
XtratuM for PowerPC

Zhou Rui1,2, Wang Baojun1, Arthur Siro1, Nicholas McGuire1, Zhou Qingguo1

1. Distributed and Embedded System Lab,

School of Information Science and Engineering,

Lanzhou University, P. R. China

2. School of Mathematics and Statistics,

Lanzhou University, P. R. China

Abstract

Xtratum is a nanokernel designed for providing domain support to execute concurrently several op-
erating systems on a single computer. These domains are in the same hardware but running temporally
and spatially isolated. As a very thin virtualization layer virtualizing the essential resources (interrupt,
timer, memory, and CPU), XtratuM is suitable for embedded real-time systems, and at least one of
those domains should provide real-time capabilities, which can be implemented by porting RTOSes onto
XtratuM. The latest released XtratuM 1.0 supporting Linux kernel 2.6.17.4 is implemented on x86 ar-
chitecture. In this paper, we mainly focus on our work of porting XtratuM to PowerPC. We started
XtratuM for PowerPC since March 2006 and published some project fundamentals at the 8th Real-Time
Linux Workshop in October 2006. For this time, we will present our implementation of XtratuM for
PowerPC, especially the key components including timer, interrupt and memory management for multi-
domain support based on PowerPC. PowerPC has a wide range of family members from low-end 32bit
like 4xx series up to high-end multi-threaded 64bit like CELL, which can satisfy different powerful and
stable performance requirements of various types of embedded and real-time operating systems. XtratuM
for PowerPC will help to expand the applicable area of this free-software nanokernel, and also promote
embedded and real-time applicable abilities based on PowerPC.

1 Introduction

It is difficult to build a nanokernel from scratch,
which involves implementing boot code, new drivers,
etc. ADEOS (Adaptive Domain Environment for
Operating Systems) [1] project has introduced the
concept of domain management to developers, which
provides an extensible and adaptive environment
used to enable the sharing of hardware resources
among multiple operating systems or among multi-
ple instances of the same operating system. This ap-
proach has shown that it can be greatly simplified
by building the nanokernel around the infrastruc-
ture of other existing OS, which is root domain in
ADEOS. Based on the concept of ADEOS, XtratuM
is originally developed by Universidad Politecnica de
Valencia in the framework of the OCERA (Open
Components for Embedded Real-time Applications)
project, and developed as a thin but important layer

able to communicate directly with hardware, and to
realize a minimum implementation of ADEOS [2].
As the result of various new developments in hard-
ware, there is an interest in enabling multiple ap-
plications to share a single processor and memory.
To facilitate such a model the execution time and
memory space of each application must be protected
from other applications in the system. XtratuM pro-
vides a flexible environment for sharing hardware re-
sources among multiple real-time operating systems.
In this case, XtratuM enables multiple kernel compo-
nents called domains or guest operating systems to
run in separate address spaces (temporal and spatial
partitioning) simultaneously on the same hardware.
These domains are executed in a protected memory
space independent of each other, but as paravirtu-
alized OS, they all are able communicate with the
XtratuM nanokernel directly. The advantages of this
approach consist in dividing complex real-time ap-

1



plications in different parts according to their timing
criticality and executing each part on the most suit-
able operating system. At the same time it allows to
build composable systems as the individual domains
do not influence each other (FIGURE 1)

