XM-FIFO: Interdomain Communication for XtratuM

Shuwei Bai, Yiqiao Pu, Kairui She, Qingguo Zhou, Nicholas MC Guire, Lian Li
Distributed and Embedded System Lab
School of Information Science and Engineering
Lanzhou University
Tianshui South Road 222,Lanzhou,P.R.China
baishw06@Qlzu.cn

Abstract

A FIFO is a First In First Out data queue for sharing data between multiple tasks or threads. Fifos
are one of the most basic communication mechanisms used in real-time operating systems. Especially
for two real-time tasks or between a real-time task and non-real-time process, it is effective because it
allows non-blocking as well as blocking semantics, which is mandatory to avert priority inversion between
different domains. In the current XtratuM([7] version, there is no method available for data transfer
between domains which run under XtratuMs control. So we created the XM-FIFO for the XtratuM
which can be used to transfer data between real-time threads or between real-time threads and Linux
user-level processes. The XM-FIFO consists of a share FIFO module, Linux FIFO device and PaRTiKle
FIFO device. So far, we have released XM-FIFO V1.0, XM-FIFO V2.0 and XM-FIFO V3.0 continuously
working on improvements especially at the conceptual level. Three versions adopt different technologies
and provide different functions. XM-FIFO V1.0 offers the special system calls to transfer data between
domains and XtratuM kernel. And the FIFOs internal synchronization is achieved by disabling interrupts
- simple but undesirable in an RTOS. XM-FIFO V2.0 adopts lock-free mechanism to access the FIFO
synchronously and data is copied. In the XM-FIFO V3.0, the FIFO data memory and control memory
are mapped into the domain kernel space, which can increase data access speed as there is no longer an
internal data copy. In the paper, besides XM-FIFOs design, the implementation of the memory mapping
and lock-free mechanism in the XM-FIFO are described and comparative benchmarks interpreted.

1 Introduction independent is good for system to meet the stability
and security as well as mandatory for safety related
systems that should be reasonably composable. But
the current XtratuM lacks the data transfer function.
In order to change the status, we create XM-FIFO
for the XtratuM][7].

XM-FIFO stands for the XtratuM FIFO. It is used
to transfer data between domains which run on the
XtratuM and can also be used within a domain

(though that is not its primary intent). A FIFO is

XtratuM is a nano-kernel real-time OS. It can meet
the hard real-time system requirements: fast, com-
pact, portable, simple and predictable. It supports
two important device drivers: interrupt and timer.
The system can be considered as a small part of the
lowest operating system layers. XtratuM supports a
thin software layer to interface to the domains, in-
cluding virtual interrupt and virtual timer interfaces

along with basic memory management functions.
Linux runs on XtratuM as the root domain and
manage the general purpose devices and resource
except for interrupt and timer. Other domains on
XtratuM are independent - that is running in there
private physical address space. They have indepen-
dent memory, access device I/O and so on. The

often used to connect a non-real-time process to a
real-time task or to allow a real-time thread to log the
message to the disk files - which is a non-RT device.
Two real-time tasks also can communicate though
FIFOs. FIFOs are data queues of raw bytes - no
envelopes or protocol is in use. Typically, fixed-size
data structures are written to FIFOs and the user

does not need to worry about the message bound-
ary. Sometimes, the message size isnt fixed which
will mandate the application to handle some sort of
message end flag on its own. A FIFO is not good at
big block message transfer especially if the message
changed sparsely - in these cases shared memory is
preferable.

XM-FIFO is bi-direction and non-blocked in the cur-
rent versions. XM-FIFO V1.0, XM-FIFO V2.0 and
XM-FIFO V3.0 are different in three aspects: FIFO
functions offered to the users, data access mechanism
and read/write synchronization. XM-FIFO follows
the POSIX semantics and can be access from the
user spaces(real-time user space and non-real-time
user space). The user can open/close the XM-FIFO
devices, read/write data from/to the files. In the
XtratuM, there are sixteen XM-FIFOs with 4KB
size each statically preallocated. The user cannot
change the size of the XM-FIFO after compile the
source code and the fixed size can be predictable for
real-time system. This is also in part due to the lim-
itations of POSIX open that does not allow passing
a POSIX compliant size parameter in a reasonably
compatible form.

