config

.

.

.

Now, you’re able to connect to yourSEGA Dreamcastwith all of SSH clients support-
ing SSH version 1. If you want to usepublic key authorization, you have to do the
following:

1. Create an identification key pair.

You simply do the same you’ve done for the host key pair. Just invoke the key
generation:

62

8.5 Where are we?

$ ssh-keygen -f ./identity -t rsa
$ chmod 600 identity

2. Copyidentity.pub to your initial ramdisk.

$ su -c "mkdir INITRD/root/.ssh && \
cp identity.pub INITRD/root/.ssh/authorized_keys"

3. Log in usingidentity .

Assuming, you’ve booted yourSEGA Dreamcast, you type in (if you’re using a
SSH implementation version 2):

$ ssh -1 -i identity -l root 192.168.1.1

Now, you’re safe. Let every user existing on yourSEGA Dreamcastcreate their key
pair and copy every identity.pub in the.sshfolder in the appropriate home directory.
For example, userchristianhas created his key pair. Then, he copiesidentity.pub
to

/home/christian/.ssh/authorized_keys

From now on, he logs in with

$ ssh -1 -i identity -l christian 192.168.1.1

8.5 Where are we?

Now, we’re able to administer ourSEGA Dreamcastremote using an encrypted con-
nection as well as allowing encrypted session for our users. At this point, yourSEGA
Dreamcastaccepts only encrypted connections and acts as your local gateway with
firewalling abilities.

Hint: If you have to wait too long for getting a shell while connecting to yourSEGA
Dreamcast, add the connecting host to/etc/hosts or simply compileosshwith the
parameter-DNORESOLVING.

The next chapter describes how to connect several networks through an encrypted
connection usingSSH / pppd.

63

8 Setting upSSH

64

9 Setting up virtual private
networking

This chapter describes the setting up for avirtual private networkbetween two (geo-
graphically) disconnected LANs for sharing services and data over an encrypted logi-
cal connection. Figure 9.1 illustrates the interaction of the sent data.

192.168.1.0

LAN 1

LAN 2

192.168.2.0

Gateway 2

Gateway 1

Internet

encrypted data

encrypted data

255.255.255.0

255.255.255.0

Figure 9.1: Diagram of a virtual private network between two networks over the Inter-
net.

This encrypted logical connection is realized by a redirected point-to-point connec-
tion. This point-to-point connection will be redirected through an established SSH
connection.

65

9 Setting up virtual private networking

9.1 Setting up the VPN - server

A virtual private network is composed of at least one client and one server. The client
wants to be included in the server’s LAN for using services which are offered in that
LAN (e.g. an office LAN). So, this section describes the setting up of the server part.
For further information please refer to [Wilson99].

First, we have to correct/etc/ppp/options :

$ cd ˜/Dreamcast
$ su
cd etc/ppp
cat <<. >options
ipcp-accept-local
ipcp-accept-remote
proxyarp
noauth
.
chmod 644 options
exit

But now, we have to change/usr/sbin/adsl-connect because this script ex-
pects an emptypppoptions file. So, we simlpy modify thewhile - loop. New lines are
marked with(*) at the beginning. Please ignore(*) while typing in:

.

.

.

while [true] ; do
(*) mv /etc/ppp/options /etc/ppp/options.org
(*) touch /etc/ppp/options

$PPPD pty "$PPPOE_CMD" \
$PPP_STD_OPTIONS \
$DEMAND \
$PPPD_SYNC &

echo "$!" > $PPPD_PIDFILE

(*) sleep 1
(*) rm -f /etc/ppp/options
(*) mv /etc/ppp/options.org /etc/ppp/options

.

.

.

66

9.2 Setting up theVPN - client

Next, we have to create the users, who are allowed for VPN’ing, and a corresponding
group:

$ cd ˜/Dreamcast
$ su
cd etc
cat <<. >>passwd
Tux:*:1200:97::/home/vpn-users:/usr/sbin/pppd
.
cat <<. >>shadow
Tux:*:12091:0:99999:7:::
.
cat <<. >>group
vpn-users:x:97:
.
cat <<. >>gshadow
vpn-users:!::
.
exit

Please ensure you use unuseduser-andgroup-ids.

