
Exploiting the hard realtime features of PROFINET

by a real-time capable Linux

Karl-Heinz Krause

Siemens Automation and Drives

Advanced Technologies and Standards

A&D ATS 1, Gleiwitzer Str. 555

90475 Nrnberg, Germany

Karl-Heinz.Krause@siemens.com

Abstract

A PROFINET system built out of ERTEC Switch ASICs allows to keep the nodes of a network syn-

chronized with an accuracy below 1sec. While still allowing regular IP communication, it also guarantees

the timely arrival of cyclic messages below that mark. These features are particularly required for the

motion control part of automation systems.

The talk starts with browsing through the essentials of PROFINET and the ERTEC ASIC which

provide the real time capabilities. When connecting such an Ethernet controller as the ERTEC to a host

processor, the hardware interfaces also have a significant impact on the real time behavior. These issues

are discussed. Then all the measures for providing the best possible real time response for a Linux user

level program are presented. This includes the basic features of the chosen two-kernel approach as well as

the functional enhancements necessary for meeting the specific requirements of drive control applications.

Finally, the achieved performance data are presented.

1 Introduction

How can we apply the general definition of hard real
time to communication over potentially unreliable
communication lines? Is it possible to guarantee the
arrival of a message within a certain time span or
more precisely since we are talking about hard real
time as required for automation systems within a
time span of a few microseconds? The answer is sim-
ply no we cannot. If a message is guaranteed to ar-
rive, then we cannot make any time guarantees. For
a guaranteed time span of arrival, we cannot guar-
antee that a message arrives at all. That is the ba-
sic fact we have to live with and the ERTEC ASIC
acknowledge this. The arrival of a real time mes-
sage gets monitored, if it hasn’t arrived within the
expected time span it can get signaled, so that coun-
termeasures can be taken. Such a mechanism is not
only due to unreliable communication lines, it is also
necessary in a distributed system in general where a
node must also continue operation when cooperating
nodes fail.

2 ERTEC Real Time Commu-

nication

As a consequence of the above fact, two types of
communication are supported by the ERTEC switch
ASIC. According to the cyclic model of operation
for (digital) drive control loops the time axis of a
PROFINET communication line is also partitioned
into cycles. One phase of a cycle is reserved for spe-
cial cyclic communication, the remaining part is free
for regular (sporadic) communication and it is one of
the very fundamental features of an ERTEC ASIC,
that it guarantees that frames of regular communi-
cation can never penetrate into the phase for cyclic
communication. Thus for cyclic communication for
each cycle a certain data volume is guaranteed to
be transferable. It should be noted that this model
works only for full duplex communication lines. The
cyclic communication itself has four important fea-
tures:

• It is planned communication. That means that
all of the frames fit into the phase and all the
ERTEC-switches involved into the communica-

1



tion transactions guarantee that the frames are
propagated within that phase or more precisely
exactly at predefined points in time within that
phase. .

• Received frames are not processed individually
by a communication stack. The payload of a
received frame gets written directly to a prede-
fined location as specified by its frame ID. The
frame of a new cycle simply overwrites the data
of the previous cycle. Additional measures o
provide for the discovery of missing frames.
Here the user can specify the number of subse-
quent missing frames he is willing to tolerate.
o allow for redundant transfer. A frame may
get transferred redundantly over different com-
munication lines. The update of the location
at the destination is only done once per cycle.

• When all of the expected cyclic frames should

have arrived, a specific interrupt event is set
and the CPU is notified, bypassing all the com-
munication stack based processing of regular
frames. For the ARM CPU built into the
ERTEC the interrupt controller can be config-
ured such that this interrupt event can be sig-
naled completely independent of all other com-
munication events, providing the best possible
HW-foundation for hard real time response.
For a host CPU connected via PCI to the
ERTEC, the independence is somewhat limited
by the shared interrupt line.

