
Embedding Redhat Linux in a DiskOnChip - HOWTO

Don Davies, Prosig Ltd (don.davies@prosig.com)
October 2002

Describes the configuration and setup of a development environment for a Single Board
Computer running Redhat Linux from a DiskOnChip device.

Contents
1.0 Introduction ..3
1.1 Hardware Details..3
1.2 System Configuration ...4
2.0 DOS Development Environment...5
2.1 DiskOnChip Tools ..5
2.2 Boot Loader..6
2.3 MS-DOS System Startup..6
3.0 Linux Development Environment ..7

3.1 Custom Kernel Configuration ..8
3.2 Building Custom Kernel ..10
3.3 Booting Custom Kernel ...10
3.4 Formatting DiskOnChip for Linux ..12
3.5 Embedded system Utilities..12
a. BusyBox (www.busybox.net)..13
b. TinyLogin (http://tinylogin.busybox.net) ..13
c. wu-ftpd (www.wu-ftpd.org) ..14
d. TELNET server ...14
3.6 Linux System for DiskOnChip ...15
3.7 Making the DiskOnChip Bootable ...15

3.8 Application Startup ...16
4.0 Summary..17
Appendix A..19

1.0 Introduction

Central to the development of the PROTOR distributed vibration monitoring system is

the setup and configuration of an embedded single board computer for remote

monitoring applications. The embedded processor sits within a special purpose chassis

along with data acquisition and conditioning modules. External communication is via

Ethernet and internal via both PC-104 and USB. These units may be installed in

potentially harsh environments and so a system which supports solid-state storage

rather than a mechanical device is required. These units also run Linux as this provides

the most reliable, best cost-performance platform for a remote monitoring applications.

This note describes the setup and configuration of a development system for a suitable

single board computer which supports the solid-state DiskOnChip device from M-

Systems Inc. The note also shows how to access the DiskOnChip from within a Linux

environment and how to make the system bootable from DiskOnChip so that no hard

disk is required. In order to run Linux from a DiskOnChip device some details are

provided on the essential files needed from a standard Redhat Linux distribution,

together with some useful utilities which allow a fully functional, small-footprint Linux

system to be stored and run from a 32MB DiskOnChip device.

1.1 Hardware Details

The single board computer chosen as the embedded processor for these units is the

Nova 7892 card by ICP Electronics Inc (www.icpacquire.com). This card meets all the

general requirements of an SBC for use within PROTOR. Other cards with similar

facilities are available from other manufacturers.

• Footprint 146mm x 203mm (5.25" footprint)

• CPU Supports Socket 370 Celeron and Pentium III CPUs

• Memory Supports one 168-pin DIMM socket (upto 256Mbytes)

• Ethernet On-board Intel 82559 10/100 Mbps interface with RJ45

connector.

• PC-104 Supports PC-104 expansion

• USB Supports 2 USB Ports

• Solid-state storage Supports M-System DiskOnChip

For the PROTOR application the NOVA-7892 card has been populated with an 866MHz

Pentium III CPU and 64Mbytes of memory. For initial development a standard IDE hard

disk is used. The eventual embedded application code is to run under Linux from

DiskOnChip.

A general development system for the embedded system was assembled which

consisted of :

• Nova 7892 SBC

• Pentium III CPU

• 64Mbytes memory

• 4Gbyte IDE Disk

• 32Mbyte DiskOnChip

• 1.4Mbyte floppy drive

• CD-ROM drive

1.2 System Configuration

In order for the DiskOnChip device to be recognised by the system BIOS and therefore

useable within this environment it must firstly be initialised and formatted. Unfortunately

the tools necessary to perform this action are DOS based. Therefore, for this

development environment, the hard disk for the system is best partitioned with a small

32Mbyte partition was reserved at the beginning of the disk for DOS. The rest of the disk

was reserved for the Linux system and Linux swap partition. The following is an

example configuration.

Disk /dev/hda: 255 heads, 63 sectors, 524 cylinders

Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 5 495 3911827+ 83 Linux

/dev/hda2 * 1 4 32098+ 4 FAT16 <32M

/dev/hda3 496 524 265072+ 82 Linux swap

The system was initially booted from a standard DOS boot floppy. The hard disk

partitioned and the initial DOS partition (C:\) formatted and made bootable.

