Kernel Probes for ARM

Quentin Barnes
g.barnes@motorola.com
Motorola - Mobile Devices

April 17, 2007

Overview

* Introduction to kernel probes

* How kernel probes work

* The classic kprobe model and 'boosting’

* Difficulties with the classic model and ARM
* New approach used for ARM

— Detalls of implementation
- Cost and Performance

* Wrap-up

Kernel Probes Introduction

e New with 2.6.9-rc2 kernels

- Currently: avr32, 1386, x86 64, ia64, powerpc,
sparco4, s390

* Allows dynamic breakpoints (registered at
runtime) to be placed most anywhere in kernel

* Breakpoint transfers control to user specified
handlers, executes the instruction, and returns

* User handlers often used to aid debugging or
collect performance data

 Can be relatively low overhead

Types of Kernel Probes

Kprobes - “Kernel Probes”

- Places breakpoint at symbol plus offset or address
Jprobes - “Jumper Probes”

- Insert function call ahead of probed function
Kretprobes - “Return Probes”

- Probe function's return

Djprobes - “Dynamic Jump Probes”

— Future direction: Kprobe-like, uses a jump
Instruction rather than a breakpoint

How Do Kprobes Work?

* Places a breakpoint instruction most anywhere
- On ARM, uses an undefined instruction

* May register optional user pre-, post-, break,
and fault handlers

— User handlers can do most things except block
* More than one Kprobe allowed at one address

— Not so for Jprobes and Kretprobes

'Classic' Kprobes Model

Kprobes Registration & Prep

* Do symbol lookup, if necessary
* Validate address
* Record probe and address for hash lookup

* Save instruction at address and replace it with
a breakpoint instruction

* Allocate and initialize instruction slot
* Do additional architecture specific initialization

Executing a Kprobe

kprobe bp

N

S

A

Exception

\

Save context
& Zall handler

|
kprobe_handler)

¥

preempt_disable()

lookup kprobe

g insn

save flags from
exception context

-

Breakpoint £ 1

In saved context:
- disable ints
- enahle single
stepping or set
Mext PC
- set PC to slot

Exception

If pre_handler,
call it

@ Return from

!

Hestore context

N

Return fram

Save context
& Zall handler

I
post_kprobe_handlerd

¥

If post_handler,
call it

9

Hestore saved
flags

Fix up any PC
relative results

Figure out where
return address
heeds to be & et
saved PC

preempt_enable_
no_resched()

t

Hestore context

J

Exception

Issues with Classic Model

* High execution overhead - two exceptions and
four full context switches

* Holds interrupts disabled through entire length

- Some re-enable though resulting in possible
unbounded recursion, unpredictable behavior, and
skipped user handlers

10

Performance Gain — 'Boosting’

 Take one exception instead of two

* Boosting short-circuits the second exception for
pre-determined instructions by jumping directly
back after execution

11

save context
& Call handler

\

I
kprobe_handler)

¥
preempt_disabler)

Exception

Insn slot

lookup kprobe

kprobe bp

It pre_handler,

g insh

N

O

call it

-

Jump insn

oet saved PC to
insn slot

preempt_enable_

LA

Return from
"7 Exception

no_resched)

rf—

.
m
Lor
f—r
(]
-
o
1
(]
=
—
%

‘Boosted” jump

12

Boosting Limitations

* Limited to only 'boostable’ instructions

- No conditional jumps and no reserved or special
iInstructions

* Non-boostable instructions still run classic way
(using two exceptions)

* Use of post-handlers disable boosting still
running classic way

* Garbage collector

13

Boosting's Garbage Collector

* Boosting holds lock on instruction slot even
after execution completes

* Garbage collector needed to clean up unused
locks

* \When kernel preemption is enabled, garbage
collector disables all interrupts and freezes all
kernel threads across all CPUs simultaneously
to run its O(n) time algorithm

14

Difficulties with Kprobes & ARM

* No single-stepping supported in the processor

- Single-stepping causes the processor to trigger an
exception after completing the current instruction

* No Next-PC register

- The Next-PC register steps the processor to the
“next” address after completing the current
Instruction

15

ARM Difficulties (cont.)