• An application program processing the data of
such a frame or a set of frames may work either
synchronously or asynchronously to the com-
munication cycle. For drive control applica-
tions the former one is of interest. Here super-
vision for timeliness is the important feature,
meaning that an application needs to signal to
the ERTEC that all incoming frames are pro-
cessed and the data for all outgoing frames are
ready. If this is not done in time, an inter-
rupt will be generated and the outgoing cyclic
frames are marked as invalid.

The functions of PROFINET communication
which use the other phase of a cycle are not of inter-
est for this talk and therefore will not be discussed.
Also not touched here is – although it might be
of interest – how the sub microsecond accuracy of
time synchrony over a large number of switch hops
is achieved.

3 Requirements of Drive Con-

trol Applications

Drive control applications employ a cyclic model,
with nested periods and phase shifts over a wide
range of periods. The shortest period length is usu-
ally 31,25 sec. Translated into requirements for an
operating system this means that an operating sys-
tem has to provide for the very efficient repetition
of timer triggered activation patterns. A repetition
which needs to be synchronized with some exter-
nal device period, e.g. a 1 millisecond PROFINET
communication cycle provided by the ERTEC switch
ASIC.

As the figures of 31,25 sec minimal period length
and 1 sec time accuracy indicate, this application
area has the strongest performance and jitter require-
ments. This does not necessarily directly translate
into mandatory requirements for a general purpose
computer system. A very specialized subsystem may
deal with the lowest 31,25 sec cycle, latches con-
trolled by ERTEC hardware signals may provide for
the 1 sec accuracy. But the more we can achieve with
cost effective standard hardware the better. Besides
cost effectiveness the requirement for such embed-
ded systems to operate without forced cooling often
doesnt allow to use processors with highest perfor-
mance. Because of that the call for best possible
exploitation of a given hardware by the operating
system stays a permanent quest.

Finally as a last requirement when talking about
implementation the word ”application” has to be
taken literally in the sense of application mode. The
developers of application packages don not want to
deal with low level driver and kernel development,
they want to develop at the regular user level or more
precisely write regular application programs based
on the glibc. This leads automatically to the evalu-
ation of the API, what parts of the API need to be
used and therefore are critical with respect to per-
formance and jitter.

4 The API

The POSIX-API as defined today and provided by
the Linux kernel through the glibc accommodates
various programming models. Therefore it provides
for a lot of partially redundant functions and – al-
though some parts of the POSIX API are labeled as
”realtime” – is definitely not designed with real time
as its focus. Fortunately real time applications, in
particular the time critical part of them, need only
very few functions. So when picking the needed sub-
set, some performance/realtime biased selection can
be done. Because of the time based activation pat-



terns mentioned above, the API for the notification
of a user program when a timer fires is most critical
for best possible real time response. Unfortunately
neither the POSIX definition nor the glibc implemen-
tation are suited for that. The good news is, it can
be fixed easily. The recipe in short is:

• Do not use the process wide signalling
(SIGEV_SIGNAL) and forget about signal han-
dlers for asynchronous events. Both together
constitute one of the most indeterministic con-
structs of the POSIX-API.

• Instead of this, make available at the API
what the Linux kernel provides, sending
a queueable signal to a specified thread
(SIGEV_THREAD_ID). All that this needs is
an additional glibc function which we called
sigevent_set_notification()which param-
eterizes the sigevent object accordingly1.

Having done this, the programmer works with
the regular POSIX API meaning he creates a
timer with a timer_create() call, arms it with
timer_settime() and waits for it to fire with one
of the sigwait calls (sigwait(), sigwaitinfo(),
sigtimedwait()).

With this cure we have not only picked the
fastest and most deterministic solution available in
the Linux domain; as shown later, further improve-
ments are possible when implementing only this sub-
set of signalling.

