Using a JTAG in Linux Bring-
up and Kernel Debugging

Porting Linux to new Hardware

Mike Anderson

Chief Scientist

The PTR Group, Inc.
http://www.theptrgroup.com

Copyright 2007, The
PTR Group, Inc.

What We Will Talk About

#What are we trying to do?
#Hardware debuggers
#What is JTAG?

#How does it work?
#Board bring up

#The Linux boot sequence
#Debugging the kernel

The Board Bring-up Process

#You have your shiny new board from
manufacturing

» They say the board works

#They claim that they’ve done the hard part, now
you just need to bring up Linux on the board ©

#Where do you start?

» First, get the data sheets for all of the programmable
parts

e This may be harder than you think because of NDAs and
paperwork

e You should start the data sheet collection process even
before the board is ready

_&LPTR

CELF-JTAG-3 Copyright 2007, The PTR Group, Inc.

Board Bring up #2

+#Talk to the hardware folks

» Get the schematics for the board
» Ask about the chip selects

e Determine how the board is wired up

» Figure out how fast the SDRAM is

supposed to be
e You’ll figure out later how fast it really is

Collect a listing of the key registers
on the board and where they are
mapped

» Are they I/O or memory mapped?

» Register width, read/write capabilities,
etc.

CELF-JTAG-4 Copyright 2007, The PTR Group, Inc.

Board Bring-up #3

#Produce a memory map diagram from the
registers you found earlier

» This is needed to describe the register maps to the
hardware debugger configuration files

» Pictures always help put it into perspective

Create a block diagram for the board that
outlines the connectivity

» Get the hardware folks to help on this

Dust off that assembly language book
» You’ll need it

CELF-JTAG-5 Copyright 2007, The PTR Group, Inc.

_&LPTR

Board Bring-up #4

#Choose your boot firmware

» Try to pick one that already supports your processor
architecture

Port the boot firmware

Learn from the boot firmware porting effort
what needs to be done, then apply that to the
Linux boot sequence as needed

» Many Linux boot issues are similar to that of the boot
firmware

» Also depends on how much board set up is done by
your boot firmware and how much is left to Linux

*
*

CELF-JTAG-6 Copyright 2007, The PTR Group, Inc.

_&LPTR

Board Bring-up #5

#Get Linux to a bash prompt

» If possible, run the Linux Standard Base and
POSIX test suites to make sure the Linux is
functional

#Package the boot firmware and Linux BSP
so it can be turned over to the
applications developers

#Ship it
#Miller Time ©

CELF-JTAG-7 Copyright 2007, The PTR Group, Inc.

Harsh Realities

#When the hardware folks say the board
works, what does that mean?
» Frequently, it simply means that the magic

blue smoke doesn’t escape the chips when
they powered it up

#The assertion that the board works is
often based on simulating the board
» Errors in the manufacturing process, board

layout bugs, bad solder joints, etc. will come
into play as you start testing

_&LPTR

CELF-JTAG-8 Copyright 2007, The PTR Group, Inc.

Exercising the Board

#How do you test that the board is working?

» Hardware debuggers such as an In-Circuit Emulator
(ICE), JTAG, logic analyzer, oscilloscope, LEDs, etc.

#Essentially, you have got to drive signals on the
board to make sure the hardware responds
correctly

» Some of this may have been done by the hardware
folks

e Ask them what, if any, tests they performed and how they
hooked the hardware up to do these tests

e You’'ll need to duplicate their setup and tests to verify that
your test board is also working

_&LPTR

CELF-JTAG-9 Copyright 2007, The PTR Group, Inc.

Value of a Reference Board

Often times, the hardware designers will have
based their design on a manufacturer’s
reference design

» The chip vendors will often give you their design
layout if you commit to buy enough chips

#If there is a reference board, obtain a copy of it
and any software available for it from the
manufacturer

» They may have already ported boot firmware and
Linux to it

» Having the reference board allows you to test how
the board should work for comparison to yours

CELF-JTAG-10 Copyright 2007, The PTR Group, Inc.