Next, we create the generic home directory as well as a genericvirtual private net-
working key pair:

$ cd ˜/Dreamcast
$ su
cd home
mkdir -p vpn-users/.ssh
chmod -R 755 vpn-users
chown -R 0.97 vpn-users
exit
$ cd ../..
$ ssh-keygen -f ./identity -t rsa -P ""
$ su -c "cp identity.pub INITRD\

/home/vpn-users/.ssh/authorized_keys"

At this point, theVPN - serveris set up.

9.2 Setting up the VPN - client

If you don’t have the toolpty-redir on your host, you have to download the appro-
priate source package first:

Now, we’re ready to compilepty-redir (assuming yourpwd points to∼/Dreamcast/SRC):

67

9 Setting up virtual private networking

Package Size License URL

pty-redir-0.1 20 KB GPLv2 http://uncensored.citadel.org/pub/unix/pty-
redir-0.1.tar.gz

Table 9.1: Source package, size and URL forpty-redir.

$ cd ../BUILD
$ tar -xvzf ../SRC/pty-redir-0.1.tar.gz -C .
$ cd pty-redir-0.1
$ make clean
$ make

Now, copy the binary to/usr/sbin :

$ su -c "cp pty-redir /usr/sbin"
$ cd ../..

Now, you’re able to build a point-to-point encrypted tunnel withpppdover SSH with
your identity - file:

$ /usr/sbin/pty-redir /usr/bin/ssh -t -e none -1 \
-o ’Batchmode yes’ -c blowfish -i ./identity \
-l Tux 192.168.1.1 > /tmp/vpn-tunnel

$ sleep 5
$ /usr/sbin/pppd ‘cat /tmp/vpn-tunnel‘ \

192.168.2.10:192.168.3.10

The IP - addresses used above are only an example for testing the tunnel. Normally,
you’ve to check for a unused IP address of LAN 1 and one in LAN 2 between you can
establish the encrypted SSH tunnel.

For testing purposes, you may ping theSEGA Dreamcastwith the given IP address:

$ ping 192.168.3.10
PING 192.168.3.10 (192.168.3.10): 56 data bytes
64 bytes from 192.168.3.10: icmp_seq=0 ttl=255 time=6.4 ms
64 bytes from 192.168.3.10: icmp_seq=1 ttl=255 time=5.2 ms
64 bytes from 192.168.3.10: icmp_seq=2 ttl=255 time=4.5 ms
...

All sent packets go through theppp? device of your host to the SSH tunnel, where
they’ll be encrypted. Then, these encrypted packets are sent over the SSH connection
to the other point, where the process is invoked vice versa: A received packet will be
decrypted and sent toppp? .

68

9.3 Where are we?

9.3 Where are we?

Well, our router with firewalling and virtual private networking is quite complete.
We’ve build a complete Linux distribution from scratch, which allows us to use a fa-
mous gaming console as a software router. We’ve compiled everything we need from
scratch: Beginnig at the first toolchain and ending up to the source code implementing
the SSH protocol.

But, we still miss one thing: A persistent configuration. Every time we’re rebooting,
we’ll loose out configuration until we burn afinal configuration to a CD-R. But, you’ll
agree, when is a configurationfinal?

So, the last chapter describes, how to use theVMU for storing configuration files.

69

9 Setting up virtual private networking

70

10 Setting up a persistent
configuration

This chapter rounds out your Linux distribution. You’ll use yourVMU for storing
configuration files. Therefore, you’ve got to change some essential configuration files
we’ve set up so far.

10.1 Changes on your SEGA Dreamcast

For using yourVMU to store your configuration files, you’ve to determine if theVMU
is plugged in. There are several options to do this job, I’ll show the easiest one.

At system boot, we try to mount theVMU. Either themountingfails or succeeds. The
latter, we look for an executable configuration file on theVMU for delivering system
control. This configuration file is comparable to/etc/init.d/rcS . The tasks of
this file are to copy or link the necessary configuration files to theroot file system.

For using a persistent configuration, simply edit/etc/init.d/rcS of your initial
ramdisk (your file may vary, please refer to chapter three) and change the following
lines (new lines are marked with an asterisk):

.

.

