
The Kernel Report

Jonathan Corbet
corbet@lwn.net

The Plan
A quick review of the kernel development process

How it works
Current issues of interest

Recent history review
What has happened over the last year

Looking forward
Wild predictions about future kernels

The kernel release process
Major kernel releases about every 3 months

Named 2.6.x
2.6.x.y releases for important fixes

Security problems
System crashes

Every 2.6.x is a major release
New features
Internal API changes

Where's 2.7?
The old even/odd scheme is no more

The kernel release lifecycle
Week 0: the merge window opens

All new features and major changes merged
Can be several thousand patches

Week 2: 2.6.x-rc1 is released
Merge window closes – no new features (usually)
Patch rate remains high – but should all be fixes

Weeks 3-8: additional -rc releases
Patch rate slows as bugs get fixed

Week 8: 2.6.x is released
2.6.x.y bug fix releases come later

The kernel release lifecycle
Week 0: the merge window opens

All new features and major changes merged
Can be several thousand patches

Week 2: 2.6.x-rc1 is released
Merge window closes – no new features (usually)
Patch rate remains high – but should all be fixes

Weeks 3-8: additional -rc releases
Patch rate slows as bugs get fixed

Week 8: 2.6.x is released
2.6.x.y bug fix releases come later

The patch rate

Some statistics
Since 2.6.16 (just over 1 year ago):

30182 changesets merged
2074 developers contributed to the kernel

10 contributed >= 1% of changes

766,000 lines added to the kernel

Who do they work for?
Unknown 25% SANPeople 1%
Red Hat 14% SteelEye 1%
Volunteer 12% Freescale 1%
IBM 8% Simtec 1%
Novell 4% Astaro 1%
Qlogic 4% Linux Foundation 1%
Intel 3% Atmel 1%
MIPS Tech. 2% Oracle 1%
MontaVista 2% HP 1%
Nokia 2% SGI 1%

The results
The patch flow rate is high

New features get to users more quickly
Distributor kernels stay closer to the mainline

Relatively predictable kernel releases

Happy distributors, developers, and users
...most of the time

Kernel Quality
“I believe the 2.6 kernel is slowly getting buggier. It
seems we're adding bugs at a higher rate than we're
fixing them.”

-- Andrew Morton, May, 2006

Some fear that kernel quality is declining
Bugs not getting fixed
Too many features added too quickly
Too little stabilization time

Kernel developers tend not to agree
But everybody agrees fewer bugs would be better

A quick review of the last year
2.6.16 (March 19, 2006)

Mutexes replace semaphores
High-resolution timer code
OCFS2 cluster filesystem
SCHED_BATCH

2.6.17 (June 17, 2006)
SPARC Niagara support
Lightweight robust futexes
User-space software suspend
Broadcom 43xx wireless support
splice()

Still reviewing last year
2.6.18 (September 19, 2006)

Priority inheritance
Generic IRQ layer
New core time subsystem
Kernel locking validator
Devfs gone

2.6.19 (November 29, 2006)
Parallel ATA driver subsystem
GFS2 cluster filesystem
ext4 development filesystem
eCryptfs

The current kernel
2.6.20 (February 4, 2007)

Fault injection framework
Many big internal API changes
UDP-Lite protocol
paravirt_ops
Kernel virtual machine (KVM)
Playstation 3 support

Looking forward
Predicting the kernel's future is hard

No five-year roadmaps
No ability to force work from anybody
No limits on what people might come up with

I won't let that stop me
I can handwave with the best

How does one proceed?
Look at work in progress now
Look at pressures from the outside world
Make some wild guesses

Woe to anybody who actually believes what
follows...

The next kernel
2.6.21 (any day now)

What's going in?
Dynamic tick and clockevents
Major ACPI update
Sysfs shadow directories
ALSA system-on-chip layer
Device resource management API
VMI virtualization interface
KVM improvements (live migration)

Virtualization
Still an area of high interest

Server consolidation
High-reliability systems
Isolation and security

The big players
Xen

Full paravirtualization
Path into the kernel has been slow

User-mode Linux
Run Linux as a user-mode process
Longstanding Linux project

Various commercial offerings

The biggest development issue:
A common hypervisor interface

Virtualization developments
paravirt_ops

The common hypervisor interface
Isolates low-level operations
Run-time substitution via “hypervisor ROM”
Remains a highly volatile interface

VMI
Higher-level hypervisor interface

Kernel Virtual Machine
Support for hardware virtualization
Open /dev/kvm, create CPUs with ioctl(), launch systems
A full virtualization solution

...but paravirtualization being done too

Lguest (aka Rustyvisor)
A simple native Linux virtualization mechanism

Containers

A lighter-weight approach to virtualization

No full emulation of the processor
Containers run as process groups on host
All containers run on the host kernel

Containers are isolated from each other
Can't see other processes

Containers
There are a number of container projects

Linux-VServer
OpenVZ
Various proprietary offerings

All have the same needs
Multiple views of global resources
Per-container resource usage control

Most of them want into the kernel
But multiple implementations are unwelcome

The projects are talking to each other
Some early code bits have been merged
Big issues: resource management, networking, ...