In the XM-FIFO V1.0, there are two operations
offered for the FIFO, read and write. The share
XM-FIFO offers two routine symbols for the Linux
kernel. As the domains are independent, we add two
XtratuM system calls fifo_read/fifo_write to access
the XM-FIFO from each of the domains. The XM-
FIFO concurrent mechanism adopts the brute-force
interrupts disable policy. Of course, the policy will
make the system less responsive and impact general
RTOS qualities. If the operation spend too much
time, it inflicts excessive jitter on the system - thus
the 4k hard-coded limit. So in the XM-FIFO V2.0
we did some changes. In the XM-FIFO V2.0, the
FIFO data space is independent from the XtratuM
kernel and the concurrent mechanism is changed.
The lock-free mechanism is adopted which can avoid
the lock-blocked concurrent and priority inversion.
And the lock-free will consume less time with dis-
able preemptability. In the XM-FIFO V3.0, the
XtratuM system calls which are related with fifo are
discarded entirely. The memory mapping mecha-
nism is adopted which is the most important differ-
ence between XM-FIFO V3.0 and XM-FIFO V2.0.
When the new domain is loaded, the XM-FIFOs are
mapped into domain kernel space. It doesnt only
map the data memory, but also control memory.
The domains are independent except for the shared
fifo pages.

In the background section, I will show the system
call, lock-free and memory mapping mechanism re-
spectively. A simply explanation of XtratuM and

PaRTiKle[8] is in the section too. The section three
shows the XM-FIFO designs and implementations of
the three versions separately. How to use the XM-
FIFO is presented in the section four: applications.
In the section five, we will design a simple test tool
for the XM-FIFO performance from XM-FIFO V1.0
to X-FIFO V3.0. The last section is conclusion of
the paper. In the conclusion we will interpret what
we will do in next step on the XM-FIFO project.

2 Background

Before showing what and how we have done on
XM-FIFO, we should interpret some basic concepts.
In the section, I will introduce PaRTiKle system,
system call, lock-free and memory mapping mecha-
nisms.

2.1 PaRTiKle[§]

PaRTiKle stands for Particular Real-Time Kernel.
It is a simple real-time system kernel. The system
doesnt manage any hardware and just use them. The
kernel has the follow components: virtual memory
management, real-time thread schedule, simple IPC
between threads, virtual timer and interrupt man-
agement and so on. The PaRTiKle can run in the
Linux user space, Linux kernel space and on the
XtratuM as a domain independently. In our project,
the PaRTiKle run on the XtratuM as the domain.
The PaRTiKle system is divided into two parts as the
Linux, PaRTiKle kernel and PaRTiKle user space.
The threads scheduler, virtual memory management
and drivers are in the kernel space. The PaRTiKle
kernel can access the XtratuM kernel through Xtra-
tuM system call which we will show in the next parts.
The real-time tasks or threads run in the PaRTiKle
user space.

Though the PaRTiKle cannot access the hardware
timer and interrupt, it has low schedule latency and
interrupt latency. The values of the schedule latency
and interrupt latency are 7.2us and 9.2 us respec-
tively on the AMD 1.6G processor. The performance
can meet the real-time requirement. Integrating the
PaRTiKle to the XtratuM makes the system can-
not support normal task running as the Linux pro-
cess but also real-time tasks, running as the real-
time threads. We will show how to run the PaR-
TiKle in the XM-FIFO usage section. And the Fig-
ure 1 shows the relation between PaRTiKle, Linux
and XtratuM][1].

Other

Linux .
Domains

PaRTiKle

i 1l 1l

XtratuM

FIGURE 1:

The relation among XtratuM,
PaRTiKle and Linux

2.2 System Call

System call is one of the most important character-
istics of the Linux system. The system calls split the
system to two parts: kernel space and user space.
The mechanism makes it easy to adopt the virtual
memory mechanism and makes the system more ro-
bust. In XtratuM, the system call mechanism is
adopted too. As we know, the XtratuM main mod-
ule loaded by insmod tool which means the XtratuM
and Linux kernel in the same address space. Another
system call layer is created between in the XtratuM
kernel and domains. Domains in XtratuM can only
access the lowest hardware through XtratuM system
calls. And the domains address is separated from the
XtratuM kernel, Linux kernel and other domains. In
the Linux, the system call trapped 0x80. To avoid
colliding with Linux system call, the interrupt num-
ber of XtratuM system call is 0x82. In the current
XtratuM version, eleven system calls are supported.
In XtratuM, there is one system call table which
keeps the system call number. There is a simple chart
of the XtratuM call work. In the example, the call
number of write_scr_sys is nine. See Figure 2 The
flow chart of write_scr_sys in XtratuM .

