
Linux for Safety Critical Systems in IEC 61508 Context

Nicholas Mc Guire
Safety Coordinator OSADL

Distributed and Embedded Systems Lab

Lanzou University

safety@osadl.org

Abstract

”If computers systems technology is to be effectively and safely exploited, it is essential that those

responsible for making decisions have sufficient guidance on the safety aspects on which to make these

decisions” [IEC 61508-1 Introduction]
Is there enough guidance on COTS/OSS ?
The simple answer is no - but IEC 61508 is designed in a relatively open way - considering when it

was written and that the authors were aware of a standard needing to be flexible enough to accommodate
emerging technologies without breaking the fundamental concepts. ”...has been conceived with a rapidly

developing technology in mind...” [IEC 61508-1 Introduction]
So are the fundamental concepts of IEC 61508 applicable in COTS/OSS based systems ?
There is no simple answer to this one - but we believe it is yes.
In this article we will point out some main issues of using COTS/OSS software in the context of 61508

(and derivative) compliant safety-related systems. We will sketch what basic arguments are available, what
the shortcomings of GNU/Linux and specifically of the Linux kernel are and what is available to address
these shortcomings. Then we follow 61508s criteria and see what fits and what could be problematic
followed by a brief outline of a general strategy in developing of COTS/OSS based safety cases based on
the concept of cross-mapping application sector specific standards, concluded by a somewhat speculative
view of in what direction we believe standards are developing and why this is good for COTS/OSS.

1 Introduction

The issue of using COTS software component is of
quite general interest for the past 10 years at least.
One can see not only in articles [7] [6], reports, i.e.
by HSE [8] [9] as well as recent publications on use
of COTS/Linux [?] [4], but also in standards that
evolved around IEC 61508, that there is a continu-
ous growing interest in finding safe strategies to in-
tegrate COTS software into safety critical systems.
Open-Source is a special case of COTS software, in
some respect better suited for validation and verifi-
cation in some respect skeptically observed because
of the lack of a formal vendor and the typically as-
sociated information available for products.

In this article we outline 61508 and its related

standards in a very brief way, the relevance of this
relation for efforts to integrate OSS components -
specifically GNU/Linux - in 61508 context, and try
to outline possible paths to guide such activities
through 61508.

It should be noted that this paper is neither
claiming that a particular OSS component can un-
der all circumstances be included nor are we claiming
that OSS is ”the better solution” by any principal -
it has its potentials and it has its shortcomings - in
a safety context this means managing it just like any
other component and adjusting strategies to select
the right components for a give system.

As we are only interested in software in 61508
context we give a very rough overview of 61508 here
to set the context for the discussion following:

1

FIGURE 1: 61508 big-picture (SW only)

2 Proven-in-use

While many people have a gut feeling that
GNU/Linux is maturing and has a de-facto test-
coverage that is superior to commercial counterparts
- there obviously are problems quantifying this relia-
bility. In this section we will first look at factors we
consider supporting GNU/Linux in safety critical ap-
plications and then look into the problem areas that
could be show-stoppers in some cases. Before we do
that we would like to point out the safety related de-
velopment in GNU/Linux that happened basically
due to many of the needs of safety related systems
matching with general needs of complex systems and
high-availability in specific.

Although this should be clear, we will explicitly
state here that proven-in-use for Linux, only based on
”operational evidence” will not suffice to argue SIL1
or higher. The proven-in-use argument based only
on operational hours and 10 use-cases (61508-2) are,
in our opinion, quite clearly aimed at low-complexity
hardware and not at a highly configurable and vari-
able software as versatile as the Linux kernel.

2.1 GNU/Linux evolution

[?] published a study on Linux for safety criti-
cal systems identifying a number of problem areas
and giving a carefully positive conclusion on using

GNU/Linux in SIL1 and SIL2, with SIL3 being at
least problematic. Many of the questions raised in
the study, related to the 2.4.X series of kernels, have
been addressed in 2.6.X - not due to the requirements
of safety systems though. The main shortcomings
identified by Piercen were:

• Tractability of the source code, documents and
specifications

• There is no single specification

• Lack of hard real-time capability (temporal
predictability)

• There is only limited overload tolerance

One of the main conclusion: Linux is not suitable
for SIL4.

