
Real-time CORBA performance on Linux-RT PREEMPT

Manuel Traut
Linutronix GmbH

Auf dem Berg 3, 88690 Uhldingen, Germany

manut@linutronix.de

Abstract

Automation technology lacks an established platform independent, high-level, object oriented real-time
capable communication standard, which is based on standard Ethernet hardware and drivers. ACE/TAO
is an Open Source implementation of the OMG Real-Time CORBA Specification and might fill this gap.
It is designed platform independent, implemented in C++ and provides a standardized communication
framework. Real-Time CORBA is already used in industrial environments, e.g. aircraft, naval equipment
and others. This paper explains the basics of the ACE/TAO framework and its usage in industrial
communication. On the basis of a real-world example - transmission of an 1 KiB data frame - two
communication methods are evaluated: the RT-CORBA Remote Procedure Call and the TAO Real-
Time Event-Channel. The performance measurement methods are explained in detail. Measurement
results under various system loads and a comparison of ACE/TAO on top of a vanilla Linux kernel and
a RT PREEMPT enabled Linux kernel provide a meaningful insight in the capabilities of RT-CORBA.
Finally, the paper provides an analysis of functionality which needs to be improved in the operating
system to provide real deterministic communication through a standardized framework.

1 Introduction

The main communication infrastructure in industrial
automation is based on a broad variety of industrial
fieldbusses based on CAN, RS422 and RS485 physi-
cal layers. Since 2005 ethernet based communication
is gaining popularity. Aside of this the usage of PC
based hardware with realtime operating systems be-
comes more wide spread. The systems provide the
usual set of interfaces and capabilities known from
the IT world with specialized software for machine
controls.

Combining PC based hardware and ethernet
based real-time capable communication methods uti-
lizing object-oriented middleware could provide a
couple of advantages:

• fast development cycles

• ease of maintenance

• flexible reusability of software modules

• connection handling is done by the middleware

• . . .

ACE/TAO, a Real-time CORBA implementation,
and the RT PREEMPT patch for the Linux kernel
provide such a base environment today.

1.1 CORBA

CORBA is a middleware, which allows RPC1-based
IPC2 between different operating systems and differ-
ent programming languages (Figure 1).

The communication interfaces are defined in
IDL3. The IDL files are compiled into, e.g. c++,
java, . . . , code which does the (de)serialization of the
datatypes. The interface implementations (CORBA
objects) are registered with language specific ORB4s.
Each CORBA process owns one ORB, which handles

1Remote Procedure Call
2Inter Process Communication
3Interface Definition Language
4Object Request Broker

1

the function requests and returns the calculated val-
ues.

FIGURE 1: CORBA Architecture

1.2 Real-Time CORBA

FIGURE 2: Real-time CORBA
(source: [1])

As shown in figure 2, a real-time capable ORB ex-
tends a standard ORB with the following features:
locating objects in constant time, preallocation of re-
sources, operating system independent priority han-
dling, priority based scheduling.

1.3 ACE/TAO

ACE is an open-source c++ framework for platform-
independent system- and network-programming.
TAO is a Real-time CORBA implementation build
on top of ACE (Figure 3).

FIGURE 3: ACE/TAO framework
(source: [2])

The ACE/TAO package is available for all im-
portant operating systems. The framework can be
trimmed for embedded systems: Each application
described in this paper consumes less than 1 MByte
of RAM. Also the consumed CPU time is suprisingly
low.

2 Performance Measurements

The measurements were made on embedded systems
(Intel Mobile CPU 600 MHz, 512 MB RAM, Intel
e100 NIC) with digital I/0 ports. A square-pulse gen-
erator is connected to a digital input of the supplier
system and to channel 1 of the oscilloscope. The dig-
ital outputs of the receiver systems #I and #II are
connected to channel 2 and 3 of the oscilloscope.

FIGURE 4: Measurement environment

2.1 RPC

Each receiver hosts an object, for writing values to
its digital output:

module benchmark{

2

i n t e r f a c e Put{
void Port (in sho r t portNo ,

in sho r t value ,
in s t r i n g data) ;

} ;
} ;

The Port function is called by the supplier as
soon as the state of one of its digital inputs changes.
The real end to end latency is measured with the
oscilloscope.

FIGURE 5: RPC measurement: sequence
diagramm

Figure 6a shows a latency histogram measured
on system running a RT PREEMPT enabled kernel.
Extra system load is generate by heavy disk I/O,
network traffic on non-prioritized NICs and five low
priority CPU hogs. The RPC data string has zero
length.

