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Abstract

In this paper, an RTAI-Linux based distributed platform for the control of the PUMA 560
robotic manipulator is presented. From the mechanical point of view, the PUMA 560, besides
being one of the first and most popular 6-DOF anthropomorphic manipulator, is still a very
good example of implementation of small size robotic arms. On the other hand, its original
control system, if compared to modern controllers, is an old piece of computer science history.
Our goal is to preserve the mechanics and the power electronics of the PUMA 560 and replace
the original control system with a modern and flexible platform based on RTAI-Linux.
A PC/104 embedded system equipped with two DAQ boards is used to manage the I/O signals
of the robot and to control the low level security functions, bypassing the original Mark III
controller, while the high-level controller and the user interface run on a standard PC. With
the aim of comparing the behaviour of the robotic device with a simulation of the system,
useful for task planning and fault detection, the controller of the robot communicates also
with a real-time simulation of the PUMA 560 that runs on a third PC. These three real-time
systems are based on RTAI-Linux, and RTNet is used for the implementation of low-latency
deterministic network communications needed in distributed control applications.
In the paper, after the description of the architecture of the proposed control platform, the
performances of the system are analyzed with particular attention to the execution time of the
various tasks, communication delays due to network communication and comparison between
the response of the real and the simulated robot.

1 Introduction

The PUMA1 560 is a 6-DOF2 industrial manipula-
tor. It is for sure the most popular device of this
type, and, besides having been employed for many
years in industrial applications, it is now widely used
by several robotic labs both for research and for ed-
ucational activities. Due to the outdated interface
and control system, we decided to replace the origi-
nal Mark III controller [1, 2] with a modern control
architecture.

The large availability of low cost microcontroller
based platforms for industrial applications allows the
implementation of very flexible embedded systems
for the control of automatic machinery and robotic
manipulators. In this context, the adoption of open
source software environments offers a valuable alter-
native to commercial solution, due to the availability

1Programmable Universal Machine for Assembly.
2Degree Of Freedom.

of many free tools for the development of real-time
applications, like RTAI-Linux, RTnet [3] and so on.

For these reasons, with the aim of improving also
the performances and the flexibility of the Mark III
controller, the hardware control architecture of the
PUMA 560 has been completely redesigned. Only
the original power supply unit and the linear cur-
rent amplifiers that drives the motors of the robot
have been preserved. The low level control sys-
tem has been replaced by a PC/104 industrial com-
puter based on the Elan520 AMD microcontroller
together with two Sensoray 526 DAQ3 boards. Since
the Elan520 microcontroller is 486 compatible, the
RTAI-Linux operating system has been installed on
the PC/104 to create the new real-time control plat-
form of the robotic manipulator. The connection be-
tween the PC/104 control unit and the robot drive
box is realized by the TRC041 board set, produced
by Trident Robotics [4], that provides all the analog

3Data Acquisition Board.
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and digital signals necessary for the control of the
system. In [5], a similar architecture is presented,
even though the control system is based on standard
personal computer running the non real-time Win-
dows platform.

Another important feature that can be imple-
mented in a modern robot control system is the real-
time simulation of the manipulator behavior, useful
for control system testing, task planning and fault
detection. In particular, by running the real-time
simulation in parallel with the real system, and by
comparing the response of the two systems, it is pos-
sible to recognize unpredicted events, like collisions
with unknown objects or actuator faults, and eventu-
ally stop the system to avoid risks and damages. The
computing capabilities of modern personal comput-
ers can be easily exploited to perform both real-time
control and real-time simulations of complex nonlin-
ear dynamic systems [6], like robotic manipulators.
In [7] the implementation of a real-time algorithm for
the integration of ODE4 systems on the RTAI-Linux
RTOS5 is reported, while in [8] the real-time simula-
tion of dynamic systems generated by the Modelica
environment is discussed. In this paper, a real-time
integration algorithm [7] is used to compute the dy-
namics of the PUMA robot by solving its closed form
Eulero-Lagrange model [9, 10].