.

echo "Setting up routing..."
iptables -t nat -A POSTROUTING \

-o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

(*) echo "Trying to load a persistent configuration..."
(*) mount -t minix -o ro /dev/mtdblock0 /mnt 2>&1 > /dev/null
(*) if [-x /mnt/etc/init.d/rcS]; then
(*) echo "Persistent configuration found. Invoking..."
(*) /mnt/etc/init.d/rcS
(*) else
(*) echo "No persistent configuration found. \
(*) Reverting default configuration..."

71

10 Setting up apersistent configuration

echo "Setting hostname..."
hostname dreamcast

echo "Configuring lo..."
ifconfig lo 127.0.0.1 up

echo "Configuring eth0..."
ifconfig eth0 192.168.1.1 up

echo "Starting klogd..."
klogd

echo "Starting syslogd..."
syslogd

echo "Starting udhcpd..."
udhcpd

echo "Starting yaku-ns..."
/usr/yaku-ns/yaku-ns -c /usr/yaku-ns/yaku-ns.conf \

-l /usr/yaku-ns/yaku-ns.log -u yaku -d

echo "Starting sshd..."
sshd -f /etc/ssh/sshd_config

sleep 1

echo "Everything’s done. Have fun."
(*) fi

As you see, yourVMU is mountedread only. This option is given tomount for
avoiding any file system errors and inconsistencies while loosing power.

Now, your configuration file on theSEGA Dreamcastis set up.

10.2 Persistent configuration on the VMU

The most important file is/etc/init.d/rc.S found on theVMU. So, we first
have to prepare theVMU for storing thepersistent configuration. Boot yourSEGA
Dreamcastand plug in theVMU. You’ll notice some Linux kernel messages about the
found flash memory system. Log in as root and type in:

mkfs.minix /dev/mtdblock0

Now, yourVMU is formatted. Following, you can mount yourVMU for storing files:

72

10.2 Persistent configuration on theVMU

mount -t minix /dev/mtdblock0 /mnt

Your flash memory is now accessible under/mnt . The first file being created is
/mnt/etc/init.d/rcS :

mkdir -p /mnt/etc/init.d
cat <<. >/mnt/etc/init.d/rcS
#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

echo "Setting up filesystem..."

First, set up the users.
rm -f /etc/passwd
rm -f /etc/shadow
rm -f /etc/group
rm -f /etc/gshadow
ln -s /mnt/etc/passwd /etc/passwd
ln -s /mnt/etc/shadow /etc/shadow
ln -s /mnt/etc/group /etc/group
ln -s /mnt/etc/gshadow /etc/gshadow

Then, set up hosts.
rm -f /etc/hosts
ln -s /mnt/etc/hosts /etc/hosts

Now, set up ADSL connection.
cp /mnt/etc/ppp/pap-secrets /etc/ppp
cp /mnt/etc/ppp/pppoe.conf /etc/ppp

Following, prepare SSH host_key.
cp /mnt/etc/ssh/ssh_host_key /etc/ssh
cp /mnt/etc/ssh/ssh_host_key.pub /etc/ssh

Then, we set up the /home directories.
ln -s /mnt/home/christian /home/christian

echo "Setting hostname..."
hostname hercules

If you have a german keymap
#echo "Setting keymap..."
#loadkmap < /mnt/usr/share/keymaps/qwertz.map

echo "Configuring lo..."

73

10 Setting up apersistent configuration

ifconfig lo 127.0.0.1 up

echo "Configuring eth0..."
ifconfig eth0 192.168.1.1 up

echo "Starting klogd..."
klogd

echo "Starting syslogd..."
syslogd

echo "Starting udhcpd..."
udhcpd

echo "Starting yaku-ns..."
/usr/yaku-ns/yaku-ns -c /usr/yaku-ns/yaku-ns.conf \

-l /usr/yaku-ns/yaku-ns.log -u yaku -d

echo "Starting sshd..."
sshd -f /etc/ssh/sshd_config

sleep 1

echo "Everything’s done. Have fun."
.
chmod 744 /mnt/etc/init.d/rcS

The first few lines remove the genericpasswd - andgroup - files and replace them
with my personal configuration.

The next two lines set up a specific/etc/hosts - file.

Following, my personal ADSL account information will be copied to theroot filesys-
tem.

Furthermore, the SSH specifichost key pairfiles (please see chapter eight) are trans-
ferred to theroot file system.