2.0 DOS Development Environment

As mentioned in the previous section a simple DOS development environment is

required for the initialisation and formatting of the DiskOnChip device. This environment

is only required for the initial setup of the device. Once the DiskOnChip has been

formatted, Linux loaded and made bootable then DOS is no longer required. The

following describes the tools needed for the DOS environment in order to simplify the

DiskOnChip development.

2.1 DiskOnChip Tools

In order to initialise and format a new DiskOnChip device a set of tools provided by the

DiskOnChip manufacturers, M-Systems must be obtained. These tools (called TrueFFS

or True Flash File System) are DOS utilities and must be downloaded from the web site

http://www.m-sys.com/content/Developer/DOS.asp and installed into the DOS partition

provided on the development system for this purpose.

Of the software provided my M-Systems, DFORMAT is probably the main tool required

to get started with the DiskOnChip. DFORMAT initializes a "virgin" DiskOnChip and

prepares it for the application's needs. DFORMAT provides the following.

• Bad block scanning
• Partitioning the DiskOnChip to disk and binary partitions
• Setting hardware protection configurations

• BIOS related operations
• Boot replacement operations

Note. M-Systems provide two versions of these tools (the latest release v5.0.4 and an

older release v4.2). The following sections describe the configuration of Linux using

MTD device support. Currently this software only works with the older (V4.2) TrueFFS

format utility and so the newer (v5.0.4) should not be used.

You can try the format of the DiskOnChip device with the following command

DFORMAT /WIN:D600 /S:DOC42.EXB

Note this command is for the v4.2 toolset. If a higher version is used then the EXB

filename will need to change accordingly.

If the device is recognised then the format utility will show the capacity and show

progress as the device is formatted. Following the format the DiskOnChip device should

be acccessible as device D:\ from DOS.

2.2 Boot Loader

In order to simplify the development and booting of Linux kernels and to allow simple co-

existence with DOS then the widely available DOS Linux loader module LOADLIN is

recommended to be downloaded and installed within the DOS partition. Loadlin is a

simple DOS based utility that loads the Linux kernel into memory from DOS. This allows

a number of development Linux kernels to be built , copied to the DOS partition and

loaded. Loadlin may be downloaded from ftp://ftp.linux.sh/pub/loadlin.exe.

2.3 MS-DOS System Startup

To facilitate DiskOnChip development the AUTOEXEC.BAT and CONFIG.SYS files

within the DOS partition may be customised to allow various utilities and boot options to

be readily available from the menu presented at boot time. The following are typical

entries which may be added to any existing files.

CONFIG.SYS

. . .
[MENU]
MENUITEM=LLOCAL,Boot Linux 2.4.7 kernel(MTD) root on /dev/hda1
MENUITEM=FFORMAT5,Format DiskOnChip2000 with TrueFFS v5.0
MENUITEM=FFORMAT4,Format DiskOnChip2000 with TrueFFS v4.2
MENUITEM=MSDOS,Exit to MSDOS
MENUDEFAULT=LLOCAL,5

[LLOCAL]
[FFORMAT5]
[FFORMAT4]
[MSDOS]
[COMMON]

AUTOEXEC.BAT

. . .
SET PATH=c:\;C:\DOS;c:\DOC-V42
GOTO %CONFIG%
:FFORMAT5
 echo "formatting DiskOnChip2000 using doc504.exb"
 cd \DOC-V50
 dformat /win:d600 /s:doc504.exb /y
 goto end
:FFORMAT4
 echo "formatting DiskOnChip2000 using doc42.exb"
 cd \DOC-V42
 dformat /win:d600 /s:doc42.exb /y
 goto end
:LLOCAL
 \LINUX\loadlin \linux\lin247c\bzimage root=/dev/hda1 ro
 GOTO END
:MSDOS
:END

3.0 Linux Development Environment

The development system used for the embedded system is based on the standard

REDHAT v7.2 distribution. LINUX may be installed from CD to the hard disk. The disk

should already have been partitioned something like:

Disk /dev/hda: 255 heads, 63 sectors, 524 cylinders

Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 5 495 3911827+ 83 Linux

/dev/hda2 * 1 4 32098+ 4 FAT16 <32M

/dev/hda3 496 524 265072+ 82 Linux swap

LINUX should be installed onto device /dev/hda1 with /dev/hda3 used for swap. The

LINUX disk partitions will need to be initialised appropriately. Take care not to initialise

the DOS partition (/dev/hda2).