Moreover, several tools are available for the de-
sign and the simulation of robotic systems, like the
Robotic Toolbox [11] or RobotiCAD [12] for Mat-
lab/Simulink, or ROBOOP [13] for the C program-
ming language. In [14], a Simulink based toolkit ex-
plicitly dedicated to the simulation and the control of
the PUMA 560 robotic arm is presented, while in [15]
the generation of RTAI-Linux control applications
from the open-source Scilab/Scicos environment is
shown. In this paper, the Matlab/Simulink/RTW6

environment has been used for the design of both the
high-level controller and the real-time simulation of
the manipulator.

2 The Hardware Architecture

A scheme of the connection between the PC/104 and
the PUMA drive box is shown in Fig. 1. All the
components of the original Mark III controller have
been removed form the drive box, and just the lin-
ear power amplifier that drive the axis of the robot
and the power supply unit have been maintained.
The TRC041 board set is used to collect all the I/O
control signals into two buses, for analog and digi-
tal signals respectively. The torque applied by the

4Ordinary Differential Equations.
5Real-Time Operating System.
6Real-Time Workshop.
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Figure 1: Scheme of the PUMA 560 control platform.

DC motor to the joints of the robot are controlled
by the linear power amplifiers and commanded by
analog signals (±10 [V ] range). Absolute position in-
formation are provided by potentiometers connected
to the joints (0 ÷ 5 [V ] range) and relative posi-
tions are given by encoder connected to the motor
shafts. Other digital I/O signals for service and se-
curity functions are provided: through these signals
it is possible to activate and to monitor the state of
the drive box and of the joint brakes.

The AMD Elan520 PC/104 platform (486 com-
patible processor at 133 MHz, 32 MB of RAM and
64 MB of storage flash memory) is used to acquire all
the I/O signals by means of two Sensoray 526 Data
Acquisition (DAQ) modules. Each DAQ modules
has 8 ADC and 4 DAC channels, 4 quadrature en-
coder inputs and 8 programmable I/O digital ports.
One DAQ module is used to control the first three
joints of the arm (waist, shoulder and elbow) and
to monitor the power and motor temperature emer-
gency lines, while the other module controls the wrist
joints and drives the digital lines for the end-effector
opening/closure and the drive box enable functions.

The PC/104 communicates with the develop-
ment platform by means of an ethernet link and a
serial console. The former interface is used for both
non real-time and real-time data transfer, while the
latter is used to setup the real-time environment and
to manage the applications.

The development platform is a standard personal
computer with Pentium IV 3GHz processor and 1GB
of RAM running on the RTAI-Linux RTOS. This PC
is used both to develop the control and simulation
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Figure 2: Architecture of the PUMA 560 distributed control system.

applications for the PUMA 650 control system. It
communicates, via ethernet using the real-time net-
work layer RTnet, with the PC/104 described before
and with the simulation platform. It is also con-
nected through a null-modem cable to the serial in-
terface of the PC/104. Also the simulation platform
is a standard personal computer with Pentium IV
3GHz processor and 1GB of RAM running on the
RTAI-Linux RTOS.

3 The Control System
Structure

In Fig. 2 the structure of the open-source distributed
real-time control system of the PUMA 560 indus-
trial manipulator implemented in our lab is reported.
Both the PC/104, the development and control plat-
form and the simulation host have installed the Linux
kernel 2.6.19.7, RTAI 3.5 and RTnet 0.9.9.