Aside from the problem that SIL3/SIL4 in this
publication is not really clearly defined (multiple
standards are listed - some of which don’t specify
SIL4 level (i.e. 61511/6261) - the criticism is not only
well established but also quite clearly attributable to
Linux 2.4.X ”qualities” or rather the lack of these.
The evolution of Linux in the 2.6.X kernel series, es-
pecially since the introduction of git [2] and a well
defined kernel development life-cycle along with the
technological advances in the area of real-time and
improvement of robustness relativate much of the
criticism expressed. The issue of the non-existing

single specification is of course still valid - but that
is an inherent property of many aggregated safety
critical systems that utilize COTS components (i.e.
IEC 6261 Clause 6.5). It should be noted though
that Linux is targeting POSIX:

What is Linux?

Linux is a clone of the operating system

Unix, written from scratch by Linus

Torvalds with assistance from a

loosely-knit team of hackers across

the Net. It aims towards POSIX and

Single UNIX Specification compliance.

This does not mean that Linux is well specified (at
least not in 61508s sense of well specified) - but it is
highly questionable if COTS OS, based on UNIX, used
in safety-related systems had much more of a specifi-
cation that Single Unix Specification - and with the
availability of test-suits and regression tests focused
on the single-unix specification [3] we believe this pro-
vides a acceptable mitigation to this problem - pro-
vided of course restricted use is applied in application
context. Note especially that susV is an accepted IEC
standard [ISO/IEC 9945-2003] that actually includes a
rational....

2.2 61508 Criteria

61508 and its derived standards are a bit obsessed with:

• system size

• system complexity

• novelty of design

• novelty of technology

These for items are cited over and over though all
of 61508 and derived standards as ”depending on....”.
If we look at Linux with these criteria we would make
the following claim:

• Linux as a system component is large , by 61508
standards huge (note annex E of 61508-6 refers
to a COTS kernel with 30000 LoC...off by two or-
ders of magnitude. Though the size of the Linux
kernel core is actually not that large:

Though still large - this conservative estimation
indicates that Linux source is not any where near
the 5million lines of code that can be found as
claims on the Internet. Linux is currently 24 main
CPU families with hundreds of CPUs supported
- de facto even the above estimation of all LoC
in arch/i386 being included in the kernel binary

is unrealistic even with an excessive configura-
tion. The real size of Linux comes quite close to
the COTS kernel mentioned in 61508-6 sample
safety-case for SIL3 (appendix-E).

• Linux kernel is complex - I doubt anybody will
dispute this even if we give no evidence here.
But depending on the software architecture the
internal complexity may not be that relevant
in some cases. IEC 62061 allows subsystem-
elements (software components) of high internal
complexity to be treated as low-complexity sys-
tems provided it complies with IEC 61508-2/3
and ”...its relevant failure modes, behavior on de-
tection of a fault, its failure rate and other safety-
related informations are known..” [IEC 62061
Clause 6.7.4.2.3].

• The design is conservative and has a long his-
tory - it hardly qualifies as revolutionary when
it comes to design - monolithic kernel model is
roughly 1970, primary design decisions follow the
needs of the guiding standards like POSIX (which
also does not qualify as revolutionary).

• Linux developers are conservative with respect to
technologies used - much of the concepts mov-
ing into the kernel now have been published be-
fore Linux 0.1 was released in 1991 ! The actual
implementations are of course not simply ports
of old implementations - but the technologies
that do go in are well tested and well understood
(though there surely are exceptions).

So we believe that the focus of supportive evidence
will need to be rested on justifying why the complexity
and sheer size can be accepted - this is non-trivial and
should not be underestimated. Mitigation of the first
two clearly are:

• Level of documentation - there hardly is any ker-
nel around that is documented as rigorously as
the Linux kernel, both at the general level as well
as the detailed implementation level.

• Tractability of the Linux kernel - especially in
2.6.X has been improved to a level that makes
the size manageable - but companies must be well
aware of the need to invest in there engineers.

2.3 Non technical issues

A issue, to our knowledge typically underestimated or
plainly ignored is listed in Appendix B of 61508-1 in de-
tail - the issue of ”..the training, experience and quali-
fication of all persons involved...” - OSS is a paradigm
change mandating an appropriate response. I person-
ally would claim that the probability of a OSS/COTS

based safety-related system failing is at least equally
probable due to the lack of understanding of the nature
and specifics of OSS as it is with respect to standards
and regulatory issues.