The installation procedure should automatically detect any hardware devices present

such as keyboard, mouse and video. It should also detect the Ethernet interface. Setup

and appropriate IP address for your network. At this stage it is advisable not setup any

firewall configuration.

No boot loader should be installed for LINUX as we are using LOADLIN as described

above, however a boot floppy disk should be created. This disk will be needed to boot

LINUX until a suitable kernel has been built and copied to the DOS partition for

LOADLIN.

 A minimalist custom installation should be selected with general development and

network options but with no X-windows or window managers installed. Ensure that you

provide a password for the root user but it is not necessary at this stage to setup any

other user accounts.

3.1 Custom Kernel Configuration

Having successfully loaded REDHAT 7.2 you should be able to boot LINUX using the

boot disk created above. Login to the root account using the password defined.

The standard set of kernel sources supplied with REDHAT 7.2 are based on kernel

release 2.4.7. In order to develop the system for PROTOR a custom kernel needs to be

built with additional support for Memory Technology Devices (MTD) in order to support

the DiskOnChip device.

Kernel 2.4.7 contains general drivers and development for solid-state flash disks such as

the M-System DiskOnChip.

 Note it is possible to use binary drivers available from M-Systems however, being

binary, these drivers contravene the Open Source GPL licence and should not be

released as part of a production item. It was therefore decided to use the general MTD

drivers available within the Linux kernel sources.

The latest set of kernel sources for MTD should be downloaded from the web site

www.linux-mtd.infradead.org and loaded on top of the standard 2.4.7 sources. This set

of sources also contains some useful utilities for MTD development.

The kernel sources are contained in directory /usr/src/linux-2.4.7-10 . To build a

custom kernel use the command.

make menuconfig

from within this directory.

The following is a brief summary of the important kernel options to be selected within the

MTD section. This shows only the main options turned on or included within the kernel.

Most other options may be selected as modules and loaded at run-time in order to keep

the resultant kernel size to a minimum.

Section Option Reason

• Memory
Technology
Devices
(MTD)

CONFIG_MTD=y
CONFIG_MTD_DEBUG=y
CONFIG_MTD_DEBUG_VERBOSE=0
CONFIG_MTD_CHAR=y
CONFIG_MTD_BLOCK=y
CONFIG_FTL=y
CONFIG_NFTL=y
CONFIG_NFTL_RW=y

Include MTD support
Turn on Debug
Verbose level = 0 (quietest)

Turn on Read/Write to MTD device
• Self CONFIG_MTD_DOC2000=y DiskOnChip 2000

Contained
MTD devices

CONFIG_MTD_DOCPROBE=y
CONFIG_MTD_DOCPROBE_ADVANCED=y
CONFIG_MTD_DOCPROBE_ADDRESS=D6000

Probe for address
Advanced Probe option
DOC2000 as specific address D6000

• NAND Flash
Device
Drivers

CONFIG_MTD_NAND=y
CONFIG_MTD_NAND_ECC=y

Include NAND support
Include software ECC

With this configuration we are enabling support for the DiskOnChip 2000 specifically and

also at the address 0Xd6000 which is the default for the DiskOnChip on the Nova range

of processor cards.

