
Copyright 2007, Toshiba Corporation.

4/18/2007
Fujihito Numano

Corporate Software Engineering Center

Suspend-to-RAM
implementation on Freescale
74xx without PMU

Suspend-to-RAM implementation on freescale 74xx without PMU 2Copyright 2007, Toshiba Corporation.

Agenda – Goals and Backgrounds
1. Target Board
2. Goals
3. Backgrounds

– Freescale 74xx programmable power mode
– PMU (Power Management Unit)

4. Idle power management
5. Suspend to RAM

– Overview
– enter_state()
– Device Power Management
– pm_ops functions

6. Performance
7. Our next challenges

Suspend-to-RAM implementation on freescale 74xx without PMU 3Copyright 2007, Toshiba Corporation.

1. Target Board
TOSHIBA TEC Corporation development board

CPU Freescale 74xx

without PMU

Some devices need to be resume trigger

No non-volatile memory

Suspend-to-RAM implementation on freescale 74xx without PMU 4Copyright 2007, Toshiba Corporation.

2. Goals
Requirement

The system automatically enters in the low-power “sleep” mode
after a period of inactivity.

Status – Implemented a test version
– Go to suspend to RAM after a period of inactivity
– Reduce power consumption by more than 50%
– Resume triggered by the specific device access.

Points
– Suspend to RAM with 74xx power saving “sleep” mode
– Device control without “PMU”
– Simple & compact implementation

Suspend-to-RAM implementation on freescale 74xx without PMU 5Copyright 2007, Toshiba Corporation.

3. Backgrounds
• The system enters in the low-power “sleep” mode

automatically after a period of inactivity to reduce
power consumption.

• The system returns to the normal “working” mode
immediately if needed.

⇒⇒ The boot up time is so long that ,The boot up time is so long that ,
power off and system shutdown cannot be used power off and system shutdown cannot be used
System suspend & resume should be used.System suspend & resume should be used.

Suspend-to-RAM implementation on freescale 74xx without PMU 6Copyright 2007, Toshiba Corporation.

3. Backgrounds
•• NNo o nonnon--volatile memory volatile memory

⇒⇒ Hibernation function cannot be supportedHibernation function cannot be supported
““Suspend to RAMSuspend to RAM””, , ““Idle power managementIdle power management””, and, and
““Device power management (Device on and off control)Device power management (Device on and off control)”” functions.functions.
are effective.are effective.

•• The target The target CPUCPU is is FFreereesscalecale 7474xxxx
⇒⇒ It needs to support programmable power modeIt needs to support programmable power mode

and we plan how to implement suspend to RAM by using it.and we plan how to implement suspend to RAM by using it.

•• No external H/W, such as PMU (Power Management No external H/W, such as PMU (Power Management
Unit),Unit), supports to control power statussupports to control power status
⇒⇒ The kernel itself should control power statusThe kernel itself should control power status

and especially control resume trigger devices.and especially control resume trigger devices.

Suspend-to-RAM implementation on freescale 74xx without PMU 7Copyright 2007, Toshiba Corporation.

Freescale 74xx power saving mode
2 power saving modes are available to the system,
Nap mode and Sleep mode

Nap mode
Instruction fetching is halted.
The clocks for time base, decrementer remain running.
So the CPU is soon returned to the normal (RUN) mode
by the “decrementer” timer interruption
⇒

The system cannot keep the “power saving mode (Nap)”.
Nap mode should not be applied to suspend to RAM
but Idle power management.

Suspend-to-RAM implementation on freescale 74xx without PMU 8Copyright 2007, Toshiba Corporation.

Freescale 74xx power saving mode
Sleep mode

Power consumption is further reduced by disabling bus snooping.
All internal functional units are disabled.

Internal exception, such as timer interrupt ,does not occur.
So the system does not return to normal mode by itself.
⇒ The system can keep sleep “power saving” mode.

It is appropriate for suspend to RAM

Disabling bus snooping
⇒ The system needs to flush TLB and cache on resume.

Suspend-to-RAM implementation on freescale 74xx without PMU 9Copyright 2007, Toshiba Corporation.

PMU – The Power Management Unit
The Power Management Unit (PMU) is a microcontroller
that governs power functions for Apple computers.
And is responsible for coordinating following power
management functions.