FIGURE 1: XtratuM Architecture

Interrupts and timers are the two key components di-
rectly affecting the real-time capabilities of an RTOS,
if a low priority component like a general purpose
OS could disable interrupts at the hardware level no
guarantees could be given for a concurrently running
RTOS. Thus in XtratuM only the nanokernel has
control of the interrupt and timer hardware. Xtra-
tuM is mainly focusing on virtual timer, virtual in-
terrupt as well as virtual memory management sup-
porting for high-level domains. It also provides a
simple and convenient API to access interrupt mech-
anisms and the timer devices. The small and simple
API not only can be used directly to implement an
application, but also has been designed to provide
support for multiple domains. [3]
Our work to implement XtratuM for PowerPC has
started in March 2006. We have published some
project fundamentals at the 8th Real-Time Linux
Workshop in October 2006. It is natural to port such
a useful nano-kernel to other architectures besides
x86 as especially for industrial application robust
low-power platforms are mandatory and the Pow-
erPC is one of these platforms. Nowadays, the de-
velopment of embedded applications has come to a
new level with the emergence of various highspeed
processors and cheap on-chip memory. As a highly
scalable processor family, the series of PowerPC are
a typical representative of this development and cho-
sen as our target architecture here. PowerPC has a
wide range of family members from low-end 32bit
like 405/440 series up to high-end multi-core 64bit

like CELL BE, which can satisfy a wide range of
different isolation and performance requirements for
various types of embedded and real-time operating
systems. XtratuM for PowerPC will help to expand
the applicable area of this free-software nanokernel,
and also promote embedded and real-time applicable
abilities based on PowerPC. [4]

2 Implementation

The latest XtratuM 1.0 for x86 is based on Linux
kernel 2.6, exactly 2.6.17.4. In this section, we will
describe our current implementation of XtratuM for
PowerPC in detail, especially virtual timer, virtual
interrupt and virtual memory management. Our
porting work is also derived from preliminary work
reported at the 8th Real-Time Linux Workshop in
October 2006 and being conducted in the broader
context of DSLabs work on XtratuM extensions. For
compatibility with the latest XtratuM 1.0 for x86,
we also use Linux kernel 2.6 in our work, which is
2.6.19.2 for PowerPC provided by ELDK 4.1. Both
AMCC PowerPC 405EP and 440EP boards are used
as our target platform. Due to the API compatibil-
ity within the PowerPC family of processors, extend-
ing to other PowerPC CPUs should be fairly simple.
During our work, it became obvious that we must do
a lot about low level functions related to the hard-
ware to make XtratuM/PPC work on PPC in a func-
tionally compatible way with X86. For the high level
functions, we tried to change them as little as possi-
ble from there current X86 centric implementation,
but in certain cases some updating/modifications
were necessary due to the change of the hardware
architecture and the quite fundamental differences
in the way X86 and PowerPC interact with the low
level hardware - most notably the memory subsys-
tem.

2.1 Timer

The current x86 implementation of XtratuM can
support two types of timer: PIT (Programmable
Interval Timer) and TSC (Time Stamp Counter).
For time coordination of different domains, one way
is that they can be sorted by virtual timer as a
domain heap. For each domain, the virtual timer
can be created based on the hardware timer got by
timer handler. Also, timer interrupt generated by
PIT will be taken over by XtratuM, which results
in less latency than if it is handled by the individ-
ual domains themselves due to the excellent code lo-
cality of this extremely small nano-kernel and thus
reduced cache/TLB sensitivity. XtratuM provides
at least one virtual timer, and the exact number of

2



timers implemented by it depends on the available
number of hardware timers. XtratuM implements a
virtual timer for per domain and two system calls,
get time sys and set timer sys, to interact with the
virtual timer services. The domains should provide
corresponding drivers to interact with these virtual
facilities behaving like the regular drivers to the re-
spective OS but invoking the XtratuM primitives in-
stead of interacting with real hardware. The virtual
timer implements the multiplexing of the hardware
timer between the existing domains. To work with
these virtual timers, XtratuM also provides a high-
level API to deal with them.
As PowerPC is different from x86 in its hardware ar-
chitecture, we had to take two different timer facili-
ties - TB (Time Base) and PIT (Programmable In-
terval Timer) - into consideration. Basically, there is
still similarity between these timers of PowerPC and
x86 [5]. Both TSC and TB are counters returning
a single-step increasing time stamp value. And they
do not generate interrupts when they wrap, leaving
detection to the driver/OS. For most applications,
this kind of timer is set once at system startup and
only read thereafter.