The move towards OSS in safety-related systems
must be managed just like the introduction of any
fundamentally new technology - underestimating the
specifics of OSS, or assuming that experience in overall
safety-related systems is sufficient is one of the critical
points in the process of introducing OSS.

Critical issues we will briefly note here are:

• adhering to the rules of the community to actu-
ally get access to the claimed benefit of OSS -
i.e. peer review nature of the community.

• the issue of highly asynchronous development -
OSS systems like GNU/Linux are built of a large
number of packages developed independent, at
different speeds and not ”bundled” like classical
proprietary vendor provided environments.

• fundamental change of tooling in OSS - there is
no point in trying to run a OSS based develop-
ment if the management refuses to accept cur-
rent technologies like git. Such refusals can put
a tremendous burden on the project management
and reduce accessibility to safety related informa-
tion in a critical way.

• OSS selection ”..selection based on prior use..”
[61511] or ”Requirements for selection of existing
(pre-designed) subsystems” [62061 6.7.3] must
be investigated - typically these sections were
not consulted in bespoke software life-cycles and
there is insufficient established practice - these
processes must thus be expected to be relatively
slow during the first projects.

• In general one should expect that there is a cer-
tain shift in the SW life-cycle, if OSS is to be
utilized, towards the investigation phase or teams
will suffer the classical ”reinvented wheel trauma”
- typically resulting in triangular wheels.

• Community interaction - commercial entities
need policies to interact with the community -
it is absurd to utilize OSS and prohibit employ-
ees from joining the respective community mail-
ing lists - this is though not that uncommon !

• The inherent danger of de-coupling from the
community effort ”because there work did not fit
our needs” - well thats no how it works and trying
to go that path will easily cause a fork, resulting
in loss of arguments for proven-in-use

Without claiming completeness here - this is just a
short rant to call to your attention that OSS is not sim-
ply a pool of freely available code but that it is much
more - it is a fundamental decision that is needed early
in the project life-cycle if a OSS based project should
be successful.

2.4 Available evidence

The specifics of the development cycle of GNU/Linux
mandate a certain set of tools so that development does
not fall apart. By all standards of company practice I
would claim that the development of Linux kernel by
now has a level or rigor that is quite hard to find in
industrial projects - this is not only due to the sheer
size and complexity, but also to the very wide platform
support and the large number of independently operat-
ing individuals and groups. We see some developments
in Linux that facilitate high-quality evidence - some of
these developments are:

• advances in the kernel software life-cycle:

– introduction of subsystem maintainers

– developer branches and arch branches
for early testing of features (i.e.
arm.linux.org.uk)

– well defined experimental tree (-mm) and
the introduction of the merge-window

– early testing in the release candidates (rcX)

– and long term road-maps for feature intro-
duction (i.e. RT-preempt is being merged
in steps since early 2.6.X)

• high-level management elements introduced in
2.6 - beyond LKML

– Annual kernel summit for strategic decisions

– domain specific groups (i.e. CELinuxForum
Architecture Group for consumer electron-
ics)

– Auditing introduced for critical API (i.e.
raw spin lock usage)

– change-log management

– improved maintenance of kernel specific
information (i.e. lwn.net, kerneltrap.org
changelogs)

• Testing and validation

– critical resources include built-in-tests (i.e.
RCU torture test, lock-dependency valida-
tor), especially in 2.6.X the development of
built-in-tests have resulted in detection of
a large number of bugs without that these
ever struck in the field.

– Linux Test Project (LTP) providing a high-
level test-coverage of the Linux kernel [1]
providing roughly 3000 tests for the Linux
OS (ltp-20070831)

– crackerjack - kernel code coverage test-suit

– http://test.kernel.org - Autotest is a
framework for fully automated testing of the
latest linux kernel releases - published on-
line and available to the public.

– POSIX test-suit

Along with this we see the tendency to actually
enforce long standing policies like kernel coding rules,
in-source documentation (i.e. which commercial ker-
nel can compete with ”make psdocs” ?). These devel-
opments are not targeting safety critical systems, but
are rather the consequence of the way the development
is organized, the ”loose gang” of developers only can
succeed in a project of this complexity by adhering to
a very strict set of rules regarding source management
and software modification.