3.2 Building a Custom Kernel

Build the new kernel with the command

make dep clean bzImage modules modules_install

The resultant kernel and its equivalent system map are found in the files

/usr/src/linux-2.4.7-10/arch/i386/boot/bzImage and
/usr/src/linux-2.4.7-10/System.map

3.3 Booting Custom Kernel

To boot the system from this new kernel you will need to mount the DOS partition and

copy both these files to the appropriate directory. For example

mkdir /mnt/dos

mount /dev/hda2 /mnt/dos -t msdos

In the example AUTOEXEC.BAT file shown above the directory used for storage of the

Linux kernel is C:\LINUX\LIN247C. Therefore the new kernel image may be copied using

the command

cp /usr/src/linux-2.4.7-10/arch/i386/boot/bzImage
 /mnt/dos/linux/lin247c/bzimage

Before booting the new kernel it is necessary to create device entries within the system

for the DiskOnChip. A script exists within in the MTD utilities which may be downloaded

from the MTD web site as described above. If this software is downloaded and unpacked

into directory /usr/protor4/mtd then action this script by the commands:

cd /usr/protor4/mtd/util
./MAKEDEV

The devices created should be as follows and have a major node of 93.

ls -l /dev/nft*
brw-r--r-- 1 root root 93, 0 Sep 3 15:23 nftla
brw-r--r-- 1 root root 93, 1 Sep 3 15:23 nftla1
brw-r--r-- 1 root root 93, 2 Sep 3 15:23 nftla2

You should now be able to shutdown Linux and reboot. The system boots to MS-DOS

and shows the options defined in the CONFIG.SYS file. Firstly select the option

Format DiskOnChip using TrueFFS v4.2

The DiskOnChip will be formatted , loosing any previous information stored on the

device. This procedure also loads software to the device which enables it to be detected

by the system BIOS. Reboot the system again in order to detect the device.

Now select the option :

Boot Linux 2.4.7 kernel(MTD) root on /dev/hda1

The LINUX system should now boot. During the boot procedure there should be

messages showing that the DiskOnChip has been detected. You should also see

messages about the device /dev/nftla.

For example, following a reboot, try the command

dmesg | grep DiskOnChip

Which should show messages similar to the following if the device has been correctly

detected.

Using configured DiskOnChip probe address 0xd6000

DiskOnChip 2000 found at address 0xD6000

2 flash chips found. Total DiskOnChip size: 32 MiB

mtd: Giving out device 0 to DiskOnChip 2000

Additionally

dmesg | grep nftl

Should show something like:

NFTL driver: nftlcore.c $Revision: 1.86 $, nftlmount.c

$Revision: 1.28 $

 nftla:

3.4 Formatting DiskOnChip for Linux

Provided that the DiskOnChip has been detected then the chip can be formatted and

mounted for use within LINUX. Before formatting the chip it is easiest to remove any

existing partition information using the command

dd if=/dev/zero of=/dev/nftla count=1 bs=512

To test the device it should now be possible to format the device and mount it. For this

application it is probably best to make a filesystem over the whole device rather than

setup individual partitions. The following commands make a file system on the device,

create a mount point and mount the device.

mke2fs /dev/nftla
mkdir /flash
mount /dev/nftla /flash –t ext2

You should now be able to copy files and read them from the DiskOnChip device using
the mount point /flash.

3.5 Embedded system Utilities

Having now successfully installed and accessed the DiskOnChip it is now the aim to

identify and load sufficient system files and application tasks onto the DiskOnChip to

allow the system to be bootable and usable from stand-alone DiskOnChip , that is with

no hard-disk present. The main challenge being the space available on the DiskOnChip.

Searches on the Internet yielded a number of useful utilities designed for small-footprint ,

embedded applications. The applications chosen are described below.

a. BusyBox (www.busybox.net)

This single program can be used to emulate a large number of UNIX utilities. A

configuration file used during the build process allows the utilities supported to be

defined and hence control the size of the eventual task. The size of the single task is

much less than the combined size of the equivalent Unix utilities. Another advantage is

that the task can also built without glibc NSS support.

For the most recent C compilor (GNU C Lib 2.0) access to various system files and

databases is controlled through the NSS suite. This requires the final system to have a

large number of run-time libraries (/lib/security/libnss*). It would seem to be

advantageous to build BusyBox without NSS support however for our application

subsequent utilities such as FTP and TELNET require NSS support and so Busybox was

built with NSS support included.