_&LPTR

Example Reference Board

#Find out just how close the target board is
to the reference board from the hardware

designers

» Leverage as much information as you can

atmel.com Target Board

CELF-JTAG-11 Copyright 2007, The PTR Group, Inc.

NPT

Hardware Debugging Tools

#The traditional hardware debug tool
was the In-Circuit Emulator (ICE)

» A device that plugged into the CPU
socket and emulated the CPU itself

#These were rather expensive
» $30K+ for the good ones

#Today, most devices that call
themselves an ICE are actually JTAGs

A
PR |

CELF-JTAG-12 Copyright 2007, The PTR Group, Inc.

Why the Traditional ICE has Faded

Away

#The biggest problem faced by the
ICE concept was the increasing pin
counts of processors

» E.g., 939 pins for the Athlon-64

¥ Each pin required a wire to the ICE

» Each wire started to become an antenna
as frequencies increased

+Processors also started to move to
Ball Grid Array (BGA) packages

» No way to get to the pins in the center
of the part because the part is soldered
to the motherboard

CELF-JTAG-13 Copyright 2007, The PTR Group, Inc.

Enter the JTAG Port

+#The Joint
(JTAQ) is t

‘est Action Group
ne name

associatec

with the IEEE

1149.1 standard entitled
Standard Test Access Port
and Boundary-Scan
Architecture

» Originally introduced in 1990

as a means to test printed
circuit boards

» An altern
nails

ative to the bed of

CELF-JTAG-14 Copyright 2007, The PTR Group, Inc.

How JTAG Works

#JTAG is a boundary-scan device that
allows the developer to sample the values
of lines on the device

» Allows you to change those values as well

#JTAG is built to allow chaining of multiple
devices

» Works for multi-core processors, too

CELF-JTAG-15 Copyright 2007, The PTR Group, Inc.

JTAG Detalils

#JTAG is a simple serial protocol

#Configuration is done by manipulating the
state machine of the device via the TMS

I I ne 1. TDI (Test Data In)
2. TDO (Test Data Out)
3. TCHK (Test Clock)
4, TMS (Test Mode Select)

5. TRST (Test ReSeT) optional.
TMS

—
TCK
—
L TMS L1 TMS TMS
TCK TCK TCK
DEVICE 1 DEVICE 2 DEVICE 3
TDI
> TDI TDO TDI TDO TDI TDO
TOO
1
CELF-JTAG-16 Copyright 2007, The PTR Group, Inc. \. K‘ P , R

JTAG-Aware Processors

#Most embedded processors today support JTAG
or one of its relatives like BDM

» E.g., ARM/XScale, PPC, MIPS
#Even the x86 has a JTAG port although it is
rarely wired out

» Grandma can barely send e-mail, let alone know
what to do with a JTAG port

#Some processors like MIPS come in different
versions

» Some with JTAG ports for development, some without
in order to save $$%

CELF-JTAG-17 Copyright 2007, The PTR Group, Inc.

_&LPTR

JTAG Vendors

#Several different vendors sell JTAG port
interface hardware

» JTAG is also referred to as On-Chip Debugging (OCD)

#Here are a few of the vendors:
» Wind River Systems (http://www.windriver.com)
» Abatron AG (http://www.abatron.ch)
» American Arium (http://www.arium.com)
» Mentor Graphics (http://www.epitools.com)

CELF-JTAG-18 Copyright 2007, The PTR Group, Inc.

JTAG Connections

#The maximum speed of JTAG is 100 MHz

» A ribbon cable is usually sufficient to connect
to the target

#Connection to the development host is

accomplished via
» Parallel port =—
» USB

» Serial port
» Ethernet

CELF-JTAG-19 Copyright 2007, The PTR Group, Inc.

JTAG User Interface

#Some JTAG interfaces use
a GDB-style software
interface ;

» Any GDB-aware frontend = —mem o

aaaaa

+# Others have Eclipse plug- =
ins to access the JTAG via @ =

+#Some still use a = =
command line interface

.....

CELF-JTAG-20 Copyright 2007, The PTR Group, Inc.

What can you do with a JTAG?