* So no way to regain control of the ARM
processor after executing instructions that alter
the PC without decoding, detecting, and
handling all instructions that can write the PC

* No way to give correct results for instructions
that read the PC without decoding, detecting,
and handling

* Once you've gone that far already, it's not that
much further to a new approach

16

New Kprobes Approach

New Kprobes Goals

Do as much prep work as possible during
registration of a kprobe to reduce its execution
overhead

Complete the kprobe'd instruction and all its
side-effects before returning from first (and
only) exception

Provide consistent execution and behavior
Don't hold any locks longer than necessary

18

New Kprobes Advantages

* Fully self-contained within arch, no changes to
generic Kprobes code needed

* Can work for all instructions, not just some
* Always works, regardless of post-handlers

* No second exception ever, so all that support
code and additional logic goes away

* No locks left dangling — so no headaches and
no garbage collector

19

Advantages (cont.)

* Interrupts disabled throughout single exception

— No unbounded recursion

- User handlers guaranteed to be called unless a
handler itself triggers recursion by having a kprobe

* Very light-weight
- Small code size
- Low execution overhead
* MP and Preemptive (CONFIG_PREEMPT) clean

20

kprahbe bp

g

LA

Return from
Exception

{

Exception

hN

oave context
& Call handler

!
kprabe_handler)
¥

lookup kprohe

If pre_handler,
call it

Call insn’s
assigned handler

If post_handler,
call it

:

Restore context |

L) N
Resolve insn and

9

“insh_handler)

Emul insn slot

hodified insn

may pc, Ir

side-effects using
values from "regs”

QR

=im insn slot

mowCC 0 #1

may pc, Ir

21

How Does *insn_handler() Work?

* At registration time:

- Depending on the form of the kprobe'd instruction,
an instruction execution handler is assigned

- Registers used by the instruction are recoded to
use the registers the instruction handler expects

- Modified instruction or condition code test
Instruction saved to instruction slot

* Two groups of instruction handlers - ones that
execute a modified form and ones that resolve
the instruction in straight C code

- C-only ones are for instructions that write the PC 2

Instruction Handler: Example 1

e Kprobe'd instruction - “blne addr”
e Modified instruction in slot - “movne rO, #1”
* Handler assigned - simulate_bbl()

- 25 total instructions

23

simulate bbl()

static woid _ kprobes simulate_bbl{struct kprobe “p, struct pt_regs “regs)

d
insn_larg_fn_t “i_fn = {insn_larg_fn_t ")1&p-=ainsn.insn[0];
kprobe_opcode_t insn = p-=0pcode;
long iaddr = (long)p-=addr;
int disp = branch_displacement{insn);

if linsnslot_Targ_rlags(d, regs-=ARM_cpsr, i_fn)) return;
IF{insn & (1 == 24)) reqs-=ARM_Ir = 1addr + 4,

reqs-=ARM_pc = jaddr + § + disp;
h

 All in C since “bl” writes to the PC
 Handles both “b” (branch) & “bl” (branch & link)
e Could have been two handlers

24

insnslot _1arg_rflags()

stafic inline long __ kprobes insnslot_1arg_mlags{long rd, long cpsr,
insn_larg_fn_t ")
d

register long rrld asmi"r0™) = rl;
register long ret asm("r0"™);

__asm__ volatiler
msr CPSr_fs, S[Cpst] WAL
“moy |, pc WAL
‘moy pc, %] WAL
=" (ret)
SO ey, [cpse] et (cpse, [fn] Ut
S | S] o

;

return ret;