3 Strategy for Justification

61508 does not fit OSS/COTS that well - in part be-
cause it is a high-level approach towards functional
safety that is not based on constraints like ”fail-safe”
or ”low demand mode” only - thus many of the require-
ments will not be found in the application sector specific
standards while the overall justification methodology
does continue to adhere to 61508.

Application domain specific standards like
50128/62061/61511/etc. are based on consensus of
industrial users of these standards and anticipate cover-
ing the ”mainstream” of the respective domain. While
this strategy is quite obviously sensible, to prevent
special case overload in standards, it does raise the
question how to handle cases that are not explicitly, or
worse, not even implicitly, covered by the standard. In
this case we propose the following strategy:

• select one of the other domain specific standards
that better fits your application context (reac-
tive/composite safety, level of complexity, mode
of failure (i.e. fail-safe), etc.)

• derive the justification according to this domains
standard model, of course adjusting it to the
specifics of the domain under consideration where
needed.

• argue (”justify”) the non-standards compliance of
the safety case based on the procedure being de-
rived from the same top-level standard (61508)
and the respective SIL claims of the standards

(which basically are in sync with minor varia-
tions).

This proposal only makes sense if we also pro-
vide guidance of what could be the suitable ”cross-
selection”. This is work-in-progress and definitely not
completed, but we do believe that we can give some
guidance that is of help.

It should also be noted that Linux has be certified
in projects that conform to other standards (i.e. ATC
systems guided by CAP 670), and this, though based
on a completely different standard, does constitute a
strong indication of the maturity and the available evi-
dence base (CAP 670 is a evidence based safety case).

3.1 Relation of Standards

To show the relation of application sector standards we
of course need to show the relation to the top level first
- the top level is not 61508 (which is limited to func-
tional safety), rather it is overall safety in the context
of social, economic and regulatory constraints.

The three main influences on any overall safety con-
cept will be social, economic and regulatory issues. I
guess regulatory and economic issues are quite self ex-
planatory - the issues of social influence is at the core
of risk-assessment, fundamentally tolerable risk is the
guiding term that is deeply routed in the societies ac-
ceptance of risk, thus changes - and we have seen fun-
damental changes in the past 10 years - in the accep-
tance of risk in society will influence the directions of
safety standards and the interpretation.

61508 it self is covering one part of overall safety
”functional safety”. As a procedural safety standard it
starts out with rules on documentation and manage-
ment of functional safety which are the foundation of a
procedural safety approach. The actual core of 61508
then starts in section 7 of 61508-1 that outlines the
safety life-cycle. Following the basic pattern of the ini-
tial part of the safety life-cycle:

• Develop safety requirements (Clause 7.1-7.5)

• Allocate safety functions to systems (Clause 7.6)

• implement systems (Clause 7.10)

As 61508-1 is not concerned with the specifics of
safe implementations but rather with the global strat-
egy of safety life-cycle, clause 7.10 simple refers to
61508-2 (HW/System) and 61508-3 (Software). The
other parts of 61508-1 provide guidance and definitions
as well as a description of accepted methods. From
this very generic development cycle (note that we only
followed up to the actual development, the safety life-
cycle of course continues on parallel to development
with assessment activities and post-development with

commissioning maintenance and disposal. Those issues
are de-facto unchanged for COTS/OSS in safety critical
systems, thus we will not discuss them too much here.
As 61508 is a generic approach it is relatively strict in
its approach, and for different classes of systems further
constraints can be added allowing to simplify methods
and requirements - this simplified, or adjusted versions
are the application sector standards for Machinery, Rail,
Processing etc.

The relation ship between the application sector

standards we are trying to establish here is not a hard-
relation in the sense that standard X is ”only” for a par-
ticular case, but what we are pointing out is the main
focus of individual standards and there suitability for
a more abstract property of the device to be certified.
The intention of these tables is to point out the focus
of specific application sector standards to aid in locat-
ing helpful concepts - it is not to claim that a specific
standards is i.e. only concerned with reactive systems
or composite safety - read it as ”carrying a focus of”.