PaRTiKle KtramaM Linux
A _____fn____\ F__A__ﬁ
write_scr #»| write_scr_sys #»| printk

FIGURE 2: The flow chart of

write_scr_sys

2.3 Lock-Free|[2, 3, 4, 5]

There are several traditional methods to implement
the synchronization such as spin-lock, semaphore,

BKL, etc. But they are wait-blocked mechanism,
which will cause priority inversion. So we must adopt
lock-free mechanism into the FIFO access procedure
such as sequence locks or RCU type mechanisms.
The lock-free mechanism which can avoid the com-
mon problems associated with traditional blocked-
base mechanism:

e priority inversion: occurs when a high-priority
process requires a lock held by a lower priority
process. The

e deadlock: can occurs if different processes at-
tempt to lock the same set of objects in differ-
ent orders;

e preemption-tolerance: if the lock holder go to
sleep, and the other process want to get the
lock. The result is obviously, the new process
must waiting for the sleeper, which means the
new process spin uselessly. [4]

In order to realize the lock-free mechanism, the ba-
sic method is CAS(Compare-and-Swap) operation.
The CAS is an atomic operation with the concrete
implementation depending on the computer archi-
tecture. The X86 implements the CAS operation by
thecmpxchg command, and the command appears
from X486 and later architectures in the X86 family.
There are two code segments. One is the algorithm
of the CAS operation with C language and another
is the implementation of the CAS operation based
X86 architecture.

int cas(int *addr,
int old_value,
int new_value)

{
if (xaddr == old_value) {
*xaddr = new_value;
return 1;
}
return O;
}

#define CAS(adr, ov, nv) ({ \
typeof__(ov) ret; \

__asm__ __volatile__(\
"cmpxchg %3, %H1" \
:"=a"(ret),

"+m" (x(volatile unsigned int *) (adr)) \
: nan (OV) S nrn (IIV)) ; \
ret == ov; \

)

After interpreting the lock-free mechanism and CAS
operation, the usage of the lock-free on XM-FIFO
we will explain in Section 2.2. The XM-FIFO V2.0

discards the traditional mechanism for XM-FIFO
concurrent access and it adopts the lock-free mecha-
nism based on X86 architecture.

2.4 Memory Mapping|6]

Memory mapping is a virtual memory mechanism.
Multiple processes can access the same physical
memory address through different virtual memory
address. In the Linux system, the user space process
can access the kernel space through Linux system
calls. Without the system call, the process also can
access the kernel memory by the memory mapping
mechanism (i.e. VSDO). As we know, the kernel
memory maps the physical memory one to one (ig-
noring issues of more than 896MB). But sometime
especially for block data transfer, we need the process
space can map to the physical memory and access it
directly. The mechanism will result the kernel and
user process both can access the memory directly. Of
course, it will be more efficiency than system call to
transfer data.

In XtratuM, the physical memory is managed by the
Linux memory module. When the domain loaded,
the physical memory is allocated. As mentioned
above, the domain are separated from each other via
MMU protection which can improve the stability and
security of the domains, especially for the real-time
domain such as PaRTiKle. The physical memory al-
located for one domain includes four types: 1) pgd
table page is for keeping page tables for the domain
virtual memory; 2) stack memory is allocated for the
domain image; 3) the domain heap for the domain
system allocated; and 4) event memory keeps the vir-
tual interrupts and handler. The pgd page and stack
in the XtratuM kernel space. The heap and event
memory are mapped into domain space and used by
the high level tasks, such as the event memory are
used by the domain interrupt driver in the domain
kernel, and the heap can be used as a memory pool
for threads.

How to map kernel memory to the domain space?
Alike Linux, the XtratuM adopts two level page table
mechanism, pgd and pte. The pgd table is the high-
est level. Every element of the pgd points to one pte
page. The physical address of the pgd page is saved
in the CR3 register when the relation domain sched-
uled. The pte element keeps the data page address.
The offset of the data page is same as the virtual
address offset value. There is a simple chart which
showed how to convert the domain virtual address
to the physical address. Of course, the physical ad-
dress is converted from the kernel memory address.
See Figure 3 Domain Space Address Convert and
Access

i1
7) PoD/32bits PTE/3%bits page/3bi ts
)\ \ N /\ - N A .
ét\ 4 7
i 5 —8
& \9
™
16
domain space
address 5 8 16
p. v e ~ A v S
10bits 10bits 1Zbits
FIGURE 3: Domain Space Address Con-

vert and Access

The main mechanisms which will be adopted in the
XM-FIFO have been described. In the sequence sec-
tion, I will interpret how to implement them in the
XM-FIFO and the design of the XM-FIFO V1.0,
XM-FIFO V2.0, XM-FIFO V3.0.