Installation procedure:

• Download latest source tree (busybox-0.60.3) from site
• Unpack into directory /usr/protor4/busybox-0.60.3
• Edit file busybox/Config.h to define entries to include
• Run makefile to build resultant task image
• Install the task onto DiskOnChip and make entry links to all included utilities.

b. TinyLogin (http://tinylogin.busybox.net)

From the same developers as BusyBox , this single module emulates a number of Unix

processes for Login and access.

Installation procedure:

• Download latest source tree (tinylogin-1.0.2) from site
• Unpack into directory /usr/protor4/tinylogin-1.0.2
• Edit file busybox/Config.h to define entries to include
• Run makefile to build task image
• Install the task onto DiskOnChip and make entry links to all included utilities.

c. wu-ftpd (www.wu-ftpd.org)

In order to be able to copy files to and from the embedded system an FTP daemon is

required. In our configuration the embedded system will be used in a private network

and so we can afford to be more relaxed about security. REDHAT 7.2 make extensive

use of the PAM security system and so the standard FTP daemon requires the

additional overhead of the PAM run-time libraries. To avoid this requirement download

the latest set of sources for the wu-ftpd daemon. It is possible to build this daemon

without PAM support.

Installation procedure:

• Download latest source tree (wu-ftpd-2.6.2) from site.
• Unpack into directory /usr/protor4/wu-ftpd
• Configure software to disable PAM facilities and make new distribution :

./configure --disable_pam
make

• The resultant executable (../bin/ftpd) needs to be copied to the flash
disk (../sbin/in.ftpd) along with the various access files (/etc/ftp*)

• This FTP daemon requires a number of runtime libraries to be present. These
are:

/lib/libcrypt.so.1
/lib/libnsl.so.1
/lib/libresolv.so.2

d. TELNET server

Prosig have developed their own simple telnet style command server. This process

attaches to a specific socket and waits for a connection from a telnet client. On

connection a password command/response mechanism authenticates the user.

Provided the correct password is given then system commands may be entered and

responses echoed to the user.

Installation procedure:

• Download latest source tree from site.
• Unpack into directory /usr/protor4/command_server.
• Copy executable to flash disk (../usr/protor4)

3.6 Linux System for DiskOnChip

The tables provide in Appendix A describe the complete set of system files created for

the DiskOnChip device in order to create a fully functional operational system. This set

of files represented a small footprint system which allowed sufficient space on a

32Mbyte DiskOnChip device for the additional application code.

3.7 Making the DiskOnChip Bootable

In order to boot the embedded system from DiskOnChip then the kernel image and

System map file created above need to be copied to the device into the directory

/boot.

The image also needs to be modified to select the correct root file system when it boots.

The kernel built on the development disk will expect the root file system on /dev/hda1.

To change the kernel to boot with the root file system on the DiskOnChip use the

command

rdev /flash/boot/bzImage /dev/nftla

The standard boot loaders either LILO or GRUB cannot be used as they do not have in-

built support for the DiskOnChip. However the MTD source tree downloaded above

contains sources and an executable for a modified LILO which is DiskOnChip aware.

This source tree also contains a boot block file suitable for use with the DiskOnChip.

The following LILO configuration file (lilo.conf) was created and copied to the device.

boot = /dev/nftla
disk=/dev/nftla bios=0x80
image = /boot/bzImage
 root = /dev/nftla
 label = protor
 read-only

With the DiskOnChip mounted on /flash and the following files in the directory /flash

/boot

BzImage
System.map
boot.b

Then issue the following command to create a boot block on the DiskOnChip

./lilo-mtd –r /flash –C /etc/lilo.conf

The DiskOnChip should now be stand-alone and bootable. Shutdown the system.

Remove the hard disk. Reboot and enter the system BIOS setup. Set the primary boot

device for SCSI for the DiskOnChip. When the system now boots it should detect the

DiskOnChip , find its boot block and load the kernel. When the kernel is loaded this

should execute the /sbin/init program which when complete executes the script

/etc/init.d/rcS.

3.8 Application Startup

As mentioned above, on boot the kernel is loaded from DiskOnChip and the file system

mounted and started. The script /etc/init.d/rcS controls the startup and

initialisation of individual files. The following is a suitable rcS script for a NOVA-7892

card and initialising PROTOR software.