Typical JTAG usage includes reflashing boot
firmware

» Even the really cheap JTAG units can do this
#However, it is in the use as a debugging aid that
JTAG comes into its own

» You can set hardware or software breakpoints and
debug in source code

» Sophisticated breakpoint strategies and multi-core
debugging usually require the more expensive units

+JTAG units can also be used to exercise the
address bus and peripherals

» This is what JTAG was originally designed for

CELF-JTAG-21 Copyright 2007, The PTR Group, Inc.

_&LPTR

Hardware Configuration Files

#Most JTAG units require you to describe the
hardware registers in a configuration file

» This is also how you describe what processor
architecture you are using
All of that information about register maps that
you collected earlier now goes into the
configuration file

#Unfortunately, there is no standard format for
these configuration files

» Each JTAG vendor uses different syntax

CELF-JTAG-22 Copyright 2007, The PTR Group, Inc.

_&LPTR

Example Configuration Fi

#Many JTAG units split the configuration
files into a CPU regqister file and a boar

configuration file

les

; SDRAM Controller (SDRAMC)

sdramc_mr MM OxFFEFFFF90 32 ; SDRAMC Mode Register

sdramc_tr MM OxFFFFFF94 32 ; SDRAMC Refresh Timer Register
sdramc_cr MM OxFFFFFF98 32 ; SDRAMC Configuration Register
sdramc srr MM OxFFFFFFI9C 32 ; SDRAMC Self Refresh Register
sdramc lpr MM OxFFFFFFAQ 32 ; SDRAMC Low Power Register
sdramc_ier OxFFFFFFA4 32 ; SDRAMC Interrupt Enable Register

CELF-JTAG-23

Copyright 2007, The PTR Group, Inc.

; bdiGDB configuration file for ATSIRMS200-DK

[INIT]

WREG CPSR Ox000000D3 ;select supervisor mode

W32 OxFFFFFFOO 0x00000001 ;Cancel reset remapping

Wr32 OxFFFFFEFC20 Ox0O000FFO1 ; PMC_MOR Enable main oscillatorxr , OSCOUNT = OxFF
= Init Flash

W32 OxFFFFFF10 Ox00000000 ;MC_PUIA[O]

W32 OxFFFFFF50 O0x00000000 ;MC_ PUP

W32 OxFFFFFF54 0x00000000 ;MC PUER: Memory controller protection unit disable
;JWM32 OxFFFFFFO4 O0x00000000 ;MC ASR

SJWM32 OxFFFFFFO8 Ox00000000 ;MC_ AASR

W32 OxFFFFFEFF64 O0x00000000 rEBI_ CFGR

WM32 OxFFFFFF70 O0x00003284 ;SMC2_ CSRI[O]: 16bit, 2 TDF, 4 WS

- Init Clocks

WM32 OxFFFFFC28 O0x20263E04 ;PLI.AR: 179,712000 MH= for PCK

DELAY 100

W32 OxFFFFFC2C Ox10483E0E ;PLLBR: 48,054857 MH=z (divider by 2 for USRB)

Source: Abatron

g — T

Developing the Configuration File

+# The JTAG vendor will likely already have a register file
for the processor
+# Your task will be to develop the board configuration file

» There may be a configuration file for the reference board that
you can use as a starting point

+# The configuration file is essentially a script of
commands to initialize the target board
» You keep working on it until you can initialize memory

» Once memory is on-line, you should then be able to write
values into memory via the JTAG that can be read back

» Then, enhance the configuration to initialize other peripherals

CELF-JTAG-24 Copyright 2007, The PTR Group, Inc. \. K‘ P , R

Translating JTAG Configuration to
Code

#Next, you’ll take the settings from the
configuration file and start translating
them into the boot firmware

» Must of this starts in assembly language for

the memory initialization and then transitions
to C for the rest of the peripherals

#Make sure you test the boot firmware
without using the JTAG

» Avoids hidden JTAG dependencies

_&LPTR

CELF-JTAG-25 Copyright 2007, The PTR Group, Inc.

