
COTS Hardware and Free Software Components for Safety Critical

Systems in Developing Countries

D. W. Carr, R. Ruelas

Departamento de Ingenieŕıa de Proyectos, Universidad de Guadalajara

Apdo. Postal 307, C.P. 45101 Zapopan, Jalisco, Mexico

doncarr@gmail.com, rruelas@newton.dip.udg.mx

Raul Aquino Santos

Facultad de Telematica, Universidad de Colima

Colima, Colima, Mexico.

aquinor@ucol.mx

Apolinar Gonzalez Potes

Facultad de Ingenieŕıa de Mecanica y Electrica, Universidad de Colima

Colima, Colima, Mexico.

apogon@ucol.mx

Abstract

Traditionally, safety critical systems have been constructed from low volume hardware and software
components specifically designed for safety critical systems. Almost all are closed systems, and the exact
designs and source code are not available for analysis or comparison; we can only evaluate the reliability
based on published reports of accidents attributed to the control systems. These systems typically cost
into the tens of millions of dollars, and can easily run into the hundreds of millions of dollars, often
putting them out of reach in developing countries, or taking funding away from other projects where
more lives could be saved. It is the belief of the authors, that safety critical systems can be created from
high volume general purpose COTS hardware and open source components and be just as reliable as
traditional low volume hardware and closed source software components. We are in fact working with the
light rail system in Guadalajara Mexico, and have an agreement to develop various projects, including a
monitoring/signaling system using open source software licensed under the GNU General Public License
(GPL).

1 Introduction

Prices for safety critical systems remain out of
reach for many developing countries, or take money
away from other underfunded programs where many
lives are lost each year. We believe that sys-
tems constructed from COTS hardware and free
software components, together with application
modules written locally using N-Version program-
ming techniques[1][2][3], internal consistency checks,
world-wide peer review, and other techniques, can
obtain a level of safety similar to that of a commer-
cial system costing millions more. We do not have

any way of verifying the level of safety of commercial
systems, but in any case, given the number of lives
that could be saved with the savings applied to road
safety systems, improved traffic lights, better health
care, etc, there is almost no question that we can
save more lives with the same amount of money that
would go for a commercial system. And, given that
these kinds of real-time safety-critical systems devel-
oped and deployed locally can reduce dependence on
foreign technology and know-how, and also serve as
educational opportunities, the advantages of locally
developed systems based on COTS and free software
are many.

1



At the light rail system in Guadalajara, Mex-
ico, we have implemented two GPL licensed systems,
one to monitor the a pumping station and generate
alarms, and another to monitor the departures at the
four extremes of the current light rail system. The
second should be classified as a safety critical sys-
tem, since, operators will become dependent on it to
maintain the spacing of trains and thus the safety
of the system. Although we can not offer proof for
all of the varied circumstances, we believe that in
almost all developing countries, more lives can be
saved by spending less on proprietary safety critical
control systems, assuming that the savings are spent
in other areas that are currently under funded such
as health care, road safety, enforcement of speed lim-
its, etc.

2 Costs

Obviously, costs for proprietary safety critical control
systems can run into the tens or hundreds of mil-
lions of dollars. In one example that the authors are
aware of, a new light rail signaling system upgrade
was quoted at over 10 million dollars, when the cost
of hardware was independently valued at less then
300,000 dollars. This means that the combination of
hardware/software/installation is more than 9 mil-
lion dollars. The CBTC system that is being tested
on one line in New York City, has already cost into
the hundreds of millions of dollars. The question
we need to ask, is how much would these types of
systems cost if we could create open source versions
with all of the software and hardware design open
and based on COTS hardware. It should be rather
obvious that we can save at least on the order of
millions for each application, up to tens of millions
in some cases. For the light rail systems, the good
news is that after the first application, there are not
recurring software and hardware design costs, you
only have to pay for the new hardware, and the en-
gineering to apply everything to a new line.