Last but not least, my personal home directory with a SSH public key is linked to the
root file system.

Obviously, you have to create or copy every linked or copied file from this script to
yourVMU. I suggest following procedure:

1. Create a special directory on your host.

2. Create or copy every needed file desired to be persistent to this directory.

3. Change both the/etc/init.d/rcS on yourSEGA Dreamcastand the corre-
sponding/etc/init.d/rcS for yourVMU copying or linking every needed
file.

74

10.3 Where are we?

4. Change carefully the mode and owner of each file.

5. Archive the complete directory into one single file:

$ cd persistent_configuraton
$ tar -cvpf ../vmufs.tar .

The option-p is necessary for preserving the modes of the single files.

6. Transfer the filevmufs.tar to yourSEGA Dreamcastusingwget for exam-
ple (assuming you’re running a local web - or ftp - server):

cd /tmp
wget http://192.168.1.11/vmufs.tar

7. Unpack the archive on the mountedVMU:

mount -t minix /dev/mtdblock0 /mnt
cd /mnt
tar -xvf /tmp/vmufs.tar .

8. Unmount theVMU and reboot youSEGA Dreamcastfor testing yourpersistent
configuration.

This procedure has two advantages: First, you don’t need to edit and change your
persistent configurationdirectly on yourSEGA Dreamcast, and second, you’ve got a
backup of your configuration on your host.

10.3 Where are we?

Now, everything’s complete. You’ve converted yourSEGA Dreamcastinto a router
with firewalling and virtual private networking. Congratulations.

Now, you might set up several firewalling rules using [Andreasson02] or set up some
more programs. For example, I’ve compiledim-httpd0.04 for having a simple web
server orez-ipupdatefor getting a ”static” FQDN for my changing IP addresses for
using SSH or showing some web pages.

You’ll find my initial ramdiskunder

http://www.tu-bs.de/˜y0018536/dc

as well as the newest version of this article.

75

10 Setting up apersistent configuration

76

11 Acknowledgements

First, I want to thank the whole Open Source Community for their great work.

Special thanks go to Bill Gatliff who inspired my work with his script.

Following, I want to thank my parents for their tolerance for my nightly work :-) and
my brother who supports me writing this article.

Furthermore, I want to thank O. Dzubiel for sponsoring theSEGA LAN Adapter/HIT-
0300 for my SEGA Dreamcast. Without the ethernet networking adapter, nothing
would be possible.

Next, thanks go to C. Groessler for his tips while I was writing the Linux device driver
for theSEGA LAN Adapter/HIT-0300.

Following, I want to thank J. - C. Treusch for his support in situations I don’t see any
way out and for his cover picture.

Furthermore, thanks go to#linuxdc and all the people there for their hints.

Following, thanks go to Rick Lehrbaum who published my work on his portalwww.linuxdevices.com.

Last but not least thanks to all people I’ve forgotten in my short list.

77

11 Acknowledgements

78

12 GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document ”free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of ”copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The ”Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as ”you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

79

12 GNU Free Documentation License

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, ”Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.)

80

To ”Preserve the Title” of such a section when you modify the Document means that
it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard net-
work protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will re-
main thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

81

12 GNU Free Documentation License

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled ”History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the ”History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

82

• K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part of
the section titles.

• M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

• N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict
in title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section

83

12 GNU Free Documentation License

unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any
sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You
must delete all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an ”aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will pre-
vail.

84

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

85

12 GNU Free Documentation License

86

13 Glossary

This short and never complete list is about giving you a short reference of the used
terms in this article.

bootstrap compiler: A minimal compiler for building runtime libraries and oper-
ating system kernels.

configure: A script included in a source package for building aMakefile from a
sequence of templates.

cross compiler: A cross compiler is used for building binaries, in common exe-
cutable files for a platform different from the one you’re working on.

DHCP: Dynamic Host Configuration Protocol. This protocol allows a central admin-
istration of IP addresses among others.

gdb: TheGNU debugger.

GNU/Hurd: The kernel of the GNU project, composed of a microkernel and a lot of
processes for encapsulating the services e.g. forfilesystems.

inittab: This file controls the processes to be started at system booting time.

IPv6: Next generation Internet.

IRC: Internet Relay Chat.