Once the Configuration File is

Done

#0Once you have a working configuration
file, you should be able to begin
exercising the board

» Memory tests, addressing tests,
reading/writing registers, blink LEDs, etc.

#You exercise the board using the same
type of configuration files that you used
to put the board into a known state

» You can treat the configuration file like a
script in most cases

CELF-JTAG-26 Copyright 2007, The PTR Group, Inc.

NPT

Picking your boot firmware

+#The x86 has the BIOS

» This is the boot firmware responsible for loading the
operating system

#Non-x86 processors don’t have this luxury

» You’ll need to port some boot firmware to the target
board

#There are several examples of boot firmware
» Pick one that best supports your hardware

CELF-JTAG-27 Copyright 2007, The PTR Group, Inc.

Boot Firmware Environment

+#The boot firmware is the code located at the
processor’s power-on jump (POJ) address

» OXFFFO0100 for many PPCs
» O0x0 for most ARM/XScale CPUs
» The POJ address is typically in your flash segment
#The boot firmware starts in a very primitive
state

» Physical address mode of the processor
e No MMU

» Initial code must be in assembly language
e No memory available at boot time, just CPU registers

CELF-JTAG-28 Copyright 2007, The PTR Group, Inc.

_&LPTR

Job of the Boot Firmware

#The boot firmware must place the
hardware into a known state
» Essentially, do what the JTAG configuration
does

#Enable memory, disable processor
caches, disable MMU, enable
clocks/PLLs, set up chip selects, disable

Interrupts
#The last thing the firmware typically

does in assembly is to establish a “C”
calling stack and then jump to C code

NPT

CELF-JTAG-29 Copyright 2007, The PTR Group, Inc.

Job of the Boot Firmware #2

#0Once executing C, the firmware typically copies
itself into RAM and jumps to the RAM copy

» Improves performance
#Firmware will then typically initialize a serial

console, initialize boot devices and load Linux
from someplace

» This will require device drivers be written for those
devices
e Those device drivers are unique to the firmware

#The firmware is usually single threaded
» No multi-tasking at this point

CELF-JTAG-30 Copyright 2007, The PTR Group, Inc.

_&LPTR

Commonly-Used Boot Firmware

+#U-Boot
» http://sourceforge.net/projects/u-boot

#RedBoot
» http://sources.redhat.com/redboot/

#PMON2000
» http://www.opsycon.se/pmonmain
+ GRUB and Lilo (x86 PC w/ BIOS)

» http://www.gnu.org/software/grub
» http://www.tldp.org/HOWTO/LILO.html

+#LinuxBIOS

» http://www.linuxbios.org

CELF-JTAG-31 Copyright 2007, The PTR Group, Inc.

U-Boot

Arguably, the most used boot
for embedded applications

» Supports PPC, ARM/XScale, MIPS
Released under GPL

Over 50 different boards already
supported

#Supports boot from network, flash
and disk

» Provides environment variables and
passing command lines to Linux

Source: U.S. Navy

.*
.*

CELF-JTAG-32 Copyright 2007, The PTR Group, Inc.

RedBoot

#Derived from eCOS, now
distributed by FSF

» Source under modified GPL
#Supports boot from flash and
network

#Supports

» ARM/XScale, SH, SPARC, 68K,
MIPS, PPC

CELF-JTAG-33 Copyright 2007, The PTR Group, Inc.

PMON2000

MIPS-centric boot firmware
released as open source

» Also supports PPC
¥ Released under BSD license

#Supports boot from flash, mass
storage and network

» Understands the FAT-32 file system

#Can also perform Power-on Self
Test (POST) operations

CELF-JTAG-34 Copyright 2007, The PTR Group, Inc.

PIIN2GO0

Source: Opsycon AB

x86 Boot loaders:
GRUB/LILO/LinuxBIOS

+#Linux Loader (LILO)
» Uses x86 BIOS to load LILO from disk

» LILO t

+GRand
» Like L

+#LinuxBIOS

» Actual replacement for x86 BIOS
e Runs on some PPC as well

nen allows choice of O/S in dual boot systems

Universal Bootloader (GRUB)
LO, but allows booting from network too

» Used in One Laptop Per Child project soure: Linusals

CELF-JTAG-35 Copyright 2007, The PTR Group, Inc.