3 Designs and Implementa-

tions

From the Section two, you must understand the ba-
sic concepts of the main mechanisms we will adopt.
If you have, it will be easy to understand the imple-
mentation of the XM-FIFOs. In the section, we also
describe the design of XM-FIFOs. Some points arent
shown in the above section due to space limitations.
The section consists of three parts, and each part
shows one version.

3.1 XM-FIFO V1.0

The XM-FIFO consists of shared fifo, Linux FIFO
device driver and PaRTiKle FIFO device driver. The
shared fifo is integrated into XtratuM module in XM-
FIFO V1.0. Share fifo access is non-blocking, which
means if the FIFOs is empty/full the read/write op-
eration will return immediately. The FIFOs are bi-
directory, each domain can read/write from/to them.
The architecture of the XM-FIFO V1.0 shows in Fig-
ure 4.

POSIX API Linux US POSIX API PaRTiKle US
SYSCALLS Linux KS SYSCALLS PaRTiKle KS
FIFO Driver FIFO Driver

FIFO SYSCALLS

XtratuM Kernel

read() //PaRTiKle User Space Thread ‘

L‘ prikf_read() // PaRTiKle FIFO device read function ‘

_.‘ xm_fifo_read() // calling the xtratum system call ‘

L‘ xm fifo_read_sys() // xtratum system calling for fifo reading ‘

L‘ xmf read () /The routine can read fifo direct in the xtratum

FIGURE 4: XM-FIFO V1.0 Architecture

From the Figure 4, its easy to see that Linux and
the domains use different fifo device driver. The root
domain and the normal domain access the share fifo
through different interfaces. In the XM-FIFO, we
run the PaRTiKle as the normal domain. In this pa-
per, the PaRTiKle system mentioned can be thought
of as the normal domain.

When the XtratuM module is loaded, the FIFO
memory is statically allocated and locked into physi-
cal RAM. There are sixteen FIFOs with PAGE_SIZE
bytes in each by default. The XtratuM offers two
exported symbols for fifo access, xm_fifo_read() and
xm_fifo_write(). Linux FIFO device driver module
can call the two exported symbols to access the fifo
data directly from Linux kernel context. But its dif-
ferent for PaRTiKle. Between PaRTiKle and Xtra-
tuM, there is a system call layer. In the XM-FIFO
V1.0, we add two new system calls xm_fifo_read_sys()
and xm_fifo_write_sys() to the XtratuM core. If PaR-
TiKle is to access the FIFO, it must call them via
int 0x82 call gate. I dont think its efficient but it
was the easiest to implement. The PaRTiKle user
space threads and Linux user space process can ac-
cess the FIFO device through the POSIX APIs, such
as open(), close(), read(), write(), etc. The FIFO de-
vice names are /dev/rtf0,,/dev/rtfl5 (major/minor
numbers as allocated for RTLinux/GPL and RTAI).
Figure 5 and Figure 6 shows the reading tree of the
XM-FIFO in the Linux and PaRTiKle.

read() //Linux User Space Process

L‘ linf_read() //Linux FIFO device read function

__‘ xm fifo_read() //KtratuM export symbols for fifo reading ‘

» xmf read () //The routne can read fifo direct i the xtratum

FIGURE 5:

process

FIFO Reading tree of Linuz

FIGURE 6: FIFO Reading tree of PaR-
TiKle thread

From Figure 5 and Figure 6, one can see that the
lowest FIFO reading routine is xmf read(), where
concurrent access will happened between domains
including the non-RT root-domain thus incurring
potentially high delays. So we must think about
synchronization in the routine to improve the con-
tended case. In the current XtratuM version, there is
no method provided to avoid race conditions except
disable interrupt. We have to adopt the mechanism
for handling inter-domains race condition. The al-
gorithm of the routine is shown below.

int xmf_read(int index,
char *dst,
int size)

begin

hw_save_flags_and_cli(&flags);
read_data();
hw_restore_flags(flags);

end

Race condition doesnt exit only between domains
accessing XM-FIFO only, but also for the device
access. In Linux and PaRTiKle, we must note the
concurrent exit between processes or threads respec-
tively. In Linux, XM-FIFO adopts read semaphore
for FIFO data reading and write semaphore for write
operation. In PaRTiKle, the synchronization mech-
anism provides less efficient semaphores only. Let
me show how to use the synchronization mechanism
in Linux and PaRTiKle. The algorithms are showed
below.