FIGURE 2: relatsions of standards

FIGURE 3: relatsions of standards

Not too surprising security is ignored in the older
standards and addressed in the newer ones (62061
was published in 2005) likewise this coincides with
the coverage (and acceptance) of COTS. It also
should be noted that the definition of COTS (pre-
existing software, prior use, etc.) has evolved over
time. While the early definitions clearly are con-
sidering products, later definitions (i.e. ”embedded
software” [62061]) is not so much concerned with the
origin of the components rather focuses on the qual-
ities of components.

Note that though some application sector stan-
dards simply don’t define low-demand mode - de
facto almost no safety critical application of even
only moderate complexity will be able to provide
continuous mode only - thus a certain amount of
cross-selection regarding justification strategies is

more or less inadvertable any way.

”The life cycle model of EN 50126-1 does not take
into account the iterative process necessary to make it
applicable to reality [EN 50126-2 9.5]. We assume that
this statement though pertaining to 50126-1 (50128)
can be applied to all of the 61508 derived standards.

This comparison is incomplete - not too surpris-
ing - but what we hope to point out with this glimpse
at specific aspects is that there are possibilities to get
more-to-the-point information for a specific component
if one considers related standards. Again this is not sug-
gesting that a machine tool can simply use the standard
from a nuclear power plant - but if the complexity of the
problem fits a related standard well then the approach
and especially the guidance offered for the ”application
sector constraint implementation of 61508” may pro-
vided vital help on how to approach the safety life-cycle
details.

4 Arguing OSS GNU/Linux

If these elements are applied to GNU/Linux now then
one can see that different standards show a quite differ-
ent suitability in arguing OSS in there context. While
50128 explicitly addresses COTS, 62061 explicitly dis-
cusses ”embedded software”, 61511 referees to ”prior
use” though with a focus on hardware (references to
61508-1 and -2 NOT -3). None of the standards di-
rectly addresses OSS (obviously) but they do address
categories of software that fit certain aspects of OSS
and GNU/Linux in particular. in the following list we
provide our view of this association:

61508 - preexisting software, standard

software, proven-in-use

61511 - prior use,

selection based on prior use

50128 - COTS, proven-in-use

62061 - embedded software , proven-in-use

The Linux kernel most obviously would be de-
scribed as ”preexisting software” and ”selected based
on prior use” - it should be noted though that these
terms are most of the time not precisely defined in
the standards (62061 does define embedded software
though) - making the actual interpretation of state-
ments non-trivial. Fundamentally this is a question of
providing a convincing argument and concise justifica-
tion - it will hardly be possible to prove strict adherence
to an accepted procedure for GNU/Linux.

4.1 Possible approaches

Fundamentally we see two posible approaches to utiliz-
ing GNU/Linux and OSS capabilities.

• GNU/Linux mainstream:
i.e. Unmodified GNU/Linux ”as-is” justified by
evidence and argued by advances of community
monitoring and bug tracking - applications con-
straint to well established standard compliant
subsets (i.e. POSIX threads)

• Linux virtualization technologies:
i.e. Paravirtualized GNU/Linux on top of diverse
RTOS core systems based heavaly on diversity of
the RTOS/HW layer and supported by commu-
nity peer review capabilities.

Of course there are variations of these two options
- we will list some scenarios and detail only one here du
to space constraints.

This section is rough and obviously incomplete - its
intention is to give a rough idea of what directions are
possible - and show that there are a number of possible
ways to approach the problem.

One obviously available path is to follow 61508-6
Appendix E, and focus on diversity of the OS layer -
thus in theory eliminating specification and design re-
lated common cause failures - this mapped to Linux
could be based on a system outlined below:

FIGURE 4: OSS based maximum-diversity

Resulting in ”maximum-diversity”:

X86 / PowerPC - hardware diversity

GRUB / GNU/Linux boot-system - initialization diversity

L4 Fiasco / XtratuM nanokernel - resource manager, runtime diversity

L4Linux / GNU/Linux intercepted - GPOS diversity with respect to IPC

L4-domain / RTLinux/GPL - divers safety domains

While this is a fairly complex approach it is quite
straight forward to map it into 61508s requirements
and provides the full benefit of GNU/Linux as GPOS
for maintenance and non-safety related tasks (moni-
toring, upload, etc.). This is a rough proposal for a
very conservative view of Linux in 61508 context.