CPU schedulers
Scheduling has been quiet for some time

Worst problems solved in early 2.6.x

The issue has come back
Better interactive response wanted
Dump complex heuristics for simple fairness

Three contenders
Staircase Deadline
Completely Fair Scheduler
Nicksched

CFS looks to be the likely winner
...but expect some debate first

Fibrils / syslets / threadlets / ...
Asynchronous I/O is a perennial pain

State-machine approach difficult to implement, maintain

Fibrils: a new approach
If something blocks, keep running in a new process
Makes any system call asynchronous

Syslets
Variant of fibrils
Applications can load code into the kernel

Threadlets
On-demand threading
Simple API

Filesystems
Pressures

Disks are getting bigger – quickly
They are getting faster much less quickly

The time to read the entire disk is growing

They are not getting more reliable
Some filesystem limits are being reached

How long does it take to run fsck?
Kernel.org RAID: over 1 week

Current filesystems have a long history

“We're continuing to nurse along a few basically-15-year-
old filesystems while we do have the brains, manpower,
and processes to implement a new, really great one.”

--Andrew Morton

Filesystems – what's coming
ext4

Currently a development-only filesystem
Extents
48-bit block numbers (break the 8TB limit)

Reiser4
A number of interesting new ideas
Still stalled – won't be in 2.6.22 either
Future is now in serious doubt

Hardware support
Hardware support is better than ever

Most hardware Just Works
No driver disks, no hassles
Linux supports more hardware than any other system, ever

There are exceptions
Wireless networking
Video adapters

The problem
Vendors will not release free drivers
...or programming information

Why not release information?

“It's so hard to write a graphics driver that open-
sourcing it would not help.”
-- Andrew Fear, Nvidia software product manager

Other issues
Patent problems
Regulatory issues
They just plain don't get it

Wireless networking
Wireless has traditionally been poorly supported

Few drivers
Suboptimal network stack design

The mac80211 (formerly Devicescape) stack
A proper 802.11 networking stack
Slowly making its way toward the mainline

New drivers
Broadcom 43xx
Atheros

Now cleared of legal clouds

Intel
Well supported by the vendor

Video adapters
Video vendors remain stubborn

Intel the biggest exception
Still short on programming information
Integrated controllers only – for now

Nvidia
The Nouveau project is moving forward

nouveau.freedesktop.org
Some ground to cover yet

ATI
R300 driver is getting good
Little hope for newer chipsets

Binaryonly drivers
Some vendors do provide proprietary drivers

Some problems:
Only work with specific kernel versions
Unknown security problems
No hope for fixing bugs
No support for other architectures
Long-term support is dubious
Can impede development
Questionable legality

Linux cannot give in to binary-only drivers
That way leads to the end of our free system

Networking
Network channels

Presented by Van Jacobson at lca 2006
Push network processing to the end points

...even into user space

Progress is slow

Needed: an event reporting API
Unify application event loops
Improve high-bandwidth application performance

The new eventfd system calls:
Get a file descriptor for interesting events

Timers, signals, etc.

Wait for them in the poll() loop

The kevent mechanism
Seemingly superseded by eventfd

Security
SELinux: The one true security framework?

Becoming more comprehensive (packet labeling)
Higher-level admin tools

AppArmor
Pushed by Novell/SUSE
Much simpler administration
Unpopular with developers – use of pathnames
New patch set posted (finally)

SLIM, EVM, and friends
Use the TPM for integrity management
Can be used for high security – or lockdown
Slow path into kernel

Real time
The realtime preemption patch set

Claims 20 sec deterministic response time
Large invasive patch set

Much of it has already been merged
Robust futexes, priority inheritance, mutexes
core timekeeping, high-resolution timers, ...

Some pieces remain
Sleeping spinlocks
Interrupt handlers in kernel threads
Dynamic tick

Small and embedded systems
Much is happening in small systems

Telephones
Tablet systems
OLPC

Running Linux there presents different challenges
Minimal resource use
Real-time response
Fast boot

Lots of people are working in this area
But cooperation is often lacking
Little participation in the development process

Proprietary hardware

Things are getting better – maybe

Licensing and GPLv3
Version 3 of the GPL is still in draft form

Final version due in June

Relatively unpopular in kernel circles
The anti-DRM provisions in particular

The kernel is explicitly licensed under GPLv2
The “or any later version” language is missing

Changing the license would be hard
Hundreds of copyright holders
Achieving a consensus is unlikely
Even finding them all would be hard

Thus:
A GPLv3-licensed kernel is unlikely

Questions?

Slides at http://lwn.net/talks/elc2007/

The userspace API
The user-space API used to be simple

System calls

Now it is more complicated
Lots of system calls
/proc (100's of files)
/sys (1000's of files)
Netlink

Breaking this API is against the rules

But it is happening anyway
Such a wide interface is easy to break
Sysfs directly mirrors internal data structures
These APIs are still evolving

Scalability
Today's big iron is tomorrow's laptop

Supporting 1GB of memory was once a big deal

The current state of the art
512-processor NUMA systems work well

Getting larger

Getting to 4K will take some work

The scalability effort continues
Shrinking data structures
Lockless algorithms
...

Questions to ask

Is there really a problem?

If so, what is to be done about it?

What to do about it?
Regardless of whether kernel bugs are getting worse

...it would be nice to have fewer of them

More testing is needed
By users!

Better bug tracking
Special tracking for regressions

Better bug fixing
Fixing bugs can be hard work

No access to the hardware – unable to reproduce the problem

Developer discipline can be lacking
Known bugs often remain unfixed.

What to do about it?
Make bugs harder to introduce

Better internal APIs
Better automated tools

Locking validator
Sparse
Fault injection framework
Memory leak tracker

Stabilization releases
Reserve occasional 2.6.x releases for bug fixes
Seems to be a hard sell