Using JTAG to Bring Up Firmware

A problem typically encountered in firmware
bring up is that the code starts and runs for a
while in flash

#You cannot use typical debugging approaches
because flash cannot be easily rewritten to set
breakpoints

» Use the JTAG to set hardware breakpoints

e Hardware breakpoints stop the processor when the address
on the bus matches the hardware breakpoint register value

e There are a limited number of these hardware breakpoint
registers available in the processor

- In fact, there may only be one

_&LPTR

CELF-JTAG-36 Copyright 2007, The PTR Group, Inc.

Debugging After the Copy

#0Once the firmware copies itself from flash
into RAM, normal software breakpoints
can be used

» Some firmware supports GDB debugging via
the serial port after the copy

#The source debugging capability of some
JTAG units is invaluable at this point

Firmware Device Drivers

3# At a minimum, the firmware will typically support
the initialization of a serial console

» Used to interact with the firmware and set default
behaviors
Network booting requires drivers for an Ethernet o
and PHY Source: team-xecutor.com
» Also, a small IP stack implementation to support
potential DHCP requests, TFTP, and/or FTP

+# The IP stack portion should “just work” once you
have the network driver working

+# Other drivers for erasing and writing flash will also
be needed if your board supports this capability

+# All of these drivers need to be debugged to support
loading Linux

NPT

CELF-JTAG-38 Copyright 2007, The PTR Group, Inc.

Loading Linux

#The boot firmware will already know how to
copy the Linux image into RAM

» It might need to handle decompression and
relocation

#You will need to tell the boot firmware where
the image is coming from and store this
information in non-volatile storage

» Typically, some reserved flash sectors

+# After the boot firmware moves into RAM, the
non-volatile storage is examined to discover
what image to load and where it’s coming from

CELF-JTAG-39 Copyright 2007, The PTR Group, Inc.

_&LPTR

Jumping to Linux

+Once the firmware loads Linux into
RAM, we can jump to the entry point
of Linux
» Some firmware can pass parameters

such as processor info, memory size and
speed and a kernel boot line to Linux

After the handoff to Linux is made,
the RAM occupied by the firmware is
reclaimed

» Linux does not refer back to the
firmware at run time like Windows® does

CELF-JTAG-40 Copyright 2007, The PTR Group, Inc.

NPT

The Linux Boot Sequence

+# Like the boot firmware, the Linux kernel starts in
assembly language

» Sets up the caches, initializes some MMU page table entries,
configures a “C” stack and jumps to a C entry point called
start_kernel (init/main.c)

+# start_kernel is then responsible for:
» Architecture and machine-specific hardware initialization
» Initializing virtual memory
» Starting the system clock tick
» Initializing kernel subsystems and device drivers
+# Finally, a system console is started and the init process
IS created

» The init process (PID 1) is then the start of all user-space
processing

CELF-JTAG-41 Copyright 2007, The PTR Group, Inc. \. K‘ P , R

JTAG use in Linux Debug

+# Because the Linux kernel was loaded |
into RAM via the boot firmware, only ' '
software breakpoints should be HW

required after the initial breakpoint

» A hardware breakpoint can be used to stop
the kernel on entry, then software
breakpoints can be set

#Make sure to compile the kernel with
debugging symbols so you can set
breakpoints on symbol names rather
than addresses

Source: EMAC, Inc.

CELF-JTAG-42 Copyright 2007, The PTR Group, Inc.

_&LPTR

Configure Kernel for Debugging

+#Enable debugging info and rebuild the kernel

Linux Kernel v2.6.14.7-selinuxl Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < >

1 pinlock debugging

1 leep-inside-spinlock checking

1 object debugging
f] Compile the kernel with debug info

1 ebug Filesystem

] GDB: kernel debugging with remote gdb
*] erbose user fault messages

] ait queue debugging
[*] erbose kernel error messages
[*] ernel low-level debugging functions
[*] ernel low-level debugging via EmbeddedICE DCC channel

i
[
i

[
[
[
[
[

< Exit > < Help >

CELF-JTAG-43 Copyright 2007, The PTR Group, Inc.