What about the repetition of activation pat-
terns? Setting up a one shot timer for every action
again and again is too expensive. On the other side
we cannot simply set up periodic timers since all of
the actions need to be resynchronized at the begin-
ning of each external period. The best way to do this
turned out to introduce a new clock type. POSIX al-
lows for having additional clocks but doesnt specifiy
how to bring it in. So an additional API call

clockid_t register_clock(

int fildes, int type,

struct itimerspec *clock_spec);

was added. It gets mapped to an ioctl() and
allows to add a new clock type CLOCK_SYNC, where
the clock event of a device indicates the beginning of
a new period. The specifics for timers based on that
clock are

• When setting a timer with timer_settime()

the element it_value of struct_timespec

specifies always a value relative to the begin-
ning of a period.

• Timers dont get armed with timer_settime(),
they get armed by a subsequent
clock_settime() call. This allows to start
a group of timers synchronously.

Again once a clock is registered, the program-
mer sees and uses only the standard POSIX API for
timers.

Having standardized on sigwait() calls for re-
sponding to asynchronous events , we can make IO-
events in general available through this interface.
Therefore we added the call

int event_create(int fildes,

struct sigevent *restrict evp,

eventid_t eventid);

which tells a driver via ioctl() to prepare for
that.

5 Kernel Implementation

For best possible performance, latency, and jitter
figures we picked a two kernel approach. Thanks
to the model of a multithreaded process – which is
now standard for the Linux kernel and the glibc –
the existence of the second kernel could be made al-
most completely transparent to the user. For a spe-
cially marked process the real time kernel handles the
threads above a certain static priority. The trick is to
have the real time kernel offering exactly the same
low level system call interface as the Linux kernel.
Even the glibc is not aware under which scheduler a
thread is executing code. Exactly the same syscall
interface does not necessarily mean that the real time
kernel must comprise all the functions a Linux ker-
nel offers. In fact the real time kernel is really tiny.
For a x86 architecture it only needs 17kB of code.
This is made possible by the fact that the execution
of the time critical application code needs only min-
imal functionality. The majority of system calls is
only needed during the setup phase. But this phase
is not time critical. Therefore the real time kernel it-
self supports only a minimal set of system calls: basi-
cally timers, thread synchronization/communication
and scheduling. For the execution of all the other
calls e.g. for socket based communication or for file
access the ”real-time” thread runs temporarily under
the control of the Linux scheduler.

The real time kernel can be a dynamically added
module. Thanks to the transparency the same bi-
nary of a real time process runs on a system with or
without real time kernel. To allow for a very fast im-
plementation of the mentioned subset of signalling

1In addition it allows for supervision of timeliness, meaning detecting the situation that the timer fires and the specified

thread is not already waiting for that event.



in the real time domain one restriction was put in
place: There is no signalling across domain bound-
aries, a timer created in the real time domain can
only send to a real time thread, a timer created in
the Linux domain can only send to a Linux thread.

For all that, the modifications we had to do to
the Linux kernel and to the Ipipe patch have been
really only minor. Only the POSIX message queues
experienced some more changes.

6 The ERTEC Device Driver

As mentioned earlier, after all the expected cyclic
frames have been written to memory by the ERTEC
an interrupt event gets created. This bypassing of
all the protocol stack based communication – may it
be TCP/IP or may it be PROFINET –needs to be
reflected in the interrupt handling of the kernel as
well. Handling of the real time events has to be done
in the real time domain, protocol handling needs to
be done in the Linux domain. For such dual domain
drivers a rt_request_irq() call is provided which
specifies two ISRs, a primary one for the real time
part oneand a secondary one for the non real time
part. The primary one has to deal with the real
hardware e.g. interrupt status word of a device and
to maintain a ”virtual interrupt status” in memory
for the non real time ISR. So after having dealt with
the real time interrupt events, if the real time ISR
detects that the status word still contains non real
time interrupt events it will notify the non real time
ISR by executing a call execute_nonrt_handler().

Since the real time modules is dynamically load-
able and can be brought in later, transparency has
to be maintained also at the driver level. The noti-
fication function takes care for that. If the primary
ISR turns out to be the regular Linux ISR, then the
notification function automatically shrinks to a syn-
chronous procedure call. For drivers which have only
a real time part the rt_request_irq() specifies only
one ISR which – depending on the presence of the
real time domain – is either installed in the real time
domain or the Linux domain.