4.2 further options

Space does not allow to detail all others - but we
would like to list some options that we see as possi-
bilities:

• Build a 61508 compliant COTS argument,
which would be heavily based on proven-in-use
(refer to clause 3.4 - definition of COTS, which
clearly points towards Proven-in-Use), and sec-
tion 9.4.5 sub-clause ii and iii for requirements.

• Build a evidence based safety case which is
clearly non-61508 compliant and argue the di-
vergence from 61508 which is entirely proce-
dure based. Fundamentally 61508 allows diver-
gence at almost all places provided justification
is given.

• Build a 61508 compliant procedural safety case
for a nano-kernel that runs GNU/Linux as one
of its (user-space) tasks running safety critical
apps (or at least the safety responsible compo-
nents) under direct control of the nano-kernel.
GNU/Linux is then ideally only a SIL0 com-
ponent in the overall system with no safety re-
sponsibility.

• put the safety responsibility completely into
the application and argue the OS as a gray-
channel based on diversity of the safety crit-
ical application (diverse OS usage, diverse
languages, N-version programming). Within
GNU/Linux it is also possible to select two
functionally equivalent OSS components that
are implemented independently (i.e. arguing
diversity between apache2 and boa http servers
should be doable).

• Document the Linux development life cycle
(the kernel that is) in a suitable way and ar-
gue that it provides comparable if not superior

quality even though it does not follow the pro-
cedural requirements. In fact the stability of
Linux-2.6 can in our opinion be argued in this
way - the main issue really is if this is accept-
able to the safeties.

One essential point of all of these options though
is that naive proven-in-use as ”there is so much Linux
in use” will not due, uptimes of even years of some
Linux 2.2.X and 2.0.X systems are nice - but not a
usable source of evidence for arguing a 2.6.22 kernel
on Debian 4.0 ! We believe field experience will help,
but basing a safety case on field data only - especially
with none from safety-related systems - will be futile.

Detailing these options and investigating the lim-
itations and certification strategies will be one of the
goals of the Safety Critical Linux Working Group of
OSADL.

4.3 Note on safety case

While this paper is not the place to detail a safety
case for the Linux kernel one should consider a lay-
ered safety case:

• Generic Product Safety Case

• Generic Application Safety Case

• Specific Application Safety Case

safety case structures i.e. in 50126/50129
Building a monolithic safety case for a specific ver-

sion of the Linux kernel with a specified configuration
would be more or less unmaintainable and an effort
that would be lost at the first upgrade. The specifics
of OSS ”release early - release often” mandate a some-
what different approach to the safety case than would
be suitable with ”bundled” commercial software.

Taking the safety case layering from above we
would see this as

• provide a constraint OS definition - i.e. ”pure-
POSIX” and a set of kernel functions satisfying
these based on a well defined standard (i.e. open-
group specification).

• from this generic POSIX layer introduce further
constraints (minimum POSIX real-time profile -

PSE 51) and map this to a particular implementa-
tion of the Linux kernel i.e. Linux with real-time
preemption extension.

• finally justify a specific configuration selection
(kernel config) in the context of the ”generic ap-
plication safety case Linux-RT PSE 51” as a ba-
sis for a well defined safety application running
on top of this kernel.

Justification of these safety cases - as noted above
- will hardly rest on field history only - not only does
61508 not clearly define what field history data would
need to look like, the concept of field data, at least for
the specific application safety case, but it simply will
not be arguable due to lack of data fitting the specific
configuration.

Rather justification will need to build on black-box
testing and analytical methods outlined in 61508-7 and
referenced in 61508-3 (i.e. table A3 software develop-
ment and table A9 and A10) Note that especially here
the application sector standards have a lot to offer on
guidance of methods and in fact on additional methods
considered appropriate.

5 Evolution of standards

A tendency towards evidence based approaches can be
seen. Standards like MOD 00-55 (procedural) were re-
placed with evidence based counterparts MOD 00-56.
Even within 61508s derived standards, evolution of do-
main specific standards can be seen. 62061 is almost
modular [i.e. 62061 Clause 6.7.5] compared to 61508 -
allowing subsystem-elements to be integrated as com-
ponents (either developed or COTS). 61508 of course
stays a system level safety case - but while 61508 is
directly concerned with design and specification, 62061
(released in 2005) is more of a safety strategy. We be-
lieve this development will continue and of course it is
up to industry to promote development in the direc-
tion best suited for its needs - if development continues
in the direction visible now we expect OSS and COTS
components to be much easier to integrate in the future
than they are now.