The latency is the total time of the RPC exe-
cution. The RPC execution is triggered by the ris-
ing and the falling edge of the square-wave gener-
ator connected to the digital input of the supplier
system. The RPC results in toggling the output on
the receiver system. The input and the output are
monitored by a digital oscilloscope, which provides
histogram generation functionalities.

FIGURE 6: Latency histogram
RT PREEMPT, system load

FIGURE 7: Latency histogram Vanilla,
without system load

The results of the same measurement on a none
RT PREEMPT enabled kernel are shown in figure
6b (without system load) and 6c (with system load).

FIGURE 8: Latency histogramm Vanilla,
system load

The same measurement under identical system
load was made once again with both receiving sys-
tems active. Receiving system #I hosts the object
for setting port values with lower priorization than
receiving system #II. On the supplier system the
square-waveform generator is connected to two digi-
tal input ports. Changes on the first port are com-
mited to the higher prioritized receiver on system
#II; changes on the second port are sent to the lower
prioritized receiving system #I. Figure 7 shows, that
no priority inversion occours.

3

FIGURE 9: Latency histogramm, two pri-
orizations

To simulate a higher data transmission rate, the
parameter in string data is read in from a text file,
so its length can be changed after compile time by
editing the text file. Figure 8 shows the larger the
process data image is the larger is the difference be-
tween immediate and worst case latency.

FIGURE 10: dependency between process
data image size and latency

2.2 TAO Real-time Event-Channel

The TAO Real-time Event-Channel is a Messaging
Service. Suppliers are sending messages to the Mes-
saging Service. A client can subscribe for messages
at the Messaging Service.

As soon as the value of the digital input of the
Supplier changes, the new value of the digital input
port is send to the Messaging Service. The Messag-
ing Service sends this value, to all subscribed clients.
The clients write the values from the messages to the
digital outputs.

FIGURE 11: Event-Channel measure-
ment: sequence diagramm

The TAO Real-time Event-Channel is an addi-
tional CORBA application the data has to pass, so
the latency should be approximately two times the
latency of the RPC measurement. Figure 10 shows,
that this is a correct assumption.

FIGURE 12: Latency histogramm, TAO
RT Event-Channel

3 Needed operating system

functionalities

A TAO ORB can only schedule its CORBA requests
correctly when the underlying operating system has
real-time capabilities with a deterministic scheduling
latency. The programming model expects a prior-
ity based scheduling algorithm. The operating sys-
tem latencies of Linux can be tested with cyclictest.
cyclictest is an utiliy which determines the devia-
tion of the expected time line of a periodic timer.
This takes the full chain of timer interrupt, sched-
uler invocation, context switch and return to the user
space application into account. On a given test sys-
tem the maximum latency with a RT PREEMPT
enabled kernel was 26µs, with a vanilla kernel the
maximum latency increased to 39.6ms.

Another requirement for deterministic commu-
nication is the priorization of device I/O. Right now

4

this is not fully implemented in the RT PREEMPT
kernel. The priority of interrupt service handlers is
only configurable per interrupt line, which causes
problems if the interrupt line is shared between a
high priority and a low priority device. The same
applies for the networking soft interrupt which han-
dles all network interfaces in the same queue.

The kernel community has already recognized
the importance of real-time networking capabilities
and solutions for this problem are already discussed.

Not all NICs (especially their firmware and
drivers) are suitable for real-time networking. Many
modern NICs don’t request an interrupt for each re-
ceived package. They only request an interrupt if
a defined amount of data is received, or a defined
timeout is over. These cards cause high latencies es-
pecially when the transfered data packages are small.

4 Conclusion

Real-time communicaion based on object-orientated
middleware over standard ethernet hardware is a
promising solution. Various problems have been

identified, but resolving those is not trivial.
Interestingly enough of these problems are not

restricted to the communication requirements of the
automation industry. The increasing demands on
deterministic networking for other application areas
e.g. telecommunication provide additional momen-
tum for improving the deterministic behaviour of
network communication in the Linux kernel.

ACE/TAO and RT PREEMPT enabled Linux
are providing a useful and solid environment today
with further improvements in the foreseeable future.

[3] is a good resource for further informations.

References

[1] Real-time CORBA Specification,2005, OMG

[2] Overview of ACE,2007
http://www.cs.wustl.edu/schmidt/ACE-
overview.html

[3] TAO technical documents,2007
http://www.cs.wustl.edu/schmidt/corba-
research-realtime.html

5