3.1 PC/104 Low-Level Controller

Due to the safety requirements of the manipulator
control system and to the limited computation ca-
pabilities of the Elan520 microcontroller, the low
level security functions are managed directly by the
PC/104 together with the analog and digital I/O
routines, while complex operations are executed by
the remote control host. The low level controller is
implemented in kernel space in the PC/104. The pe-
riodic execution of the control task is driven by a pro-
grammable hardware timer interrupt coming from
one 526 DAQ board each 1ms, while emergency sig-
nals are managed asynchronously through dedicated
interrupts. Moreover, a watchdog timer is used to

stop the robot in case of failure of the control system.
Two different working modalities have been imple-
mented in the low-level controller: joint torques con-
trol or joint-space PD position control. In the joint
torques control mode, the data coming form the real-
time network socket are interpreted as desired joint
torques, and hence directly converted into the proper
output voltage to drive the motor linear amplifiers.
This working modality is suitable for the implemen-
tation of complex control schemes on the remote con-
trol platform. In the joint-space PD position control
mode, the data coming form the real-time network
socket contains the desired joint positions. A PD po-
sition control + gravity compensation is then used to
drive the robot. In this case, the joint velocities is
reconstructed from encoder information by means of
state variable filters. In this modality, the trajectory
data file can be also uploaded to the PC/104 and
read by means of a dedicated application: the robot
controller is made in this way independent from the
rest of the system and in particular, form both the
network and the serial connection. In both the two
working modalities, the joint positions and some in-
formation about the state of the PC/104 and of the
PUMA drive box are sent across the network to the
remote control host.

3.2 PUMA 560 High-Level Controller
Design

The high-level controller of the PUMA 560 ma-
nipulator has been implemented under the Mat-
lab/Simulink environment and the Real-Time Work-
shop has been used to generate the real-time con-
trol application for the RTAI-Linux target. A dedi-
cated S-Function block has been used to implement



the data transmission and reception over the real-
time network. In this way, a very easy and flexible
programming interface to the robotic manipulator is
provided to the final user, and in particular to stu-
dents. By changing, in the Simulink control scheme,
the destination of the network data transmission, it
is possible to test the behavior of the control appli-
cation with the real-time simulated robot and, when
the testing phase is passed, switch the control appli-
cation to the real robot. The safety of the controller
tuning phase is, in this way, significantly improved.
Moreover, the control application and the real-time
simulation can also run on the same machine, using
the RTnet looppack device for data transmission.

This software architecture can be also used for
online robot task planning by using two independent
controller, one connected to the simulated robot and
the other connect to the real one. The manipulator
activities can be then planned and tested on the sim-
ulated system also while the real robot is performing
other tasks.

The real-time simulated system can be also used
for fault detection. In this case, the controller is ap-
plied simultaneously both to the simulated and to
the real robot. From the comparison of the response
of the two systems, it is possible to evaluate external
loads applied to the manipulator, unexpected colli-
sions with unknown objects or the occurrence of ac-
tuator faults [16, 17]. These information can be used
to improve the safety of the robot, by stopping it or
by disabling the joint torque commands and switch-
ing to the gravity compensation controller [18].

3.3 Real-Time Simulation of the
PUMA Manipulator

In this work, the real-time simulation of the PUMA
560 is implemented with a periodic fixed step RTAI
task, which executes all the operations necessary for
the computation of the time evolution of the system.
The dynamics of the robotic manipulator is modeled
by usign the Euler-Lagrange formalism:

M(q)q̈ + C(q̇, q)q̇ + Dq̇ + g(q) = τ − τf (1)

where q is the joint position vector , τ and τf are
the vectors of the torque and of static friction acting
on the joints, M(q) is the inertia matrix, C(q̇, q) is
the matrix of the Coriolis and centripetal effects, D

is the viscous friction matrix and g(q) is the vector
of gravity effects.