Our expectation is that standards will evolve in the
next decade in the direction of higher level of accep-
tance of evidence. This is not only due to the fact that
increasing system complexity (both software and hard-
ware) in safety-related systems impact the applicability
of a strict procedural approach more and more, but also
to the fact that there is growing evidence and theoret-
ical works that indicate that COTS/OSS development
may well be as good if not better than bespoke software
development.

Of course it is up to industry to move the stan-
dards in a direction suitable for the use of COTS/OSS

in safety critical systems. This is not suggesting that
standards should be less rigorous in any way - quite
the contrary - they need to be much more precise in
defining COTS especially with respect to software, and
provide better guidance on the use of COTS especially
with respect to the types and quality of evidence as well
as the use of risk assessment and validation methods
(i.e. FMEA, HAZOP) in relation to COTS products.

Again this is one of the issues the Safety Critical
Linux Working Group of OSADL will be focusing on.
Never the less it is clearly up to industry to recognize the
potential in COTS/OSS and especially in GNU/Linux
and support efforts in standardization bodies to tweak
standards to supply the means needed for its use.

6 Conclusion

Even though the material outlined here is far too gen-
eral to make any claims that OSS and specifically Linux
is usable in 61508 context, we do think that there is
sufficient evidence that it is not excluded from 61508
compliant systems and that if the effort to achieve ac-
ceptance of Linux and other OSS components in safety-
related systems is coordinated at a suitable level, that it
well could constitute a sound basis for building safety-
related systems in the future. There is plenty of work
to be done and there are efforts under way to make it
happen, both the advances in standardization and the
formation of organizations like OSADL are encouraging
indicators that there is not only a wide need for OSS
in safety-related systems but that there is a certain ac-
ceptance in industry.

7 List of Acronyms

ATC - Air Trafic Control
CAP - CAA Publications
COTS - Comercial Off The Shelf
FDL - Free Documentation License
GDB - GNU DeBugger
GNU - GNU Not UNIX (recursive accronym)
GPL - General Public License
HSE - Health and Safety Executive
IPC - Inter Process Communication
KFI - Kernel Function Instrumentation
KGDB - Kernel GDB
LTT - Linux Trace Toolkit
OSADL - Open Source Automation Development Lab
POSIX - Portable Operating System Interface (for
UNIX)
OSS - OpenSource Software
RT - Real Time
LTP - Linux Test Project
SIL - Safety Integrity Level

References

[1] Linux Test Project, Kenrel Code Coverage,
http://ltp.sourceforge.net/documentation/how-
to/UsingCodeCoverage.pdf

[2] git (variable - undeined acronym
that sounds good) and cogito
http://www.kernel.org/pub/software/scm/git/

[3] IEC 9945, Single Unix Specifica-
tion,http://www.unix.org/, 2003

[4] DONALD WAYNE CARR, RUBA.N RUELAS,
COTS and Free Software Components for Safety
Critical Systems in Developing Countries, Uni-
versidad de Guadalajara, Guadalajara, Mexico
RAA.L AQUINO SANTOS, APOLINAR GON-
ZALEZ POTES Universidad de Colima, Colima,
MACxico.

[5] Fan Ye,Justifying the use of COTS Components
within safety critical applications, Thesis, Univer-
sity of York, 2005

[6] Weining Gu, Zbigniew Kalbarcyk, Ravishankar K.
Iyer, Zhenyu Yang,Characterization of Linux Ker-
nel Behavior under Errors, University of illinois at
Urbana-champaign, 2002 (?)

[7] J-C Fabre, F. Salls, M. Rodriguez-Moreno, J. Arlat,
Assessment of COTS microkernels by Fault Injec-
tion, LAAS-CNRS, Toulouse, 1998 (?)

[8] C. Jones, R.E. Bloomfield, P.K.D. Froome, P.G.
Bishop, Methods for assessing the safety integrity of
safet-related software ofuncertain pedigree (SOUP,
HSE 337/2001

[9] R.E. Bloomfield, P.K.D. Froome, P.G.
Bishop,Justifying the use of software of uncertain
pedigree (SOUP) in safety-related applications,
HSE 336/2001