– Monitoring power connections and battery charges
– Charging batteries when necessary
– Controlling power to other integrated circuits
– Shutting down unnecessary components when they are left idle
– Controlling sleep and power functions (on and off)

(from Wikipedia, the free encyclopedia)

Suspend-to-RAM implementation on freescale 74xx without PMU 10Copyright 2007, Toshiba Corporation.

Without PMU support
Without PMU , the kernel needs to do some he kernel needs to do some
power management functions by itself. power management functions by itself.

– Controlling power to other integrated circuits
– Shutting down unnecessary system components

when they are left idle
– Controlling sleep and power functions (on and off)

(In the target, the resume trigger devices are controlled in particular)

Suspend-to-RAM implementation on freescale 74xx without PMU 11Copyright 2007, Toshiba Corporation.

Agenda - Implementations and Performance
1. Target
2. Goals
3. Backgrounds

– Freescale 74XX programmable power mode
– PMU (Power Management Unit)

4. Idle power management
5. Suspend to RAM

– Overview
– enter_state()
– Device Power Management
– pm_ops functions

6. Performance
7. Our next challenges

Suspend-to-RAM implementation on freescale 74xx without PMU 12Copyright 2007, Toshiba Corporation.

4. Idle power management
• The idle power management for 74xx has been

already implemented in the power PC kernel

• When the kernel starts, the idle process is launched.
It is set to the lowest priority by the process scheduler .

• If “/proc/sys/kernel/powersave-nap” is set to １,
the idle process tries to set the CPU to NAP mode.

Suspend-to-RAM implementation on freescale 74xx without PMU 13Copyright 2007, Toshiba Corporation.

5. Suspend to RAM implementation - Overview
• Implementations for 74xx sleep mode

– Save and restore the processor contexts
– Timer , TLB and cache flush
– The resume exception handler

• Device control without “PMU”
– The resume trigger devices are controlled in particular.

• Simple & compact implementation
– All functions dependent on 74xx are wrapped on pm_ops function table .
– All functions independent on the CPU architecture can be used without any

changes , such as enter_state() and device power management functions.

Suspend-to-RAM implementation on freescale 74xx without PMU 14Copyright 2007, Toshiba Corporation.

enter_state()
All suspend to RAM implementations are included in
enter_state() function.

Applications and following suspend command also call it
indirectly.

#echo –n mem > /sys/power/state

It is based on preprocessing, main and post processing
functions.

suspend_prepare()
suspend_enter()
suspend_finish()

Suspend-to-RAM implementation on freescale 74xx without PMU 15Copyright 2007, Toshiba Corporation.

enter_state()
The functions dependent on 74xx are wrapped on the
pm_ops function table.

All implements independent on the CPU architecture
can be applied to the target system without any change.

• Process control
• Console control
• Device power management

Suspend-to-RAM implementation on freescale 74xx without PMU 16Copyright 2007, Toshiba Corporation.

enter_state()
enter_state()

suspend_prepare()
pm_prepare_console() ← exchange the virtual console for the one of suspend only
disable_nonboot_cpus() ← Stop other CPUs (for multi processor ）
freeze_processes() ← Freeze processes
nr_free_pages() ← check and allocate memories for suspend
pm_ops->prepare() ← preprocessing for the suspend dependent on 74xx
suspend_console() ← suspend the console output
device_suspend() ← suspend the devices

suspend_enter()
device_power_down() ← suspend devices which fail to suspend in device_suspend() function

or others
pm_ops->enter() ← main routines dependent on 74xx. The system suspend here
device_power_up() ← resume devices

suspend_finish()
device_resume() ← resume devices entried in the dpm_off table
resume_console() ← resume the console output
thaw_processes() ← resume processes
enable_nonboot_cpus() ← restart other CPUs(for multi processor ）
pm_ops->finish() ← post-processing for the suspend dependent on 74xx
pm_restore_console() ← restore the virtual console

Suspend-to-RAM implementation on freescale 74xx without PMU 17Copyright 2007, Toshiba Corporation.

Device Power Management
• The kernel can control device power state by “device_xx” functions.

