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* Difficulties with the classic model and ARM
* New approach used for ARM

— Detalls of implementation
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Kernel Probes Introduction

e New with 2.6.9-rc2 kernels

- Currently: avr32, 1386, x86 64, ia64, powerpc,
sparco4, s390

* Allows dynamic breakpoints (registered at
runtime) to be placed most anywhere in kernel

* Breakpoint transfers control to user specified
handlers, executes the instruction, and returns

* User handlers often used to aid debugging or
collect performance data

 Can be relatively low overhead



Types of Kernel Probes

Kprobes - “Kernel Probes”

- Places breakpoint at symbol plus offset or address
Jprobes - “Jumper Probes”

- Insert function call ahead of probed function
Kretprobes - “Return Probes”

- Probe function's return

Djprobes - “Dynamic Jump Probes”

— Future direction: Kprobe-like, uses a jump
Instruction rather than a breakpoint



How Do Kprobes Work?

* Places a breakpoint instruction most anywhere
- On ARM, uses an undefined instruction

* May register optional user pre-, post-, break,
and fault handlers

— User handlers can do most things except block
* More than one Kprobe allowed at one address

— Not so for Jprobes and Kretprobes



'Classic' Kprobes Model



Kprobes Registration & Prep

* Do symbol lookup, if necessary
* Validate address
* Record probe and address for hash lookup

* Save instruction at address and replace it with
a breakpoint instruction

* Allocate and initialize instruction slot
* Do additional architecture specific initialization



Executing a Kprobe
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Issues with Classic Model

* High execution overhead - two exceptions and
four full context switches

* Holds interrupts disabled through entire length

- Some re-enable though resulting in possible
unbounded recursion, unpredictable behavior, and
skipped user handlers
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Performance Gain — 'Boosting’

 Take one exception instead of two

* Boosting short-circuits the second exception for
pre-determined instructions by jumping directly
back after execution
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Boosting Limitations

* Limited to only 'boostable’ instructions

- No conditional jumps and no reserved or special
iInstructions

* Non-boostable instructions still run classic way
(using two exceptions)

* Use of post-handlers disable boosting still
running classic way

* Garbage collector
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Boosting's Garbage Collector

* Boosting holds lock on instruction slot even
after execution completes

* Garbage collector needed to clean up unused
locks

* \When kernel preemption is enabled, garbage
collector disables all interrupts and freezes all
kernel threads across all CPUs simultaneously
to run its O(n) time algorithm
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Difficulties with Kprobes & ARM

* No single-stepping supported in the processor

- Single-stepping causes the processor to trigger an
exception after completing the current instruction

* No Next-PC register

- The Next-PC register steps the processor to the
“next” address after completing the current
Instruction
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ARM Difficulties (cont.)

* So no way to regain control of the ARM
processor after executing instructions that alter
the PC without decoding, detecting, and
handling all instructions that can write the PC

* No way to give correct results for instructions
that read the PC without decoding, detecting,
and handling

* Once you've gone that far already, it's not that
much further to a new approach
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New Kprobes Approach



New Kprobes Goals

Do as much prep work as possible during
registration of a kprobe to reduce its execution
overhead

Complete the kprobe'd instruction and all its
side-effects before returning from first (and
only) exception

Provide consistent execution and behavior
Don't hold any locks longer than necessary
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New Kprobes Advantages

* Fully self-contained within arch, no changes to
generic Kprobes code needed

* Can work for all instructions, not just some
* Always works, regardless of post-handlers

* No second exception ever, so all that support
code and additional logic goes away

* No locks left dangling — so no headaches and
no garbage collector
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Advantages (cont.)

* Interrupts disabled throughout single exception

— No unbounded recursion

- User handlers guaranteed to be called unless a
handler itself triggers recursion by having a kprobe

* Very light-weight
- Small code size
- Low execution overhead
* MP and Preemptive (CONFIG_PREEMPT) clean
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How Does *insn_handler() Work?

* At registration time:

- Depending on the form of the kprobe'd instruction,
an instruction execution handler is assigned

- Registers used by the instruction are recoded to
use the registers the instruction handler expects

- Modified instruction or condition code test
Instruction saved to instruction slot

* Two groups of instruction handlers - ones that
execute a modified form and ones that resolve
the instruction in straight C code

- C-only ones are for instructions that write the PC 2



Instruction Handler: Example 1

e Kprobe'd instruction - “blne addr”
e Modified instruction in slot - “movne rO, #1”
* Handler assigned - simulate_bbl()