Loading Symbols into the JTAG Ul

+# Depending on the JTAG Ul, you may simply have to load the
kernel’s vmlinux image to be able to access the symbols by
name

» The techniques for doing this vary by JTAG vendor
Attach the JTAG to the hardware
» Reset the board via JTAG and hold in reset
» Set H/W breakpoint using the JTAG
» Load the vmlinux via the JTAG (this loads the symbols)
» Command the JTAG to tell the hardware to “go”

+# Once you encounter the hardware breakpoint, you can step in
assembly until the MMU is enabled

» The MMU will translate physical addresses to virtual addresses
» Once virtual addressing is on, set breakpoints as normal

_&LPTR

CELF-JTAG-44 Copyright 2007, The PTR Group, Inc.

JTAG and Early Kernel Debug

+# An odd thing happens when the MMU is enabled

» All of the physical addresses suddenly get translated into virtual
addresses

¥# The kernel’s debug symbols are all built assuming a
virtual address space

+# Consequently, while you can step through the early
code by using a hardware breakpoint address, software
breakpoint on symbols will only work after the MMU is
enabled

» Fortunately, this happens fairly early in the kernel initialization

+# You can typically tell the JTAG to step so many
instructions and then stop again

» Step past the MMU initialization, stop and then set additional
breakpoints

CELF-JTAG-45 Copyright 2007, The PTR Group, Inc. \. K‘ P , R

GDB-Aware JTAGS

+#If the JTAG is GDB-aware, then you will be
able to control it using normal GDB
commands

» Attach to the JTAG via “target remote xx’
command where “xx” is via Ethernet, serial or
other connection between your JTAG and the
host

#Use the GDB “mon” command to pass
commands directly to the JTAG

_&LPTR

CELF-JTAG-46 Copyright 2007, The PTR Group, Inc.

DDD GUI Front-End Example

*—I nVO ke d frOI I I File Edit “iew Program Commands Status Source Data ﬂ_ial'pl

0 [PN TN (U W A

.- B B X
Loakup Finds= Break Watch Print Displaes Plot ol Rotaie et LihdiEn,

- - F* J
C O I I I I I I a n I n e Wlt */ Tinuxsarchi/armfkernelfinit_task.c
- U

#include <14nux/tin, h>
#include <linus/module.h> Interript
#include <linux/fs.h>

n n
#include <]inux/sched.h> Step | Stepl
V I u X I #include <linux/init.h> el T
finclude <linusfinit_task.h: i

finclude <linux/mgueue.hs Until | Finish

i

#

i e

E

#include <asmfuaccess. hy Car

n
fo r d e b u I n #include <asm/pgtable.h>
static struct fs_struct init_fs = INIT_F5; Lindo
static struct files_struct init_files = INIT_FILES:

static struct signal_struct init_signals = INIT_SICHNALSCinit_signalsl;
static struct sighand_struct init_sighand = INIT_SIGHAND{init_sighand);

struct mm_struct init_mm = INIT_MM(init_rmm);
#Then attach to JTAG |wn
!
using “target
,, *XThe things we do for performance..
re m Ote C O m m a n d union thread_union init_thread_union
attribute (({_ section__(".init.task"))) =

GHU DDD 3.3.11 (1386—suse-linux—gnul, by Dorothea Litkehaus and Andreas Zeller.
Copyright @ 1995-1993 Technische Universitit Braunschweig, Germany.

Copyright @ 1999-2001 Universitdt Passau, Germany.

Copyright @ 2001 Universitat des Saarlandes, Germany.

Eoggjrivght @ 2001-2004 Free Software Foundation, Inc.

g

Figclg
ake

i

=

i

Initial thread structure.

We need to make sure that this is 2192-byte aligned due to the
way process stacks are handled. This is done by making sure
the linker maps this in the .test segment right after head.S,
and making head.s ensure the proper alignment.