The PIT, available on both PowerPC and x86,
is functionally a kind of timer than the TSC/TB,
it provides timed events by interrupting periodically
just like a system heart beat. The difference be-
tween the PIT on x86 and PPC is that the PIT on
PowerPC causes an internal interrupt while PIT of
x86 causes an external interrupt as would any other
peripheral interrupt.[5][6]
For the low level timer related functionality, Xtra-
tuM should be able to initialize them, read them or
get the current counter values of them, set them and
shut them down. These functionalities must be im-
plement by us in a PowerPC compatible way instead
of x86 (as in the current XtratuM). Take as example
the difference of the functionally equivalent TB and
TSC as example here. Basically, the timer initializa-
tion is mainly to get the cpu frequency (calibration).
For x86, there is a series of complex operations on In-
tel 8253/8254 Counter/Timer Chip (CTC) to get the
value. However, for PowerPC, what XtratuM needs
to do is using the variable ”tb ticks per jiffy” and
macro ”HZ” defined in Linux kernel source, just like:

static inline unsigned long long get cpu hz(void)
{

return (unsigned long long)HZ * tb ticks per jiffy;
}

To get the current value of TSC, XtratuM uses
read TSC(), which runs x86 assembly instruction
”rdtsc” directly. While for TB, according to Pow-

erPC mechanism, XtratuM should get values of Time
Base Lower Register and Time Base Upper Regis-
ter separately with PowerPC assembly instruction
”mftb”, and then concatenate them to return a 64-
bit value, such as:

static hwtime t read tb (void)
{

unsigned long lo, hi, hi2;
unsigned long long tb;
do
{
hi = get tbu(); /* get tbu() is defined to use

”mftb” to get Time Base Upper Register value. */
lo = get tbl(); /* get tbl() is defined to use

”mftb” to get Time Base Lower Register value. */
hi2 = get tbu();
}
while (hi2 != hi);
tb = ((unsigned long long) hi << 32) | lo; /* Get

the 64-bit TB value. */
return tb;

}

Based on above examples, when we try to imple-
ment the same low level functions on XtratuM for
PowerPC, we can see the difference of the solutions
compared with x86. While for high level functions,
we have tried to change the mechanism as little as
possible, but updating of some x86 specific, and
thus non-portable code, was indispensable. For vir-
tual timer, in x86, the timer interrupt is one of the
common peripheral interrupts and it can be handled
in the way as other external interrupts, so there is
a general method to process them in XtratuM for
x86. Once the timer interrupt happens, the inter-
rupt handler will be called automatically via the
IDT (interrupt descriptor table) without OS level
intervention. However, as an internal interrupt on
PowerPC, if the timer interrupt occurs, XtratuM
should provide a specific method to handle it, e.g.
when decremented overflows, time interrupt is trig-
gered and XtratuM explicitly calls the interrupt
handler such as timer interrupt() to process it.

2.2 Interrupt

XtratuM manages all hardware interrupts available
on the actual hardware architecture being used.
Once XtratuM interrupt virtualization is activated,
all interrupts of any domains will pass through it,
thus none of the domains ever get direct access to
the interrupt hardware. In the current XtratuM x86
implementation, these interrupts are controlled by
XtratuM by intercepting all interrupts via the IDE,
where all entries point to XtratuM only. XtratuM

3



is placed between the hardware and the domains
requiring virtualization of the interrupts, thus pre-
venting the domains from directly accessing interrupt
related functions.
In PowerPC, entry of external interrupt is set at
hardcoded physical address 0x500 [7] functionally
similar to the IDT on x86. XtratuM will intercept
external interrupt at this point and use our own han-
dler ” xm do IRQ” instead of the original handler
”do IRQ”, such as:

#ifdef CONFIG XTRATUM

EXCEPTION(0x0500, HardwareInterrupt,
xm do IRQ, EXC XFER XTRATUM)