• “device_register” function entries the device in the “dpm_active” list at
the initialization of the driver. All devices in the list can be controlled by
the kernel.

• On suspending the system, enter_state() calls device_suspend() and
device_power_down().
The devices are set to device power down or device off state.

• On resuming the system, enter_state() function calls
device_power_up() and device_resume() function.
The devices are restored to device power on state.

Suspend-to-RAM implementation on freescale 74xx without PMU 18Copyright 2007, Toshiba Corporation.

enter_state()
suspend_prepare()

:
pm_ops->prepare()

:
device_suspend() ← suspend the devices

suspend_enter()
device_power_down() ← suspend devices which fail to suspend in device_suspend()

or devices not entried in the dpm_active table
pm_ops->enter()

device_power_up() ← resume devices

suspend_finish()
device_resume() ← resume devices entried in the dpm_off table

:
pm_ops->finish()

:

Device Power Management functions

Suspend-to-RAM implementation on freescale 74xx without PMU 19Copyright 2007, Toshiba Corporation.

Device Power Management for resume trigger devices

• The resume trigger devices are controlled in particular.

• While the system suspends, their exception handlers are
exchanged for the resume exception handlers
(for 74xx sleep mode).

Resume Trigger Device General Device
Example LAN (supports wake-up on LAN)

Power button
LCD “rid” button
Input device

HDD
LCD

Resume Trigger Yes No
Control function pm_ops functions

(dependent on 74xx)
device_xx()
(independent on the CPU
architecture)

Suspend-to-RAM implementation on freescale 74xx without PMU 20Copyright 2007, Toshiba Corporation.

enter_state()
suspend_prepare()

:
pm_ops->prepare()

:
device_suspend()

suspend_enter()
:

pm_ops->enter()
{

}
:

suspend_finish()
device_resume()

:
pm_ops->finish()

:

Power Management for resume trigger device

74xx sleep mode
suspend

resume
return

exchange

exchange The device
exception handler

The resume
exception handler

The device
exception handler

Suspend-to-RAM implementation on freescale 74xx without PMU 21Copyright 2007, Toshiba Corporation.

pm_ops function table
• “pm_ops” function table can wrap functions dependent on 74xx.

All functions independent on the CPU architecture can be used
without any changes ,

such as enter_state() and device power management functions.

• Our reference comes from the implementations in the x86 kernel.
implemented mainly ACPI BIOS processing.

• The codes, preprocessing , main routines and post-processing, are set
in the table as follows. They are called from enter_state() function.

/drivers/power/main.c
static struct pm_ops acpi_pm_ops = {

.prepare = acpi_pm_prepare,

.enter = acpi_pm_enter,

.finish = acpi_pm_finish,
};

Suspend-to-RAM implementation on freescale 74xx without PMU 22Copyright 2007, Toshiba Corporation.

enter_state()
suspend_prepare()

:
pm_ops->prepare()

:

device_suspend()

suspend_enter()
:

pm_ops->enter()
{

}
:

suspend_finish()
device_resume()

:
pm_ops->finish()

:

pm_ops->prepare()

74xx sleep mode
suspend

resume
return

exchange

exchange The device
exception handler

The device
exception handler

The resume
exception handler

Suspend-to-RAM implementation on freescale 74xx without PMU 23Copyright 2007, Toshiba Corporation.

pm_ops->prepare()
The preprocessing dependent on 74xx
is wrapped in pm_ops ->prepare() function.

1. Interrupt disabled by the exception of resume trigger devices.
Usually the interrupts are used for their device controls.
Disabled for the followings

2. Exchange the exception handlers for the exception handlers for
resume only.
The resume exception handler is the start point where the 74XX system
resume from the sleep mode.

• Our reference comes from the following pm_ops->prepare()
implementations in the x86 kernel.

– Control resume trigger devices and their device state
– Prepare resume vectors

Suspend-to-RAM implementation on freescale 74xx without PMU 24Copyright 2007, Toshiba Corporation.

enter_state()
suspend_prepare()

:
pm_ops->prepare()

:
device_suspend()

suspend_enter()
:

pm_ops->enter()
{

}
:

suspend_finish()
device_resume()

:
pm_ops->finish()

:

pm_ops->enter(), the resume exception handler

74xx sleep mode
suspend

resume
return

exchange

exchange The device
exception handler

The resume
exception handler

The device
exception handler

Suspend-to-RAM implementation on freescale 74xx without PMU 25Copyright 2007, Toshiba Corporation.

pm_ops->enter()
The suspend main routine dependent on the CPU architecture.
is wrapped in pm_ops ->enter() function.