int linf_read(int fd,
char *dest,
int size)
begin

down_read (&fifo.rw_semphore) ;
read_data();
up_read(&fifo_rw_semphore);

end

int linf_write(int fd,
const char *src,
int size)
begin

down_write(&fifo.rw_semphore) ;
write_data();
up_wirte (&fifo_rw_semphore) ;

end

int prtkf_read(int fd,
char *dest,
int size)
begin

sem_wait_sys (&fifo.rw_semphore);
read_data();
sem_post_sys(&fifo_rw_semphore) ;

end

From the above introduction, we hope the outline of
the XM-FIFO V1.0 is clear. How to use it we will
demonstrate in the Section four. Now, let us look at
the limitations of V1.0 of XM-FIFO.

e The interrupt disable mechanism to resolve the
race condition between domains. Any other
job and especially interrupts cannot be han-
dled until the interrupts are re-enabled. This
can profoundly impact the real-time behavior
especially if called by a low priority domain.
Obviously this mechanism would be a disaster
on a multi-core system.

e The semaphore mechanism for race condition.
Semaphore is block-based mechanism which
will result in priority inversion. And further-
more this mechanism shows low efficiency to
acquire and release the semaphores. A new
synchronization mechanisms is needed.

e Use of system call to translate data between
domains including root-domain. This mecha-
nism exhibits relatively high latency which the
real-time system cannot accept.

e Lack of control operations. In the XM-FIFO
V1.0, there are no operations except read /write

the FIFO. No controlling functions and status
checking functionality is provided.

As there are some limitations in XM-FIFO 1.0, we
must change or optimize those mechanisms. That
is the reason we started to the XM-FIFO V2.0 and
later XM-FIFO V3.0. In the next part, we describe
XM-FIFO V2.0.

4 XM-FIFO V2.0

There are two differences between XM-FIFO V2.0
and XM-FIFO V1.0, lock-free mechanism replac-
ing block-based mechanism and separating the FIFO
from the XtratuM core.

In the XM-FIFO V1.0, the block-based mechanism
is in use, such as semaphore and the brute-force in-
terrupt disable mechanism. The mechanisms will de-
crease the system performance both with respect to
average throughput as well as responsiveness. Es-
pecially in the critical area, the domain with low
priority will block the highest priority domain which
will cause unacceptable and unpredictable latency on
the real-time domain. So in the XM-FIFO V2.0, the
block-based mechanisms are discarded and lock-free
mechanisms are used.

Lock-free mechanism, were outlined in section 2.3,
basically building on the realize CAS operation on
X86 architecture from the section. In the section, we
will show the usage of the CAS in XM-FIFO V2.0.
In previous implementations of FIFOs which adopts
lock-free mechanism, like the FIFO list, i.e. Michael-
Scott implementation, in which nodes allocation is
performed using a statically allocated set of nodes,
or other implementation based dynamic nodes allo-
cation. The static allocated implementation uses rel-
atively large amounts of locked memory and is not
suited for embedded system and dynamic implemen-
tation will potentially impact the responsiveness due
to the memory allocation time. So both algorithms
have disadvantages in the embedded real-time sys-
tem domain. In the XM-FIFO V2.0, we use a array
to realize the FIFO. As everyone knows, the array
FIFO is easy to implementation. Using the array
has more important reasons:

e Every FIFO need 20Bytes for saving control
information which is not part of the list

e Static memory will avoid dynamic memory al-
location.

In XM-FIFO V2.0, FIFOs work as circulation
buffers of static size and a control area is created for
each fifo. The top and bottom tags are two impor-
tant members in the control area. The top is used

for write operation and the bottom tag is for read
operation. The algorithms of FIFO read and write
are showed below.

read(fd, dst, count){
begin
do {
old_bottom
new_bottom
read_data();

} while(!CAS(&fifo[i] .bottom,
old_bottom, new_bottom))

fifo[i] .bottom;
old_bottom + read_size;

end

write (fd,srct, count)
begin

do {
old_top = fifo[i] [fifo_num].top ;
new_top = old_top + write_size;
write_data();

while (!CAS(&fifo[i] [fifo_num].top,

old_top, new_top));

end

From the algorithm, the CAS operation checks the
top or bottom values to judge whether the read /write
is preempted. But in the normal policy, the vales
range is from 0 to FIFO_SIZE. So there is a high
probability that the old_bottom value equals to the
newest value which changed when preempted by a
higher priority domain. In order to decrease the
contended, the top and bottom range is from 0 to
OxFFFFFFFF, and the values are converted to a
valid index of the queue before using.