ETE BRI

| 11| E— .11

A Welcome to DDD 3.3.11 "Rhubark” (I366-susge-linux-ghu)

CELF-JTAG-47 Copyright 2007, The PTR Group, Inc.

Debugging Device Drivers

#Device driver debugging can be split into those
drivers that are statically linked into the kernel
and those that are dynamically loaded

+#Statically linked drivers are already built into the
kernel’s symbol table

» Simply set break points on the driver methods
themselves

#Dynamically loaded drivers require additional
steps

#The next few charts assume a GDB-aware JTAG

CELF-JTAG-48 Copyright 2007, The PTR Group, Inc.

_&LPTR

Debugging Loadable Modules

+#1n order to debug a loaded module, we need to
tell the debugger where the module is in
memory

» The module’s information is not in the vmlinux
image because that shows only statically linked
drivers

#How we proceed depends on where we need to
debug

» If we need to debug the __init code, we need to set a
oreakpoint in the sys_init_module() function

_&LPTR

CELF-JTAG-49 Copyright 2007, The PTR Group, Inc.

Debugging Loadable Modules #2

#We’ll need to breakpoint just before the control

is transferred to the module’s __init

» Somewhere around line 1907 of modu
#0Once the breakpoint is encounterec

e.C
. we can

walk the module address list to find the

assigned address for the module

» We then use the add-symbol-file GDB command to
add the debug symbols for the driver at the address

for the loaded module
» E.g.,

add-symbol-file ./mydriver.ko Ox<addr> -e

CELF-JTAG-50 Copyright 2007, The PTR Group, Inc.

.init. text

_&LPTR

Debugging Loadable Modules #3

#Now, you can set breakpoints via the GDB
commands to the JTAG and tell the system to
continue until a breakpoint in encountered

+#If you do not need to debug the __init code,
then load the driver and look in the
/sys/modules/<module name>/sections/.text
for the address of the text segment

» Next, use the add-symbol-file command again, but
use the .text address and omit the “-e .init.text”

» Set your breakpoints and continue

_&LPTR

CELF-JTAG-51 Copyright 2007, The PTR Group, Inc.

User-Space Addresses

#Within Linux, each user-space application
occupy the same virtual address space

» The address spaces are physically different,
but the addresses overlap

0x80000000

Data Data Data
Code Code Code

0x1000000 App 1 App 2 App n

CELF-JTAG-52 Copyright 2007, The PTR Group, Inc.

JTAG Confusion

#]JTAGs normally run in what is called halt mode
debugging
» The entire processor is stopped when a given
breakpoint address is accessed

#This works reasonably well in kernel space
» Only one kernel address space

#While it is possible to debug user applications
with the JTAG, the JTAG can get confused by
seeing the same virtual address in different
applications due to context switches

» This requires run mode support for the JTAG

CELF-JTAG-53 Copyright 2007, The PTR Group, Inc.

_&LPTR

Run-Mode Support

+# Using a debugging agent in user space and register
support like the ARM’s Debug Communications Channel
(DCC) we can associate a virtual address to a particular
context

» This allows the breakpoint to only stop the one application
instead of any application that matches the address

+# Only a few JTAGs support this run mode debugging

mechanism

» Otherwise, we are left with normal GDB process trace (ptrace)
debugging control via an application like gdbserver

+# Naturally, GDB already does a reasonable job for user-
space debugging

» The need to use JTAG for user-space debug is rare

_&LPTR

CELF-JTAG-54 Copyright 2007, The PTR Group, Inc.

Summary 2.8

+# Hardware debuggers such as JTAG are invaluable for
exercising new hardware
» They let us test address lines and registers
+# Once we can configure the board via the JTAG, we then
take that info and use it to port the boot firmware

» We can usually burn the boot firmware into flash via the JTAG as
well

+# Once the boot firmware is loading Linux, the JTAG can
then help again in early kernel debugging and device
driver debugging

+# Don’t start your next bring-up project without one!
Demo time...

_&LPTR

CELF-JTAG-55 Copyright 2007, The PTR Group, Inc.