It is important to mention that the hard real
time capability can only be maintained if the primary
ISR does the complete handling of the physical IRQ;
in other words, the interrupt must be armed again
when leaving the primary ISR. Therefore secondary
ISR gets notified via a ”virtual IRQ” and deals with
virtual interrupt status words only. This also im-
plies that real time capability cannot be achieved for
shared interrupt lines.

7 Performance Figures

The first set of measurements covers two
threads communicating with each other either via
semaphores or via POSIX message queues. The
measurement covers the three constellations

• Linux thread – Linux thread

• Linux thread – real time thread

• Real time thread – real time thread

The significant improvement seen in the real time
domain for the semaphores is caused by two facts:
shorter scheduling path and local futexes. For the
POSIX message queues there is only a moderate im-
provement since both domains employ the same code
path. Only the scheduling path is shorter. Wak-
ing up a Linux thread from the real time domain
takes more time since first a switch to the interrupted
Linux thread must be done and from there a switch
to the woken up thread.

The efficiency of CLOCK_SYNC timers compared
to regular CLOCK_REALTIME timers can be evaluated
by running a certain test activation pattern for some
specified time and have a low priority thread gath-
ering the left CPU time. With a CLOCK_SYNC based
solution, significantly shorter periods can be reached
before the accumulated time decreases sharply.

For response times first the response to a virtual
interrupt was measured with the help of the time
stamp counter. For that interrupt the minimal time
is shown for a couple of reasons:

• It is a good figure for comparing code path
length.

• For high frequency interrupts the average time
is close to the minimal time and therefore a
good figure when estimating loads

• For multicore systems with dedicated proces-
sors and private caches and tlb the maximal
time may approach it.

The maximum time was also measured across
various loads and interrupt frequencies. Although
this is the figure a real time user is ultimately inter-
ested in, it is not particularly useful for general use.
It depends to much on the specific underlying HW
components (graphics board, DMA, etc.).

Second the response to the cycle interrupt of an
ERTEC board connected via PCI to the host com-
puter was measured. Taken for measurement was the
ERTEC counter which causes the cycle interrupt. It
has a 10 nsec resolution. Although the code path
length is about comparable to the virtual interrupt



scenario, the lead time to the beginning of the ISR
is significantly longer. Of course we had a different
load. We intentionally took a KVM patched kernel
running a Windows XP allocating 512 MB of mem-
ory. This was to demonstrate the good isolation pro-
vided by the Ipipe-virtualization layer. There is no
significant difference for minimal ISR time. In other
words the time needed to get through the ERTEC,
the PCI-bridges, the interrupt controller and execut-
ing the interruption dominates. Other things worth-
while to mention are:

• The slightly larger numbers for SMP-
operation, which are basically due to the more
expensive spinlock.

• The decreased sensitivity to load when one
CPU is dedicated to the real time process for
exclusive use.

How important an efficient connection to a host
is, is highlighted by the fact, that reading out an in-
terrupt status word from the ERTEC takes almost
1 sec, a time span in which a middle class PC can
execute more than 1000 instructions. Luckily, inte-
grated into the ERTEC ASIC is an ARM 946. In case
of an additional host processor the ARM 946 may
be used to bypass this bottleneck by having the inte-
grated ARM 946 to maintain interrupt status words
directly in main memory and to start interrupt no-
tification for cycle begin in advance. This cuts lead
time2 as well as the time of useless spinning. If the
real time Linux system runs directly on this inte-
grated ARM 946, the relations change drastically.
On the one side the access times to ERTEC registers
are much shorter and have less jitter. On the other
side instruction execution takes much longer due to
a 150 MHz CPU clock and a less powerful interface
to memory.

2To what extent an MSI-based signalling of a PCIe card can further improve the behavior still needs to be evaluated. At

least the nasty shared interrupt lines will disappear.