Makefile: A ”recipe” for building a program from source.

NAT: Network address translation. Hide several hosts behind one real IP address and
all related problems and features.

linker: A program for gluing libraries and object files together.

Linux distribution: TheLinux kernel including some essential userland programs.

process id: The unique number of a running or sleeping process.

root file system: The file system mounted at /.

serial loader: A serial loader is a set of two programs: A server and a client. The
server waits on yourSEGA Dreamcastfor a connecting client. The client trans-
fers an image file to the server, which the server after completion executes.

87

13 Glossary

strip: A tool for removing sections of a compiled program needed for debugging.

TCO: Total Cost Of Ownership. These are the costs you have to pay for running
something, e.g. power, connection costs, administration etc.

Toolchain: A toolchain is the amount of programs for compiling a program.

uClibc: A very minimal C - library, especially for embedded devices.

VMU: The Visual Memory Unit is a small flash memory card.

88

Bibliography

[Beekmans98]http://www.linuxfromscratch.org, Gerard Beekmans, 1998-2002

[Gatliff01] Running Linux on the Sega Dreamcast, Bill Gatliff,
http://linuxdevices.com/articles/AT7466555948.html, Sep 24, 2001

[FHS01] http://www.pathname.com/fhs, Filesystem Hierarchy Standard, May 24,
2001

[Comstedt00]http://mc.pp.se/dc/cdr.html, Bootable CD-Rs, Nov 08, 2000

[RFC2516] A Method for Transmitting PPP Over Ethernet (PPPoE), Network Work-
ing Group, http://www.faqs.org/rfcs/rfc2516.html, 02/1999

[Andreasson02]iptables tutorial, Oskar Andreasson, http://iptables-
tutorial.frozentux.net, 2002

[Sanfilippo02] http://www.kyuzz.org/antirez/ens.html, Salvatore Sanfilippo, Sep 06,
2002

[Wilson99] VPN HOWTO, Matthew D. Wilson,
http://www.ibiblio.org/pub/Linux/docs/howto/other-formats/ps/VPN-
HOWTO.ps.gz, 12/1999

89

Bibliography

90

Index

Acknowledgements, 77

Bibliography, 89

Connecting the SEGA Dreamcast to an
access concentrator, 39

Compiling ppp-2.4.1, 39
Compiling rp-pppoe-3.3, 41
Connecting to an access concen-

trator, 41
Some theory, 39
Where are we?, 44

Glossary, 87
GNU Free Documentation License, 79

Introduction and theory, 1
Building Linux from scratch, 3
Cross compiling programs, 2
What is cross compiling, 1

Setting up a persistent configuration, 71
Changes on your SEGA Dreamcast,

71
Persistent configuration on the VMU,

72
Where are we?, 75

Setting up an initial ramdisk, 25
Directory structure, 25
Where are we?, 32

Setting up an initial toolchain, 7
Building a cross compiler, linker

and bootstrap compiler, 11
Building a runtime library, 14
Building a shell (and a little bit more. . .),

15
Building the bootloader, 20
Building the Linux kernel, 15
Downloading the source packages,

8
Rebuilding the cross compiler, 15

Setting up a cross compiling envi-
ronment, 7

Setting up the Linux kernel, 12
Setting up your workstation, 7
Where are we?, 23

Setting up an own nameserver and DHCP
- server, 49

Compiling udhcp-0.9.8, 51
Compiling yaku-ns, 49
Setting up automatic DNS, 53
Where are we?, 55

Setting up routing and firewalling, 45
Compiling iptables-1.2.7a, 46
Preparing the Linux kernel, 45
Setting up IP forwarding and MAS-

QUERADING, 47
Where are we?, 48

Setting up SSH, 57
Compiling gmp-2.0.2.tar.gz, 58
Compiling openssl-0.9.6e, 59
Compiling zlib-1.1.4, 57
ossh-1.5.12, 60
Where are we?, 63

Setting up the uClibc toolchain with two
essential applications, 33

Compiling busybox-0.60.5, 35
Compiling tinylogin-snapshot, 36
Setting up the cook, 36
Setting up uClibc, 33
Where are we?, 37

Setting up virtual private networking,
65

Setting up the VPN - client, 67
Setting up the VPN - server, 66
Where are we?, 69

91