#!/bin/bash
#
/etc/init.d/rcS Single User Startup script for PROTOR
#
1. Set system date/time from CMOS clock
 echo "Setting date…"
 /sbin/hwclock -s -u
2. Mount /proc filesystem
 echo "Mounting proc…"
 /bin/mount -n -t proc /proc /proc
3. Check flash filesystem every reboot
 echo "Checking filesystems…"
 /sbin/fsck.ext2 -a /dev/nftla1
4. Remount flash filesystem read-write
 echo "Remounting flash filesystem as root (rw)…"
 /bin/mount -n -o remount,rw / > /etc/mtab
5. Clear mtab and remove stale backups
 rm -f /etc/mtab
 rm -f /etc/mtab~ /etc/mtab~~
6. Enter root, /proc and (potentially)
/proc/bus/usb and devfs into mtab.
 mount -f /

 mount -f /proc
 [-f /proc/bus/usb/devices] && mount -f -t usbdevfs
usbdevfs /proc/bus/usb
 [-e /dev/.devfsd] && mount -f -t devfs devfs /dev
7. Setup path
 export PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/protor4
8. Setup networking. Load driver and setup IP address
 echo "Setting up network interfaces…\n"
 modprobe eepro100
 /sbin/ifconfig eth0 `cat /usr/protor4/ipfile` up
 /sbin/route add default eth0
 echo ""
9. Initialise USB Controller and load devices
 echo "Initialising USB controller "
 modprobe usb-uhci
 mount -t usbdevfs usbdevfs /proc/bus/usb
10. Startup system daemons (syslogd, klogd, xinetd etc)
 chmod 777 /usr/protor4/*
 echo "Application startup…."
 echo "Starting network daemons …"
#
truncate the messages file
#
 tail -n 100 /var/log/messages > /var/log/messages.0
 rm -f /var/log/messages
 echo "… syslogd " ; /sbin/syslogd -m 0
#echo "… klogd " ; /sbin/klogd -2
 echo "… xinetd " ; /usr/sbin/xinetd -stayalive
 echo "… Protor command_server "
 /usr/protor4/command_server &
11. Startup PROTOR specific applications
 cd /usr/protor4
 startup
 /bin/bash

4.0 Summary

By following these procedures and loading the various software packages we have

produced an embedded system which provides all of the necessary devices and drivers

for a PROTOR system. The system supports the following key requirements of an

embedded PROTOR system.

• System bootable from solid-state disk device (DiskOnChip). No requirement for

floppy disk or hard disk devices.

• System supports USB devices.

• System supports Ethernet.

• Cut-down Linux installed to provide sufficient utilities for operation but remain within

space constraints on DiskOnChip.

• Remote access utilities available for view and file transfer.

Appendix A

The following listing shows all files for the complete embedded small-footprint system for
PROTOR. The majority of the files are taken from a standard Redhat 7.2 system
together with additional files from the Busybox amd TinyLogin packages.

/ Directory

File Description
/bin Directory header
/boot Directory header
/dev Directory header
/etc Directory header
/lib Directory header
Linuxrc -> bin/busybox Startup script for initrd (not used)
/lost+found Directory header
/mnt Directory header
/proc Directory header
/sbin Directory header
/usr Directory header
/var Directory header

/bin Directory

Most of the utilities in this directory are provided by the Busybox and
Tinylogin modules. Each utility is simply a link to the appropriate
module.

File Description
addgroup -> tinylogin
adduser -> tinylogin
ash -> busybox
bash Bash shell (from Redhat 7.2 /bin/bash)
busybox Busybox utility built from source.
cat -> busybox
chgrp -> busybox
chmod -> busybox
Chown -> busybox
Cp -> busybox
Date -> busybox
Dd -> busybox
Delgroup -> tinylogin
Deluser -> tinylogin
Df -> busybox
Dmesg -> busybox
Echo -> busybox
False -> busybox
Grep -> busybox
Gunzip -> busybox
Gzip -> busybox
Hostname -> busybox
Kill -> busybox