In order to compute the time evolution of the
robot state, the differential equation system defined
by eq. (1) must be solved by means of a numerical
integration algorithm over the period of the real-time
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Figure 3: Flowchart of the real-time integration al-
gorithm.

task. For the implementation of a variable-step inte-
gration algorithm, controls on the integration error,
the step size and the execution time are introduced
in order to avoid system starvation and to satisfy
the real-time constraints. Therefore, it is possible
to require the simulator to solve the dynamic equa-
tions with a given precision, in terms of relative or
absolute error: if the period of the simulator task
is too small to allow the computation of a solution
with the prescribed error, the algorithm is stopped
and the last available solution is returned. In Fig. 3
the flowchart of the real-time integration algorithm is
reported. The simulation task period can be chosen
equal to the period of the controller without prob-
lems: the error checking procedure can refine the
integration step if necessary to satisfy the specifi-
cations on the integration error. The use of fixed
step integration algorithms can introduce a large er-
ror drift in the solution of the system, since there is
no control on the integration error.

In this work, we have used different functions of
the GNU Scientific Library (GSL) for the implemen-
tation of the numeric integration methods for solv-
ing the differential equations describing the system.
Some modifications on the GSL library have been
introduced to grant their real-time execution. With
this changes, we can use the fixed/variable step in-
tegration algorithms available in GSL in the imple-
mentation of real-time simulation tasks.

With the aim of simplifying the develop-
ment of real-time simulation applications, the Mat-
lab/Simulink/RTW environment has been used. For
this purpose, the integration algorithm used by Mat-
lab in fixed step applications has been replace with
the proposed real-time integration algorithm into the
code generated from RTW for RTAI target. The
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Figure 4: Positions of the real and the simulated
PUMA 560 Arm.

PUMA 560 simulation scheme has been provided
with the same real-time network interface used by
the control application to allows the communication
between these two systems. The parameters and the
explicit dynamic model of the PUMA 560 used in the
simulation scheme are not here reported for brevity.
These information can be found e.g. in [9, 10].

4 Experimental Results

The software architecture described in the previous
Sections has been used for the simulation and the
control of the PUMA 560 manipulator.

The details about the robot control algorithm are
not reported here for brevity and because is not the
focus of this discussion. It is important to remark
that the control application has been used, without
any modification, for the control of both the real
manipulator and the simulated one. The response
of these two systems are reported and compared in
Fig. 4 and Fig. 5. Fig. 4 shows the positions of the
arm joints 2 and 3 (the most affected by the gravity
terms) and of the wrist joint 5 while in Fig. 5 the
tracking error of the same joints of both the real and
the simulated robot. In particular, from these lat-
ter plots, it is possible to note that the behavior of
the two systems is very similar. The small difference
in the response between the real and the simulated
robot can be ascribed to the (large) uncertainty on
the joint static friction effects.

A particular attention has been given to the mea-
surement of the execution time of the various task.
As expected, the robot simulation task is the more
time consuming one. Nevertheless, in our exper-
iments, the execution time of the simulation task
never exceed the 400 µs, with a period of 1 ms. Also
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Figure 5: Errors of the real and the simulated PUMA
560 Arm.

the network transmission delay has been measured
by means of a dedicated application. The best per-
formances have been obtained excluding the TDMA7

control and reserving the access to the network in-
terface to the real-time application only. In Fig. 6
the round-trip delay of network packets exchanged
between the control platform and the PC/104 con-
nected through a cross cable is reported. It is im-
portant to note that the transmission delay is quite
always less than 100 µs. This networking framework
is then suitable for the implementation of a closed
loop control system with a sample time of, at mini-
mum, 1 ms.
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Figure 6: Network packets round-trip delay, without
TDMA control.

5 Conclusions

In this paper, the implementation of an open source
real-time distributed control system for the PUMA
560 manipulator has been presented. The experi-
mental results show the effectiveness of the proposed

7Time Division Multiple Access.



control platform and of the real-time simulation of
the robot. This control architecture gives to the fi-
nal user, and in particular to students, the possibility
of programming the PUMA 560 through very simple
and common tools, and provides a useful simulated
testbed for the tuning of the control system and the
planning of the manipulator activities.

For future activities, a graphic user interface,
running on the remote control platform, for the man-
agement of the PC/104 low-level controller functions
is under development. Also a 3D graphic rendering
of the manipulator on the simulation platform is ob-
ject of future activities.
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