- 25 total instructions
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simulate bbl()

static woid _ kprobes simulate_bbl{struct kprobe “p, struct pt_regs “regs)

d
insn_larg_fn_t “i_fn = {insn_larg_fn_t ")1&p-=ainsn.insn[0];
kprobe_opcode_t insn = p-=0pcode;
long  iaddr = (long)p-=addr;
int  disp = branch_displacement{insn);

if linsnslot_Targ_rlags(d, regs-=ARM_cpsr, i_fn)) return;
IF{insn & (1 == 24)) reqs-=ARM_Ir = 1addr + 4,

reqs-=ARM_pc = jaddr + § + disp;
h

 All in C since “bl” writes to the PC
 Handles both “b” (branch) & “bl” (branch & link)
e Could have been two handlers

24



insnslot _1arg_rflags()

stafic inline long __ kprobes insnslot_1arg_mlags{long rd, long cpsr,
insn_larg_fn_t ")
d

register long rrld asmi"r0™) = rl;
register long ret asm("r0"™);

__asm__ volatiler
msr CPSr_fs, S[Cpst] WAL
“moy |, pc WAL
‘moy pc, %] WAL
=" (ret)
SO ey, [cpse] et (cpse, [fn] Ut
S | S ] o

;

return ret;

25



insnslot _1arg_rwflags()

static inline long _ kprobes insnslot_1aryg_peAlagsilong rd, long “cpsr,
insn_1arg_fh_t “fh)

d
register long rrd asm('r0™ = r0;
register long ret asm("r0™;
long oldcpst = "CRsr;
long  NEeWCpsT,
__asm___ volatilel
"msr cpsr_fs, %[oldcpsr Wt
“may Ir, pc Wt
"may  pc, %] Wt
mrs T [NEewMsCpst], Cpsr Wt
=" (ret), [hewcpsr] Y=r" (newcpsr)
20" frrdy, [oldcpsr] " (oldcpsr, [tn] et ()
S | G o
J;
“cpsr = (oldcpsr & ~PSR_15) | (newcpsr & PSR_Ts);
return ret;
¥
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Instruction Handler: Example 2

e Kprobe'd instruction - “add r3,r6, #7°
* Modified instruction - “add rO, rO, #7°
 Handler assigned — emulate_alu_imm_rflags()

- 19 total instructions
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emulate_alu_imm_rflags()

static void __kprobes emulate_alu_imm_rags(struct kprobe *p,

{

struct pt_regs “regs)

insn_Targ_fn_t “I_fn = {insn_Targ_fn_t “1&p-=ainsn.insn{d];
kprobe_opcode_t insn = p-=0pcode;

int  rd = {insn == 1) & O,

int o= (insn == 16) & O,

long Y =t ==13) ¥ {long)p-=addr + & : regs-=uregsm);

reqs-=uregs[rd] = insnslot_Targ_rlagsirny, regs-=ARM_Cpsr, I_fh);
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Isn't It Expensive?

* Twenty-seven instruction handlers (5 sim + 22
emul) cover virtually all ARM instructions

* Most instruction handlers compile down to just
10-40 instructions

* The ARM Kprobes is 6.6KB of code

* \With no second exception ever and no
boosting, all that support code is tossed away
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Overhead Performance

* Overhead results on PXA270@364.00MHz

- Kprobe: 1.21us

- Jprobe: 3.11us

- Kretprobe: 3.40us

- Kprobe + Kretprobe: 3.81us
- Jprobe + Kretprobe: 5.86us

* Measured with Jim Keniston's kprobe overhead testing software with
defaults (iter=5000000, handler=1)
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So What's the Catch?

* Uses a lot of decode decision paths and some
handlers infrequently used, so needs extensive
testing and chance of latent bugs

* Technique is easiest for RISC and orthogonal
instruction sets, but could be harder for others
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State of the Port

 Kprobes, Kretprobes, and Jprobes complete
and all working

 Some bugs still running around

e Some rare and unusual instructions not
supported — ones that change CPSR state

 Patches for 2.6.20.4 kernel released to
Systemtap/Kprobes mailing list on 4/11/07
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What's Left

* Shakeout of approach and code

* Test suite to test all decode paths and
instruction execution handlers

* Integrate into ARM Linux and kernel.org trees

* Finish port of Systemtap's runtime and test
suite to ARM and modify Systemtap to support
cross-compiles

* Djprobe version
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What's Left? (cont.)

* Remember for the new Kprobes | said one of
the goals was to do as much prep work as
possible? I'm not quite doing that yet...

* Use larger instruction slots, do more at
registration and less at runtime:

Criginal Inst add r3, rb, #7

Instruction Islj 1, [r0, #£4]

5ot add 1, 11, #7
str 1, [0, #1<]
moy  pc, I
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Systemtap

* User space front end to Kprobes

* Simple command line interface and scripting
language

* Does it all — compiles script to C code, builds,
loads, and runs the kernel module
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URLS

* Systemtap:

- Home: http://sourceware.org/systemtap/

- Malling list: http://sourceware.org/ml/systemtap/
* Motorola Open Source

- http://opensource.motorola.com/
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http://sourceware.org/systemtap/
http://sourceware.org/ml/systemtap/
http://opensource.motorola.com/

Questions?
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