25

insnslot _1arg_rwflags()

static inline long _ kprobes insnslot_1aryg_peAlagsilong rd, long “cpsr,
insn_1arg_fh_t “fh)

d
register long rrd asm('r0™ = r0;
register long ret asm("r0™;
long oldcpst = "CRsr;
long NEeWCpsT,
__asm___ volatilel
"msr cpsr_fs, %[oldcpsr Wt
“may Ir, pc Wt
"may pc, %] Wt
mrs T [NEewMsCpst], Cpsr Wt
=" (ret), [hewcpsr] Y=r" (newcpsr)
20" frrdy, [oldcpsr] " (oldcpsr, [tn] et ()
S | G o
J;
“cpsr = (oldcpsr & ~PSR_15) | (newcpsr & PSR_Ts);
return ret;
¥

26

Instruction Handler: Example 2

e Kprobe'd instruction - “add r3,r6, #7°
* Modified instruction - “add rO, rO, #7°
 Handler assigned — emulate_alu_imm_rflags()

- 19 total instructions

27

emulate_alu_imm_rflags()

static void __kprobes emulate_alu_imm_rags(struct kprobe *p,

{

struct pt_regs “regs)

insn_Targ_fn_t “I_fn = {insn_Targ_fn_t “1&p-=ainsn.insn{d];
kprobe_opcode_t insn = p-=0pcode;

int rd = {insn == 1) & O,

int o= (insn == 16) & O,

long Y =t ==13) ¥ {long)p-=addr + & : regs-=uregsm);

reqs-=uregs[rd] = insnslot_Targ_rlagsirny, regs-=ARM_Cpsr, I_fh);

28

Isn't It Expensive?

* Twenty-seven instruction handlers (5 sim + 22
emul) cover virtually all ARM instructions

* Most instruction handlers compile down to just
10-40 instructions

* The ARM Kprobes is 6.6KB of code

* \With no second exception ever and no
boosting, all that support code is tossed away

29

Overhead Performance

* Overhead results on PXA270@364.00MHz

- Kprobe: 1.21us

- Jprobe: 3.11us

- Kretprobe: 3.40us

- Kprobe + Kretprobe: 3.81us
- Jprobe + Kretprobe: 5.86us

* Measured with Jim Keniston's kprobe overhead testing software with
defaults (iter=5000000, handler=1)

30

So What's the Catch?

* Uses a lot of decode decision paths and some
handlers infrequently used, so needs extensive
testing and chance of latent bugs

* Technique is easiest for RISC and orthogonal
instruction sets, but could be harder for others

31

State of the Port

 Kprobes, Kretprobes, and Jprobes complete
and all working

 Some bugs still running around

e Some rare and unusual instructions not
supported — ones that change CPSR state

 Patches for 2.6.20.4 kernel released to
Systemtap/Kprobes mailing list on 4/11/07

32

What's Left

* Shakeout of approach and code

* Test suite to test all decode paths and
instruction execution handlers

* Integrate into ARM Linux and kernel.org trees

* Finish port of Systemtap's runtime and test
suite to ARM and modify Systemtap to support
cross-compiles

* Djprobe version

33

What's Left? (cont.)

* Remember for the new Kprobes | said one of
the goals was to do as much prep work as
possible? I'm not quite doing that yet...

* Use larger instruction slots, do more at
registration and less at runtime:

Criginal Inst add r3, rb, #7

Instruction Islj 1, [r0, #£4]

5ot add 1, 11, #7
str 1, [0, #1<]
moy pc, I

34

Systemtap

* User space front end to Kprobes

* Simple command line interface and scripting
language

* Does it all — compiles script to C code, builds,
loads, and runs the kernel module

35

URLS

* Systemtap:

- Home: http://sourceware.org/systemtap/

- Malling list: http://sourceware.org/ml/systemtap/
* Motorola Open Source

- http://opensource.motorola.com/

36

http://sourceware.org/systemtap/
http://sourceware.org/ml/systemtap/
http://opensource.motorola.com/

Questions?

37