#else

EXCEPTION(0x0500, HardwareInterrupt,
do IRQ, EXC XFER LITE)
#endif

Once an interrupt is intercepted by XtratuM
in PowerPC, xm do IRQ() will call do IRQ()
of XM root func, which can be initialized with
xm irq handler() if the interrupt is for this domain
and thus provides the same functionality as was
present in Linux befor XtratuM was loaded. In
xm irq handler(), it will get the IRQ number and
the pending events, schedule the events compatible
with the domains, and then begin the processing of
virtual interrupt for high level domains (FIGURE
2) thus this simply provides a prioritization of hard-
ware interrupts in software.
High level domains can generate various types of
interrupts, even the same kind as is in use with a
low-priority domain. These interrupt requests are
collected and handled by XtratuM, so from the view
of these domains they appear as hardware interrupts,
though these interrupts are processed virtually by
XtratuM instead of real hardware. We can describe
the procedure like this: if one virtual interrupt from
one domain is delivered, XtratuM will disable other
virtual interrupts from the same domain, and then
enable the real hardware interrupt, execute the event
handler, disable the real hardware interrupt, and
finally enable virtual interrupt for the domain (FIG-
URE 2). For low level operations such as enable and
disable real hardware interrupt, x86 uses ”sti” and
”cli” instructions [8], while PowerPC should set EE
(External Interrupt Enable) bit of MSR (Machine
State Register) for these functions appropriately.

FIGURE 2: Interrupt Processing

Furthermore, for x86, XtratuM defines 32 as the
maximum number of interrupts, and it seems only
16 of which are used. But for many types of Pow-
erPC processors, e.g. PowerPC 440EP, they always
have more than 32 interrupts, so we have defined the
number to 64 here, though this clearly is a design
flaw that needs fixing as no such hard-coded value
will be the right one.

2.3 Memory Management

Though timer and interrupt are the two key issues for
XtratuM to ensure real-time capabilities, for guar-
anteeing that multi domains can run well on Xtra-
tuM independently, a correct and efficient method of
memory management is certainly indispensable. No-
tably this lack of address space separation is the key
disadvantage of the currently existing hard real-time
variants of Linux
For x86 implementation, XtratuM has implemented
its own memory management and does paging manu-
ally instead of letting linux handle paging or switch-
ing automatically. In this way, XtratuM can assign
isolated address space in user space for each domain
and even prevent the Linux kernel from accessing
the domains private memory, so it raises the security
of XtratuM and allows providing redundant mecha-
nism for the domains. Once one domain crashes, the
effect on other domains can be reduced to a mini-
mum, allowing to mask random hardware failures in

4



a domain as an other domains can still run well or
even take over and go on the interrupted work of the
crashed domain.
For PowerPC, basically XtratuM will follow the
mechanisms as x86 to guarantee domains’ stability
and isolation. However, in consideration of the Pow-
erPC family covering from 32-bit to 64-bit proces-
sors, XtratuM implements four paging levels, which
is compatible with both 32-bit and 64-bit architec-
tures, instead of two paging levels in x86 to provide
a more general paging method [9]. Also, as dif-
ferent PowerPC cores may have their own features
of memory management, we are trying to cover as
much as possible specific issues in our implementa-
tion, though clearly the current focus is the 32-bit
systems.
For low level functions of PowerPC memory man-
agement, i.e. updating page tables or the like, very
hardware specific rules must be followed and soft-
ware changes must be synchronized with the other in-
structions in execution and with automatic updates
that may be made by the hardware (referenced and
changed bit of Page Table Entry updates). These
locking and atomicity issues are generally very non-
portable and constitute the most difficult part of
porting such a nano-kernel to a new platform. Up-
dates to the page tables include the following opera-
tions [7]:

• Adding a PTE (PageTable Entry) when allo-
cating memory

• Modifying a PTE (i.e. changing access permis-
sions)

• Deleting a PTE

Consider the simplest page table case here to
add a PTE. To create a PTE, maintain a consistent
state, and ensure that a subsequent reference to the
virtual address translated by the new entry will use
the correct real address and associated attributes,
XtratuM should do the following (in pseudocode)
[7]:

PTE[RPN,AC,R,C,WIMG,N,PP] new values
eieio /* order 1st update before 2nd */
PTE[AVPN,SW,H,V] new values (V = 1)
ptesync /* order updates before next page table

search and before next data access */

3 Status and Perspectives

Though it seems XtratuM for PowerPC makes slow
progress, in recent months, the key functions of
timer, interrupt and memory management have been

basically implemented in running systems. We have
made it boot successfully and run well on PowerPC
405EP and 440EP developing board, and multi do-
mains can basically be stable on it though we don’t
see the current code state as stable yet. To make
it perform as a real real-time nanokernel running on
PowerPC, there still is a long way to go, such as for
more efficient memory management, TLB (Transla-
tion Lookaside Buffer) is proposed to be addressed
later. We have made some necessary module test
and unit test in previous work, but for the entire
project, a total benchmark has jet to be designed
and implemented. And also for this project is closely
related to hardware and kernel level, some tools such
as BDI2000 and KGDB for finding bugs and debug-
ging are also essential for quality guarantee. Though
we feel that progress should have been faster it shows
that it simply takes time to get a feeling for a new
architecture and that our ways of thinking were too
much distorted by our x86 work to quickly adjust to
the PowerPC.
Another issue we can consider in the future is that
currently, XtratuM for PowerPC has not yet sup-
ported IBM iSeries. But there may be some require-
ments for running redundant RTOS on such a pow-
erful products, so we also should fill in this blank
sometime. And also we hope to bring XtratuM to
the latest PowerPC, the CELL Broadband Engine
Architecture as one exciting architecture, especially
for the safety critical domain.
Of course, now we can start to porting RTOS to Pow-
erPC with the help of XtratuM, which can add the
PowerPC to existing RTOS and expand performance
requirement to broader hardware platforms.

4 Acknowledgments

At first, it is very grateful of Mr. Wang Baojun for
his great contribution to XtratuM for PowerPC. His
work makes all of us know more about XtratuM,
PowerPC, Linux kernel, C programming language,
debugging tools. Thanks a lot to Prof. Nicholas
Mc Guire, Prof. Li Lian, Dr. Zhou Qingguo, Mr.
Arthur Siro and all the other people of DSLab for
there discussion on XtratuM and RTOS questions.
Their help makes me know more and understand
more about free-software and my work go on the
right track.
This work was supported by National Natural Sci-
ence Foundation of China through projects: Re-
search on Computational Chemistry E-SCIENCE
and its Applications (Grant no. 90612016) and
Research on Job Scheduling in network comput-
ing (Grant no. 60473095). And this work is also
supported by China National Technology Platform.

5



References

[1] Karim Yaghmour, Adaptive Domain
Environment for Operating Systems,
http://opersys.com/ftp/pub/Adeos/adeos.pdf

[2] XtratuM. http://www.xtratum.org

[3] Miguel Masmano, Ismael Ripoll, Alfons Crespo,
Audrey Marchand, 2005, Framework for Real-
time Embedded Systems based on COntRacts:
Nanokernels for multidomain support, UPVLC

[4] Zhou Rui, Bai Shuwei, Nicholas McGuire, Li
Lian, 2006, Porting XtratuM to PowerPC,
RTLWS8

[5] International Business Machines Corporation,
2003, PowerPC 405EP Embedded Processor

User’s Manual Preliminary, International Busi-
ness Machines Corporation

[6] Intel Corporation, Intel 64 and IA-32 Architec-
tures Software Developer’s Manuals, part I, II
and III, Intel Corporation

[7] International Business Machines Corporation,
2005, PowerPC Microprocessor Family: The Pro-
gramming Environment Manual for 64-bit Pro-
cessors, International Business Machines Corpo-
ration

[8] Intel Corporation, 1987, Intel 80386 PRO-
GRAMMER’S REFERENCE MANUAL, Intel
Corporation

[9] Daniel P. Bovet, Marco Cesati, 2005, Under-
standing Linux Kernel, 3rd edtion, O’Reilly,
ISBN: 0-596-00565-2

6