3 Software Reliability

There has been a wealth of research in the
area closed source versus open source security
[7][8][12][9][10][11][13] that is also applicable to the
question of whether open source or closed source is
better for safety critical systems. This is maybe bet-
ter know as the security by obscurity debate. This
research differs in that almost all safety critical sys-
tems are kept on private networks and/or are physi-
cally isolated, and we are thus more focussed on the
correctness of the system than whether or not it is

crackable. We can not completely discount the pos-
sibility of a malicious person or persons gaining ac-
cess to the safety critical system, but, this definitely
changes the focus of the design where correctness of
the application becomes much more critical than se-
curity. Also, if malicious persons were able to ac-
cess the area of safety critical systems, it would most
probably be much easier to sabotage other physical
parts of the system, than to crack the software. Ac-
tually, according to Anderson [12], this should tip the
balance toward open source systems, as the reliabil-
ity gained by all interested parties in the world being
able to study the source code, is not offset as much by
malicious persons being able to use the source code
to formulate attacks, since safety critical systems are
on private networks and in any case, malicious per-
sons with physical access would find it much easier
to target other parts of the system than try to find
vulnerabilities in the software.

Just as with commercial software where there has
been a lot of foot dragging and cover-ups of software
defects, we expect this to be a problem for safety crit-
ical systems as well. This is actually compounded
with safety critical systems since the binaries are
even private, such that it would be quite simple to fix
safety critical bugs silently and privately. Commer-
cial software companies have been caught doing just
this, since the binaries are available and it is possible
to see the changes. We expect that there have been
many other incidents like this that have been rolled
up in service packs, and never disclosed. But, the
fact that this sort of thing can be done privately and
silently with safety critical software at the very least
deprives us of good knowledge about defects in pro-
prietary safety critical systems. A vendor that was
currently bidding on a large contract would be highly
motivated to reduce any bad publicity for instance.

One additional point with GPL software, is that
extensions to GPL licensed software can be kept pri-
vate, as long as they are not distributed, so that
critical parts of a security scheme could be kept pri-
vate for individual customers. As an example, for
a given system, we could use a custom message for-
mat and encryption methods to make it harder for
crackers able to infiltrate the network and send false
messages. The GPL version three actually extends
these abilities, allowing extensions written by third
party consultants to be kept private as well. Thus,
a certain level of ”obscurity” can be obtained even
with GPL licensed software.

2



4 Software reliability of code

specific to the control system

that is not high volume free

software

Obviously, the part of the code specific to the safety-
critical control system will be low volume. With
time, we expect that there will be widely used safety-
critical control systems, but they will never achieve
the level of use for other types of free software com-
ponents. So, for these low volume pieces, we will use
N-Version programming techniques [1][2][3], internal
consistency checks, word-wide peer review, design
patterns, avoid known dangerous coding practices
and constructs, avoid known dangers system calls
and library functions, and just good programming
practices in general. We hope that the world-wide
peer review will also greatly increase the safety of
these low volume free software based components as
researchers and other interested parties world wide
review the code. We are hoping that Universities will
review this code since, previously, there has been
almost no safety critical software available for stu-
dents and researchers to analyze. Even old decom-
missioned software systems are not made public and
kept private, possibly for fear of being embarrassed
by researchers on the outside from finding defects,
and also fear of legal liability. In any case, the com-
plete lack of public review in our humble opinion ac-
tually reduces the safety of systems and allows ven-
dors to hide defects and silently repair safety-critical
issues.

5 Hardware reliability

To achieve the level of hardware reliability required
by safety critical applications there are a variety of
vendors supplying COTS hardware that has been rig-
orously tested to destruction [14], and is high volume.
This high volume of systems sold gives an advantage
to COTS systems over custom low volume hardware
that is not as extensively customer tested in as many
diverse applications. The same can be said for high
volume free software components that are not only
tested by millions of customers world-wide in many
varied conditions, but the actual source code can be
reviewed without restriction by any interested par-
ties world-wide.

