Experiment with Linux
and ARM Thumb-2 ISA

Philippe Robin
ARM Ltd.

Summary

ARM Roadmap and Processor Families

Performance vs Code Size and ISA selection process
Thumb-2 encoding and new instructions

Changes in the Linux kernel

Size reduction with kernel, libraries and applications
Exception handler example

Summary

Embedded Linux Conference - 2007

THE ARCHITECTURE FOR THE DIGITAL WORLD®

ARM Activities

Connected Community

Development Tools

Software IP

Processors
System Level IP: -

Data Engines
Fabric
3D Graphics

Physical IP

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Linux and ARM Processor Roadmap

ARM11- MPCore 4-way

A .
»oood = Scalable. @ @ ARM Cortex A8 =
= [EM = Super-scalar L7
m AX| " Thumb-2 /,’/
= Neon ,/’
1500 wfp /’/
o Linux |
o >
1000 =t ////X\ /
uClinux
rtex-R4
® g " Thumb-2
500 =F
@ ArRM1136 ARMITE o o Uit-Tolerance
_ATrustZone i}
ARM1026 (area optimized) =|EN\| AXI @ ARM Cortex M3
mAX|
i i $ & >

Embedded Linux Conference - 2007

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Processors Families

Cortex-A8 2000+ MIPS Uni-Proc

24U KN 1 2led611-8 2000+ MIPS Multi-proc

Applications
Processor UG KRN PA(B 600+ MIPS Uni-Proc
Market

UL MR ETR T DESE 600+ MIPS Uni-Proc
LU B PASNES I 250+ MIPS Uni-Proc

LG REPI(ES] 600+ MIPS Uni-Proc

Real-Time ARM946E-S WESNS Cortex R4(F) LRIV
Embedded
Market UL BN 150+ MIPS Uni-Proc
LU rars] B 100+ MIPS Uni-Proc

ARM7TDMI (foumnd

Microcontroller
Market

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

The Performance vs. Code Size Dilemma

Thumb 16-bit ISA was created by analysing 32-bit ARM
Instruction Set and deriving best fit 16-bit instruction set,
thus reducing code size

User required to “blend” instruction sets by compiling performance
critical code to ARM and the rest to Thumb

But manual code blending is not optimal
Requires profiling s

Modifications can Performance

reduce performance @
Best results obtained

near the end of the project y

Difficult to manage

distributed development

Code size

A “blended ISA” is a better solution

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

The ISA Selection Process

—‘ NeW funCtionality

ARM ISA 32-bit
Bit field insert/extract,
MOV 16bit immediate,
RBIT, etc.
Th‘;g‘_%i![SA Space for future

extensions

The ARM Thumb-2 core technology combines 16- and 32-bit
iInstructions in a single instruction set and allows

programmers / compilers to freely mix the instructions
together without mode switching.

Embedded Linux Conference - 2007

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 Encoding

i i+2 i+4 i+6 i+8 i+C
thm | |hwi [hw2| [thm| |hwi [hw2| |[thm| I0EZ2==>> Instruction Flow

hw1[15:13] hw1[12:11] Length Functionality

not 111 XX 16 bits Current 16-bit Thumb instruction
111 00 16 bits Current 16-bit Thumb B unconditional
111 not 00 32 bits Thumb-2 32-bit

Halfword pairs (hw1, hw2) of instructions are inserted into Thumb (thm) instruction stream.

The encodings selected are compatible with the existing Thumb BL and BLX instructions:
hwl hw2

Thunb BL{X}: 11110 of fset[22:12] 111n1 of fset[11: 1]

T-2 BL{ X} : 11110 offset[22:12] 11AnB of fset[11: 1]

Two extra offset bits are generated by XORing the A and B bits with Offset[22]. This means that
the offset is sign-extended when A = B = 1, which ensures backwards compatibility with the
existing instructions.

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 32-bit Instructions

ARM-like
Data Processing Instructions
DSP and Media instructions
Load and Store instructions
Branch instructions
System control — BXJ, RFE, SRS etc.
Coprocessor (VFP, MOVE™ etc.)

New
Bitfield insert/extract/clear BFI, {S|U}BFX, BFC

Bit reverse RBIT
16 bit immediate instructions MOVW, MOVH

Table branch TB{B|H} [Rbase, Rindex]
Additional memory system hints (PLI)

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 Move 16-bit Constant

Two 32 bit instructions to load a 32 bit constant, one instruction for each half word

Replaces one 32 bit instruction and a 32 bit literal (ARM) or one 16 bit instruction
and a 32 bit literal (Thumb)

Single MOVW would be used for the majority of cases

Reduce the size of literal pools

Reduce data access to I-TCM via D-side for constant loads (~5X)

MOVW Rd,#mm16
Rd = ZeroExtend(imm16)

MOVT Rd,#mm16
Rd[31:16] = imm16 // Rd[15:0] unaffected

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 Bit Field Instructions

Allow insertion and extraction of signed/unsigned bit fields
Provides better handling of packed structures

