
Kernel Probes for ARM

Quentin Barnes
q.barnes@motorola.com

Motorola - Mobile Devices
April 17, 2007

2

Overview

● Introduction to kernel probes
● How kernel probes work
● The classic kprobe model and 'boosting'
● Difficulties with the classic model and ARM
● New approach used for ARM

– Details of implementation

– Cost and Performance

● Wrap-up

3

Kernel Probes Introduction

● New with 2.6.9-rc2 kernels
– Currently: avr32, i386, x86_64, ia64, powerpc,

sparc64, s390

● Allows dynamic breakpoints (registered at
runtime) to be placed most anywhere in kernel

● Breakpoint transfers control to user specified
handlers, executes the instruction, and returns

● User handlers often used to aid debugging or
collect performance data

● Can be relatively low overhead

4

Types of Kernel Probes

● Kprobes - “Kernel Probes”
– Places breakpoint at symbol plus offset or address

● Jprobes - “Jumper Probes”
– Insert function call ahead of probed function

● Kretprobes - “Return Probes”
– Probe function's return

● Djprobes - “Dynamic Jump Probes”
– Future direction: Kprobe-like, uses a jump

instruction rather than a breakpoint

5

How Do Kprobes Work?

● Places a breakpoint instruction most anywhere
– On ARM, uses an undefined instruction

● May register optional user pre-, post-, break,
and fault handlers
– User handlers can do most things except block

● More than one Kprobe allowed at one address
– Not so for Jprobes and Kretprobes

6

'Classic' Kprobes Model

7

Kprobes Registration & Prep

● Do symbol lookup, if necessary
● Validate address
● Record probe and address for hash lookup
● Save instruction at address and replace it with

a breakpoint instruction
● Allocate and initialize instruction slot
● Do additional architecture specific initialization

8

Executing a Kprobe

9

10

Issues with Classic Model

● High execution overhead - two exceptions and
four full context switches

● Holds interrupts disabled through entire length
– Some re-enable though resulting in possible

unbounded recursion, unpredictable behavior, and
skipped user handlers

11

Performance Gain – 'Boosting'

● Take one exception instead of two
● Boosting short-circuits the second exception for

pre-determined instructions by jumping directly
back after execution

12

13

Boosting Limitations

● Limited to only 'boostable' instructions
– No conditional jumps and no reserved or special

instructions

● Non-boostable instructions still run classic way
(using two exceptions)

● Use of post-handlers disable boosting still
running classic way

● Garbage collector

14

Boosting's Garbage Collector

● Boosting holds lock on instruction slot even
after execution completes

● Garbage collector needed to clean up unused
locks

● When kernel preemption is enabled, garbage
collector disables all interrupts and freezes all
kernel threads across all CPUs simultaneously
to run its O(n) time algorithm

15

Difficulties with Kprobes & ARM

● No single-stepping supported in the processor
– Single-stepping causes the processor to trigger an

exception after completing the current instruction

● No Next-PC register
– The Next-PC register steps the processor to the

“next” address after completing the current
instruction

16

ARM Difficulties (cont.)

● So no way to regain control of the ARM
processor after executing instructions that alter
the PC without decoding, detecting, and
handling all instructions that can write the PC

● No way to give correct results for instructions
that read the PC without decoding, detecting,
and handling

● Once you've gone that far already, it's not that
much further to a new approach

17

New Kprobes Approach

18

New Kprobes Goals

● Do as much prep work as possible during
registration of a kprobe to reduce its execution
overhead

● Complete the kprobe'd instruction and all its
side-effects before returning from first (and
only) exception

● Provide consistent execution and behavior
● Don't hold any locks longer than necessary

19

New Kprobes Advantages

● Fully self-contained within arch, no changes to
generic Kprobes code needed

● Can work for all instructions, not just some
● Always works, regardless of post-handlers
● No second exception ever, so all that support

code and additional logic goes away
● No locks left dangling – so no headaches and

no garbage collector

20

Advantages (cont.)

● Interrupts disabled throughout single exception
– No unbounded recursion

– User handlers guaranteed to be called unless a
handler itself triggers recursion by having a kprobe

● Very light-weight
– Small code size

– Low execution overhead

● MP and Preemptive (CONFIG_PREEMPT) clean

21

22

How Does *insn_handler() Work?

● At registration time:
– Depending on the form of the kprobe'd instruction,

an instruction execution handler is assigned

– Registers used by the instruction are recoded to
use the registers the instruction handler expects

– Modified instruction or condition code test
instruction saved to instruction slot

● Two groups of instruction handlers - ones that
execute a modified form and ones that resolve
the instruction in straight C code
– C-only ones are for instructions that write the PC

23

Instruction Handler: Example 1

● Kprobe'd instruction - “blne addr”
● Modified instruction in slot - “movne r0, #1”
● Handler assigned - simulate_bbl()

– 25 total instructions

24

simulate_bbl()

● All in C since “bl” writes to the PC
● Handles both “b” (branch) & “bl” (branch & link)
● Could have been two handlers

25

insnslot_1arg_rflags()

26

insnslot_1arg_rwflags()

27

Instruction Handler: Example 2

● Kprobe'd instruction - “add r3,r6, #7”
● Modified instruction - “add r0, r0, #7”
● Handler assigned – emulate_alu_imm_rflags()

– 19 total instructions

28

emulate_alu_imm_rflags()

29

Isn't It Expensive?

● Twenty-seven instruction handlers (5 sim + 22
emul) cover virtually all ARM instructions

● Most instruction handlers compile down to just
10-40 instructions

● The ARM Kprobes is 6.6KB of code
● With no second exception ever and no

boosting, all that support code is tossed away

30

Overhead Performance

● Overhead results on PXA270@364.00MHz
– Kprobe: 1.21us

– Jprobe: 3.11us

– Kretprobe: 3.40us

– Kprobe + Kretprobe: 3.81us

– Jprobe + Kretprobe: 5.86us

● Measured with Jim Keniston's kprobe overhead testing software with
defaults (iter=5000000, handler=1)

31

So What's the Catch?

● Uses a lot of decode decision paths and some
handlers infrequently used, so needs extensive
testing and chance of latent bugs

● Technique is easiest for RISC and orthogonal
instruction sets, but could be harder for others

32

State of the Port

● Kprobes, Kretprobes, and Jprobes complete
and all working

● Some bugs still running around
● Some rare and unusual instructions not

supported – ones that change CPSR state
● Patches for 2.6.20.4 kernel released to

Systemtap/Kprobes mailing list on 4/11/07

33

What's Left

● Shakeout of approach and code
● Test suite to test all decode paths and

instruction execution handlers
● Integrate into ARM Linux and kernel.org trees
● Finish port of Systemtap's runtime and test

suite to ARM and modify Systemtap to support
cross-compiles

● Djprobe version

34

What's Left? (cont.)

● Remember for the new Kprobes I said one of
the goals was to do as much prep work as
possible? I'm not quite doing that yet...

● Use larger instruction slots, do more at
registration and less at runtime:

35

Systemtap

● User space front end to Kprobes
● Simple command line interface and scripting

language
● Does it all – compiles script to C code, builds,

loads, and runs the kernel module

36

URLs

● Systemtap:
– Home: http://sourceware.org/systemtap/

– Mailing list: http://sourceware.org/ml/systemtap/

● Motorola Open Source
– http://opensource.motorola.com/

http://sourceware.org/systemtap/
http://sourceware.org/ml/systemtap/
http://opensource.motorola.com/

37

Questions?