6 Conclusions

Prices for safety critical systems remain out of reach
for many developing countries, or take money away

from other underfunded programs where many lives
are lost each year. We believe that systems con-
structed from COTS hardware and free software
components, together with application modules writ-
ten locally using N-Version programming techniques,
internal consistency checks, world-wide peer review,
and other techniques, can obtain a level of safety sim-
ilar to that of a commercial system costing possibly
tens or hundreds of millions of dollars more. In any
case, given the number of lives that could be saved
with tens or hundreds of millions of dollars applied
to road safety systems, improved traffic lights, bet-
ter health care, etc, there is very good possibility
that we can save more lives with the same amount of
money that would go for a commercial system. Since
these kinds of real-time safety-critical systems de-
veloped and deployed locally can reduce dependence
on foreign technology and know-how, and also serve
as educational opportunities, there are many other
advantages for locally developed systems based on
COTS hardware and free software components.

References

[1] A. Avizienis, 1995, The Methodology of N-
Version Programming, Software Fault Tol-
erance, Ch. 2, John Wiley & Son Inc,
pp23–46

[2] J. Dugan and R. Lyu, 1994, System Reliability
Analysis of an N-version Programming Applica-
tion, IEEE Transactions on Reliability,
Vol. 43, No. 4, pp513–519

[3] L. Hutton, 1997, N-version design versus
one good version, IEEE Software, Novem-
ber/December 1997, pp71–76

[4] D. W. Carr, R. Ruelas, J. F. Gutierriez-Ramirez
and H. Salcedo-Becerra, 2005, A Communica-
tions Based Train Control System Using a Mod-
ified Method of N-Version Programming, Con-
greso de Instrumentación (SOMI XX),
León, Gto., Mexico, 2005.

[5] D. W. Carr, R. Ruelas, J. F. Gutierriez-Ramirez
and H. Salcedo-Becerra, 2005, An Open On-
Board CBTC Controller based on N-Version
Programming, Proc. IEEE International
Conference on Computational Intelli-
gence for Modelling Control and Au-
tomation (CIMCA’05), Vienna, Austria.

[6] H. Salcedo-Becerra, D. W. Carr, R. Ruelas, G.
A. Ponce-Castaeda, 2006, Performance Moni-
toring for the Light Rail System in Guadala-
jara, Mexico Int. Conf. on Dynamics, In-

3



strumentation and Control, August 13-
16, 2006, Querétaro, Mexico.

[7] Ross J. Anderson, Security Engineering: A
Guide to Building Dependable Distributed Sys-
tems, Wiley, ISBN: 978-0471389224, 640
pages

[8] Ross Anderson, Security in open versus closed
systems the dance of Boltzmann, Coase and
Moore Conference on Open Source Soft-
ware Economics, Toulouse, France, 2002

[9] Jaap-Henk Hoepman, Bart JacobsSoftware
Security Through Open Source April, 2005,
http://citeseer.ist.psu.edu/hoepman04software.html

[10] Eric S. Raymond,The Cathedral & the Bazaar,
Musings on Linux and Open Source by an Ac-
cidental Revolutionary,O’Reilly & Assoc.,
1999, http://www.oreilly.com/catalog/cb/

[11] Crispin Cowan, Software Security for Open
Source Systems, IEEE Computer Society,
IEEE Security & Privacy, 2003

[12] Ross Anderson, Open and Closed Systems
are Equivalent (that is, in an ideal world),
http://citeseer.ist.psu.edu/668772.html

[13] Marit Hansen, Kristian Khntopp, Andreas
Pfitzmann, The Open Source Approach - Oppor-
tunities and Limitations with Respect to Secu-
rity and Privacy, Computers and Security,
2002, pp461–471

[14] Report on Highly Accelerated Life Test (HALT)
for the Technologic Systems TS-7250 conducted
from February 21st through 23rd, 2006, at Qual-
Mark Labs in Santa Clara, California

4