Replaces bit mask and shift operations

BFC, BFI, SBFX, UBFX

ARM* or Thumb-2 ARM

BFI RO, R1, #bitpos, #fieldwidth AND R2, R1, #bitmask
BIC RO, RO, #bitmask << bitpos

ORR RO, RO, R2, LSL #bitpos

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 Table Branch Instructions

New Base + Offset Branching mechanism for switch statements generates
branch targets directly from a table of destination offsets

TB{B|H} Offsets table (bytes or half words)
«—— Current PC Rbase
¢ « offset<<1 [Rindex]
New PC
Next INSTR

Thumb-2 code size as small or smaller than Thumb —Ospace
Thumb-2 code performance as fast as ARM —Otime
Thumb-2 code executes in a single instruction and uses packed table

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

New Thumb-2 Flow Control Instructions

Compare and Branch

CBZ Rn, <label>
CBNZ Rn, <label>

Optimises for the common case of “Branch If
Zero” or “Branch If Non-Zero”

If-Then Conditional
IT{x{y{z}}} <cond>

The If-Then (IT) instruction causes the next 1-4
instructions in memory to be conditional

Allows short conditional execution bursts in
16-bit instruction set

ARM

Thumb-2

Thumb

CMP r0, #0

CBZ 0, In

CMP r0, #0

BEQ In

BEQ In

8 Bytes, 1 or 2 cycles

2 Bytes, 1 cycle

4 Bytes,1 or 2 cycles

ARM Thumb-2 Thumb
LDREQ rO0, [r1] ITETE EQ BNE 11
LDRNE r0, [r2] LDREQ r0, [r1] LDR r0,[r1]
ADDEQ r0, r3, r0 LDRNE r0, [r2] ADD r0, r3, r0
ADDNE r0, r4, rO ADDEQ r0, r3, r0 B2

ADDNE r0, r4, rO 11 LDRrO,[r1]
ADD r0, r4, rO

16 Bytes, 4 cycles

10 Bytes, 4 or 5 cycles

12 Bytes, 4 to 20 cycles

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL

WORLD®

Thumb-2 Compiled Code Size

0OARM B Thumb-2 B Thumb

0 ARM B Thumb-2 B Thumb

Thumb-2 Performance Optimized =Thumb-2 Space Optimized
26% smaller than ARM 32% smaller than ARM

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 Performance

Analysis of the performance of code for EEMBC* benchmarks on ARM11 like cores

100
90 {i
80 i
701
60 i

901 O ARM
40 B Thumb-2

307 B Thumb
20 {i

10 i
0 5

Q @) NS > X N NN
& «Q"? F & & @ & &
&

Thumb-2 performance is 98% of ARM performance
Thumb-2 code achieves 125% of Thumb performance

* Uncertified EEMBC benchmarks based information showing relative performance ONLY

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

Thumb-2 — Changes to Linux Kernel

A new control bit has been introduced with ARMv7 to control whether
exceptions are taken in ARM or Thumb state

Modified Interrupt and Exception handling code accordingly

Most 32-bit Thumb instructions are unconditional (whereas most of ARM
instructions can be conditional)

Many changes are due to adding unified syntax and flow control
instructions

Use of If-Then (IT) instruction for instance

There is no increase in the number of general purpose or special
purpose registers, and no increase in register sizes

Most Thumb 32-bit instructions cannot use the PC as a source or
destination register.

BL and BLX instructions are treated as 32-bit instructions instead of two
16-bit instructions

Note that 32-bit Thumb instructions can only take exceptions on their start
address

New T variants of LDR, STR

New variants of LDREX and STREX
Thumb-2 has B, H, and D (Byte, Halfword, and Doubleword) variants

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

ARM vs Thumb-2 Memory Footprint

Using GCC 4.1 with —O2 option

Average 20% size reduction on common libraries

Kernel is 29% smaller in Thumb-2 compared to ARM

ARM Mode Thumb-2 mode Ratio
libc-2.3.6.s0 1123552 824544 7 3%
libm-2.3.6.s0 669496 542520 81%)
2.6.19 kernel 1019832 724888 7 1%
IMPlayer 5793064 5619000 96 %
(dynamic) (dynamic) 77%

6707792 (static)

5176036 (static)

Embedded Linux Conference - 2007

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Sample - Exception Handler in Thumb-2

.macro vector_stub, name, mode, correction=0

vector_\name:
.if \correction
sub.w Ir, Ir, #\correction

@

@ get ready to re-enable interrupts if appropriate

.endif mrs
tst

@ save Ir_<exception> (parent PC) and spsr_<exception> it

@ (parent CPSR) to the SVC stack biceq

srsdb sp, #SVC_MODE

r9, cpsr

r3, #PSR_I_BIT

€q

r9, r9, #PSR_I_BIT

@ Call the processor-specific abort handler:

@

@ Switch to SVC32 mode, save sp and Ir and set up the stack. @

@ IRQs remain disabled. @ r2
@ @ r3
mrs Ir, cpsr @

eor.w Ir, Ir, #(\mode ~ SVC_MODE)

msr cpsr_cxsf, Ir

@ may be overwritten by the usr handlers
str.w sp, [sp, #(S_SP - S_FRAME_SIZE)] @ save sp_svc to the SVC stack

- aborted context pc
- aborted context cpsr

@ The abort handler must return the aborted address in r0, and
@ the fault status register in rl. r9 must be preserved.