There are four kinds of preemption for FIFO access,
RR(read task preempt read task), RW(read task pre-
empt write task), WR(write task preempt read task),
and WW (write task preempt write task). The algo-
rithms can avoid data inconsistent for RR, WR and
RW but not WW. Figure 7 shows the RR model.

fifo fifo fifo
A
re-read
A
Read mterrupt check

FIGURE 7: RR Model

The other parts of the XM-FIFO in version 2.0 are
the same as XM-FIFO 1.0, which means some limita-
tions are still present in the XM-FIFO 2.0 from 1.0.
The limitations are solved in the XM-FIFO V3.0.

4.1 XM-FIFO V3.0

In XM-FIFO V3.0, the read/write XtratuM system
calls are discarded. FIFOs data memory and con-
trol memory are both mapped into PaRTiKle kernel
space. And more FIFO operations are supported in
XM-FIFO V3.0.

As we know, the process of memory mapping is to
create the page table connecting virtual and physical
addresses. Let me show how the XtratuM create the
page tables for the XtratuM domains. To create a
page table one must prepare two things, mapping
address (virtual address) and physical memory. The
physical memory will be mapped into the domain
space at the mapping address. As the memory ac-
cess, the mapping address is converted to the pgd
index and pte index firstly. Secondly to check the
pgd[pgd-index| flags, if the item is occupied the
flag will be set, and the pte page has been allo-
cated for pte items or it will allocate new page to
save the corresponding indexes. Thirdly, check the
pte[pte_index] flags, but it is different from the pgd
table check. If the flag is set, it means the virtual ad-
dress has been allocated or taken up. The mapping
process will be canceled. Or the physical address
will be filled into the pte[pte_index].

When the domain is unloaded, the memory will be
released by removing all mappings. But the system
would fault because of the XM-FIFO as the physical
addresses are mapped in both domains so releasing
them in one could result in an invalid access from the
other domain. This problem if unhandled will result
in system crash. So in XM-FIFO, we add another
flag mark: PAGE_SHARED which is not present in
the original XtratuM memory management imple-
mentation. When the domain unloaded, the page
marked with PAGE_SHARED is not physical freed
until the last mapping is removed, and the item in
the pte table is cleaned up. The algorithm of the
FIFO memory mapping showed below.

allocate_fdata_page (pd,
vaddress, index, alloc_page)
begin
...// Same as the allocate_user_page()
if [pt item of vaddress is used]
begin
return O;

end
else
//in the allocate_user_page ()
//allocate new physical memory.
//In the allocate_fdata_page,

in the Makefile which the in the current directory.
Writing data to fifo is easy. You can open it as the
normal device with open() and call the write routine
write() to write data to the fifo. By default, there
are 16 FIFO supported, from rtf0 to rtf15, with 4K

//only calls get_fifo_data_page_addr routiméze. Let me show the source code of the PaRTiKle

page = get_fifo_data_page_addr(index) ;

£fill the pt entry table

//set the flag value

//_PAGE_PRESENT | _PAGE_RW | _PAGE_USER
set the flag value

_PAGE_PRESENT | _PAGE_RW | _PAGE_USER

| _PAGE_ACCESSED

//_PAGE_ACCESSED marks the page is shared.

return address.
end;
end;

In the domain memory space, the physical memory is
mapped from the 0x2000000. The former address is
left for the device I/O. In domain space, the virtual
address has been used from 0x2000000 to 0x2304000.
We map the FIFO from the 0x2c00000. And the first
page is mapped with the control information of the
FIFOs. And the FIFO data pages are mapped in
the sequence. Besides of adopting memory mapping
mechanism, the FIFO control operation is added.
The user can control the FIFO through ioctl() rou-
tine.

5 Usage

From the section 1 to section 3, we have showed
the principle and implementation of the XM-FIFO
V1.0, V2.0 and V3.0, including the difference in
three versions. In this section, we will demonstrate
how to use the XM-FIFO. XM-FIFOs from the V1.0
to V3.0 support a POSIX interface, so the simple
process can run on all three of them. In the usage
part, we will show how the Linux process and PaR-
TiKle communicate with each other. This section is
divided three parts, Linux process, PaRTiKle thread
and the limitations of the XM-FIFO usages. In the
demonstration, the PaRTiKle thread send data to
Linux process and the data will be printed on the
screen by the Linux process.

5.1 PaRTiKle Threads

For PaRTiKle, we create a
in the PaRTiKle examples directory: par-
tikle/user/examples/c_examples. If you create your
task in other path, the config file needs to be changed

new domain

domain.