1. Interrupt enabled by the exception of resume trigger devices (resume
exception handlers).

2. Save the processor contexts
3. Destroy timer and cache
4. Go to Freescale 74XX sleep mode

(The system goes to suspend)

5. Returned from the resume exception handler.
6. Interrupt disabled by the exception of resume factor devices (resume

exception handlers).

• Our reference comes from the following pm_ops->enter() implemented in the x86 kernel.
– Save the processor contexts

– Flush cache

Suspend-to-RAM implementation on freescale 74xx without PMU 26Copyright 2007, Toshiba Corporation.

The exception handler for resume only
• The resume starts from the resume exception handler.

It is set in pm_ops->prepare(),
and set off in pm_ops->finish().

• Followings is the flow of the handler.
1. Restore the CPU contexts
2. Validate timer and cache
3. Flush cache and TLB
4. Reassemble MMU
5. Finish (and return to pm_ops->enter() function)

Suspend-to-RAM implementation on freescale 74xx without PMU 27Copyright 2007, Toshiba Corporation.

enter_state()
suspend_prepare()

:
pm_ops->prepare()

:
device_suspend()

suspend_enter()
:

pm_ops->enter()
{

}
:

suspend_finish()
device_resume()

:
pm_ops->finish()

:

pm_ops->finish()

74xx sleep mode
suspend

resume
return

exchange

exchange The device
exception handler

The resume
exception handler

The device
exception handler

Suspend-to-RAM implementation on freescale 74xx without PMU 28Copyright 2007, Toshiba Corporation.

pm_ops->finish()

The postprocessing dependent on the CPU architecture is

wrapped in pm_ops ->prepare() function.

1. Restore the normal exception handler of the resume
trigger devices from the resume exception handlers

2. Interrupt enabled

Suspend-to-RAM implementation on freescale 74xx without PMU 29Copyright 2007, Toshiba Corporation.

6. Performance
• We implemented test version. And succeed to reduce power consumption

by more than 50%.

Suspend-to-RAM implementation on freescale 74xx without PMU 30Copyright 2007, Toshiba Corporation.

7. Our next challenges
• Measureing the resume speed and optimizing the

kernel if needed.

• Longer persistence of Idle (Nap mode)
with tickless kernel function.

•• Hibernation function supports for the next target Hibernation function supports for the next target
with nonwith non--volatile memoryvolatile memory

Suspend-to-RAM implementation on freescale 74xx without PMU 31Copyright 2007, Toshiba Corporation.

Acknowledgement

TOSHIBA Corporate Software Engineering Center
Hiroshi Nozuwe
Tsutomu Owa
Masahiro Yamada
Fujihito Numano

TOSHIBA TEC Corporation members
TOSHIBA Information Systems members

Suspend-to-RAM implementation on freescale 74xx without PMU 32Copyright 2007, Toshiba Corporation.

	Suspend-to-RAM implementation on Freescale 74xx without PMU
	Agenda – Goals and Backgrounds
	1. Target Board
	2. Goals
	3. Backgrounds
	3. Backgrounds
	Freescale 74xx power saving mode
	Freescale 74xx power saving mode
	PMU – The Power Management Unit
	Without PMU support
	Agenda - Implementations and Performance
	4. Idle　power management
	5. Suspend to RAM implementation - Overview
	enter_state()
	enter_state()
	enter_state()
	Device Power Management
	Device Power Management functions
	Device Power Management for resume trigger devices
	Power Management for resume trigger device
	pm_ops function table
	pm_ops->prepare()
	pm_ops->prepare() 　
	pm_ops->enter(), the resume exception handler
	pm_ops->enter() 　
	The exception handler for resume only
	pm_ops->finish()
	pm_ops->finish() 　
	6. Performance
	7. Our next challenges
	Acknowledgement