@

Idmia

ro, {r2, r3} @ load the Ir_<exception> and spsr_<exception>

#ifdef MULTI_ABORT

str.w Ir, [sp, #(S_LR - S_FRAME_SIZE)] @ save Ir_svc to the SVC stack Idr r4, .LCprocfns
mov Ir, pc
sub.w sp, sp, #S_FRAME_SIZE Idr pc, [r4]
#else
@ bl CPU_ABORT_HANDLER
@ the branch table must immediately follow this code #endif
@ @
ldr.w Ir, [sp, #S_PSR] @ read the saved spsr_<exception> @ set desired IRQ state, then call main handler
and.w I, Ir, #OxOf @
add.w Ir, pc, Ir, Isl #2 @ address in the branch table msr cpsr_c, r9
ldr.w pc, [Ir, #4] @ branch to handler in SVC mode mov r2, sp
.endm bl do_DataAbort
[-]
.macro svc_entry @ IRQs off again before pulling preserved data off the stack
stmia sp, {r0 - r12} @
.endm disable_irq
(-]
__dabt_svc: @
svc_entry @ restore the registers and restart the instruction
@
add r0, sp, #S_PC l[dmia sp, {r0-r12}
Idr Ir, [sp, #S_LR]
add sp, sp, #S_PC
rfeia sp! @ restore pc, cpsr

Embedded Linux Conference - 2007

THE ARCHITECTURE FOR THE DIGITAL

WORLD®

Sample — Exception Handler in ARM

.macro vector_stub, name, mode, correction=0

vector_\name:

Embedded Linux Conference - 2007

.if \correction
sub Ir, Ir, #\correction
.endif

@ Save r0, Ir_<exception> (parent PC) and spsr_<exception> (parent CPSR)

stmia sp, {r0, Ir} @ save r0, Ir
mrs Ir, spsr
str Ir, [sp, #8] @ save spsr

@ Prepare for SVC32 mode. IRQs remain disabled.

mrs r0, cpsr
eor r0, r0, #(\mode * SVC_MODE)
msr spsr_cxsf, r0

@ the branch table must immediately follow this code

and Ir, Ir, #0xOf

mov 10, sp

Idr Ir, [pc, Ir, Isl #2]

movs pc, Ir @ branch to handler in SVC mode
.endm

.macro svc_entry
sub sp, sp, #S_FRAME_SIZE
stmib sp, {r1 - r12}

ldmia r0, {r1 - r3}

add r5, sp, #S_SP @ here for interlock avoidance
mov r4, #-1 @ ™™
add r0, sp, #S_FRAME_SIZE @ "™ ™
str rl, [sp] @ save the "real" rO copied

@ from the exception stack
mov rl, Ir

@ We are now ready to fill in the remaining blanks on the stack:

r0 - sp_svc

rl-Ir_svc

r2 - Ir_<exception>, already fixed up for correct return/restart
r3 - spsr_<exception>

r4 - orig rO (see pt regs definition in ptrace.h)

9PPO®

@
stmia r5, {r0 - r4}
.endm

__dabt_svc:

svc_entry

@ get ready to re-enable interrupts if appropriate
mrs r9, cpsr

tst r3, #PSR_I_BIT

biceq r9, r9, #PSR_I_BIT

@ Call the processor-specific abort handler:

@ r2 - aborted context pc
@ r3 - aborted context cpsr
@

@ The abort handler must return the aborted address in r0, and
@ the fault status register in rl. r9 must be preserved.

#ifdef MULTI_ABORT

#else

#endif

Idr r4, .LCprocfns

mov Ir, pc

Idr pc, [r4]

bl CPU_ABORT_HANDLER

@ set desired IRQ state, then call main handler

msr cpsr_c, r9
mov r2, sp
bl do_DataAbort

@ IRQs off again before pulling preserved data off the stack
disable_irg

@ restore SPSR and restart the instruction

Idr r0, [sp, #S_PSR]

msr spsr_cxsf, r0

ldmia sp, {r0 - pc}* @ load r0 - pc, cpsr

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Summary

Thumb-2 core technology improves both ARM and Thumb
ISAs to increase system performance and reduce cost.

Thumb-2 core technology extends the Thumb ISA to provide a
blended instruction set.

Average 20%better code density than ARM for Linux kernel and
libraries using GCC

With Thumb-2 developers don’t have to manually balance
between ARM and Thumb code

Contribute kernel changes to mainline in 2007/2008

Thumb-2 support has been available with GNU compilation tools since
2006

Higher code density can be achieved using optimized tool
chains such as ARM RealView compilation tools

Embedded Linux Conference - 2007 THE ARCHITECTURE FOR THE DIGITAL WORLD®