$ vi fwirte.c

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#define fifo_dev "/dev/rtf0Q"

int main(int argc, char *argvsl[])

char message[] =
{"123456789012345678901234567890"};

int fd;

int i, j, ret;

if ((fd = open(fifo_dev,

O_RDWR, O_EXCL)) < 0) {
printf ("open device error\n");
return O;

}

for(i = 0; true; i ++) {
ret = write(fd, message, 20);
if(ret <= 0) break;

}
close(fd);
return O;

}

In the example, the task will write the message to
rtf0 uninterrupted until the fifo is full. Each time 20
Bytes are written into the fifo. It should be simple
to understand the code example but note that this
code is not clean. In the next part I will show the
Linux process source code.

5.2 Linux Processes

As in the PaRTiKle, the fifo reading program for
Linux is very simple too. Firstly, the Linux fifo de-
vice driver should be loaded to provide the rtf[0..15]
devices.

$ vi fread.c

#include <stdio.h>

#include <unistd.h>
#include <fcntl.h>

#define fifo_dev "/dev/rtfQ"

int main(int argc, char *argvsl[])

{

char string[40];
int fd, i;

int ret;

int total = 0;

if ((fd = open(fifo_dev,
O_RDWR, O_EXCL)) < 0) {
printf ("open device error\n");
}
string[39] = °\0’;
for(i = 0; i< 10; i++) {
ret = read(fd, string, 39);
if (ret <= 0) break;
printf ("%s\n", string);
}
close(fd);
return O;

Loading the PaRTiKle process and then execut-
ing the Linux process will result in the data written
in the context of the PaRTiKle domain to be printed
in Linux user space context.

5.3 Usage Limitations

The XM-FIFOs are still not perfect now. So in this
part, we will show the limitations in the XM-FIFO
usage.

e In the Version 1.0 and Version 2.0, the
open/close/read/write operations has been ini-
tialized, and in the Version 3.0, the flush op-
eration which can clean up the fifo was added
- necessary to ensure proper shutdown. Other
operation or system call are now not available
but simply the compile time settings apply (i.e.
fifo size). So the operations on the FIFO are
few, but enough for basic communication.

e Compile time fixed FIFO size. The size of
the FIFO is 4KBs. After the XM-FIFO mod-
ule is loaded, the size can’t be changed. An-
other limitation is the number of the FIFOS
which is currently 16. This limitation is not
considered that serious as in general real-time
systems have a-priory known and bounded re-
source demands.

e From XM-FIFO V2.0, we adopted the lock-free
mechanism, which has not resolved the prob-
lem of more than one task writing data at the
same time. So the user must avoid more than
one task writing to a fifo concurrently.

e XM-FIFOs are only non-blocking. This is dif-
ferent than the RTLinux/GPL FIFO which

will activate the rtf handler when FIFO is ac-
cessed - but this is a non-POSIX extension
in RTLinux/GPL and XM-FIFOs follow strict
POSIX API. A blocking semantics would al-
low to provide a similar mechanism as the
rtf_rt_handler in RTLinux/GPL via signal (i.e.
-EAGAIN).

6 Performance

From the above sections, you could see XM-FIFO
versions adopt different mechanism and slightly dif-
ferent capabilities. So the question is what impact
does this have on the FIFO performance, especially
the throughput and communication time. In the sec-
tion, I use the same test suit to test the XM-FIFO
throughput and communication time .

There are two parameters, average throughput and
minimum throughput. For every version, I test the
throughput when the data blocks size are 1, 2, 4, |
4096, respectively. The test suit algorithm is shown
below.

for(bsize = 1; bsize <= fsize; bsize *= 2)
avgs = 0;
mins = Oxffffff;
ret = 0;
for(i = 0; i < nts; i++) {

cycles = (fsize + bsize -1)/bsize;
rdtscll(st);
for(j = 0; j < cycles; j++) {
ret += write(fd, buf, bsize);
}
rdtscll(et);
t = ((et - st) * 1000000 / 1602116);
avgs += (fsize * 1000 * 1000 /t);
mins = (mins > (fsize * 1000 * 1000/t))

? (fsize * 1000 * 1000/t) : mins;
read(fd, rbuf, 4096);
}
avgs = avgs / nts;
printf("%lu %161lu %20lu\n",
bsize, mins, avgs);
}
1600000
1400000
1200000 | i
1ggn:gg ™ O XM-FIFO 1.0
bbbl W N-FIFD 2.0
B00000
100000 O MI-FIFD 3.0
200000 '_-_‘mJ'l
256 1

1 i 16 64 024 1092

FIGURE 8: The
put(K/S) of XM-FIFO

Minimum Through-

250000

=]

200000

150000 O 3M-FIFD V1.0
B M-FIFD V2.0
O XM-FIFD V3.0

100000

50000

oo o o o

FIGURE 9: The
put(K/S) of XM-FIFO

Average Through-

From Figure[5-1], we can find the throughput of the
XM-FIFO V3.0 is the highest, especially when the
block size is 1024Bytes. When the block is bigger
than 1024B, the throughput will decrease in the
worst case. The reason is the data transfer process
is interrupted. From the average throughput, we
can find the throughput is increasing all the time.
When the block size is bigger than 2048B, the chart
is smooth. The dispersion between V1.0 and V3.0
is decreased until block size is 4096B when V1.0
throughput exceeds V3.0.

There are two value max time and min time. For
each version, we test the communication time be-
tween tow domain. We also test this when the data
blocks size are 1, 2, 4, , 4096. The fundamental
principle is as following;:

Heigh prority domain 1low priority domain
clock_gettime
write fifo
nanosleep -——=> read fifo
clock_gettime

nanosleep
Then we can get a set of communication time and

get a interval which is [min, max] - the test data is
as following.

XM-FIFO Communication time min

45
40
354
B‘ 30+
5 x-
& 50
£
154
104
5
o
2 4 8 16 32 64 128 256 512 1024 2048 4096
Block size(Bytes)
FIGURE 10: communication min time
consumption

XM-FIFO Communication time max
55
50
45
40
354
304
254
204
15+
104

@ ersion L
W ersion 2
W =rion

time(usec)

o
2 4 8 16 32 64

Block size{ Bytes)

128 256 512 1024 2048 4086

FIGURE 11:

consumption

communication maxr time

We can see from the result of communication time is
almost the same in all three version. All of the three
version has a acceptable communication time in 10
microsecond level.

Further benchmarks on highly loaded systems,
especially with high priority domains/tasks running
that don’t use the XM-FIFO and observing the im-
pact of low-priority tasks heavily using the XM-
FIFO, on the high-priority domain is of interest. Our
expectation is that the lock-free mechanism will then
be of greater performance with respect to worst case
latency than the locking (V1.0).

7 Conclusion

XM-FIFO can be used as a reliable real-time capa-
ble IPC mechanism between domains, which can be
used to transfer data between real-time task and non-
realtime task located in different domains. And XM-
FIFO can connect all the domains together, which
resolves the communication limitations in the early
XtratuM version. The implementation of lock-free
mechanism could avoid priority inversion brought by
the lock-based mechanisms.

From the current performance test, we can get the
transfer throughput and communication time. We
must to get more information about the XM-FIFO,
especially compare with other FIFO tool. So in the
next step, we need to test the scheduler latency, and
compare XM-FIFO parameters with other real-time
FIFOs, such as RTLinux/GPL FIFO, RTAI FIFO
and L4-FIFO.

Blocking semantics is in discussion as well as how
to provide a better configurability of the fifo param-
eters within the constraints of the POSIX API. We
hope to merge the current V3.0 XM-FIFO implemen-
tation into the main-stream XtratuM/PaRTiKle de-
velopment trees as we believe it has reached a level

of maturity that is suitable for release to the free-
software community.

8 Acknowledge

Prof. Nichols Mc. Guire given us some important
technology support. XtratuM team from Universi-
dad Politcnica de Valencia, Spain, given our some
help on the PaRTiKle device driver and of course
for providing a XtratuM and PaRTiKle under a
truly free-software license. Last but not least DSLab
offered the necessary resource and appropriate envi-
ronment for the system development.

References

[1] Introduction to XtratuM,M. Masmano, I. Ripoll,
A. Crespo,2005

11

[2] An Optimistic Approach to Lock-Free FIFO
Queues, Workshop on Distributed Algo-
rithms,Edya Ladan-Mozes, Nir Shavit,2004

Wait-free synchronization,M.P. Herlihy, January
1991 ACM TRANSACTIONS ON PROGRAMMING
LANGUAGES AND SYSTEMS

Proceedings of the 16th IEEE Real-Time Systems
Symposium,James H. Anderson, Srikanth Rama-
murthy, and Kevin Jeffay, 1995, IEEE Cowm-
PUTER SOCIETY PRESS

Lock-Free Techniques for Concurrent Access to
Shared Objects,Dominique Fober Yann Orlarey
Stephane Letz, 2003

Linuz Device Drivers, Version 8,Jonathan Cor-
bet, Alessandro Rubini, and Greg Kroah-
Hartman, 2005 OREILLY MEDIA, INC

[7] http://www.ztratum.org

[8] http://www.e-rtl.org/partikle/