Ln -> busybox
Login -> tinylogin
Ls -> busybox
Mkdir -> busybox
Mknod -> busybox
More -> busybox
Mount -> busybox
Mv -> busybox
Pidof -> busybox
Ping -> busybox
Ps -> busybox
Pwd -> busybox
Rm -> busybox
Rmdir -> busybox
Sed -> busybox
Sh -> busybox
Sleep -> busybox
Stty -> busybox
Su -> tinylogin
Sync -> busybox
Tar -> busybox
Tinylogin Tinylogin module built from source
Touch -> busybox
True -> busybox
Umount -> busybox
Uname -> busybox
Vi -> busybox
Zcat -> busybox

/boot Directory

File
Description

Boot.5D00 Created by Lilo
Boot.b Boot block file. From MTD distribution
BzImage Kernel Image built for MTD support
Map Map file created by Lilo
System.map System map file built for MTD support

/dev Directory

File
Major ID Minor

ID
Description

Console 4 0 Console device
Fd0 2 0 Floppy Disk device
Hda 3 0 1st IDE Disk
Hda1 3 1 Disk partition #1
Hda2 3 2 Disk partition #2
Hda3 3 3 Disk partition #3
Hda4 3 4 Disk partition #4
Initrd 1 250 Initrd device
Kmem 1 2 Kmem device
Mem 1 1 Mem device
Nftla 93 0 MTD Flash Disk device
Nftla1 93 1 Flash Disk partiton #1
Nftla2 93 2 Flash Disk partition #2
Null 1 3 Null device

Ptyp0 2 0
Ptyp1 2 1
Ptyp2 2 2
Ram 1 1 Ram device
Tty 5 0 Terminal Device
Ttyp0 3 0 Terminal #1
Ttyp1 3 1 Terminal #2
Ttyp2 3 2 Terminal #2
TtyS0 4 64 Com1 device
TtyS1 4 65 Com2 device
Zero 1 5 Zero device

/etc Directory

File
Description

Adjtime
Fstab File System table
Ftpaccess FTP access file {
Ftpconversions FTP access file {
Ftpgroups FTP access file { from wu-ftpd distribution
Ftphosts FTP access file {
Ftpusers FTP access file {
Group Group file
Hosts Hosts file
hosts.conf Hosts.conf file
init.d Directory header
lilo.conf Lilo configuration file
mtab Mount table
nsswitch.conf NSS configuration file
passwd Password file
passwd- Password backup
protocols Protocols file
rc.d Directory header
resolv.conf Resolver configuration file
services Services file
shadow Shadow password file
shadow- Shadow backup
syslog.conf Syslog configuration file
xinetd.conf Xinetd configuration file
xinetd.d Directory header

/etc/init.d Directory

File
Description

rcS -> rcS.Nova7892 Link to appropriate startup script
rcS.Nova600 Startup script for Nova 600 card
rcS.Nova7892 Startup script for Nova 7892 card

/etc/rc.d Directory

File
Description

rc.sysinit Main system startup script

/etc/xinetd.d Directory

File
Description

telnet Xinetd configuration for telnet
wu-ftpd Xinetd configuration for wu-ftpd

/lib Directory

This directory contains the runtime libraries required by the system
utilities.

ld-2.2.4.so
ld-linux.so.2 -> ld-2.2.4.so
libc-2.2.4.so
libcom_err.so.2 -> libcom_err.so.2.0
libcom_err.so.2.0
libcrypt-2.2.4.so
libcrypt.so.1 -> libcrypt-2.2.4.so
libc.so.6 -> libc-2.2.4.so
libdl-2.2.4.so
libdl.so.2 -> libdl-2.2.4.so
libext2fs.so.2 -> libext2fs.so.2.4
libext2fs.so.2.4
libm-2.2.4.so
libm.so.6 -> libm-2.2.4.so
libnsl-2.2.4.so
libnsl.so.1 -> libnsl-2.2.4.so
libnss1_files-2.2.4.so
libnss1_files.so.1 -> libnss1_files-2.2.4.so
libnss_files-2.2.4.so
libnss_files.so.1 -> libnss1_files-2.2.4.so
libnss_files.so.2 -> libnss_files-2.2.4.so
libproc.so.2.0.7
libresolv-2.2.4.so
libresolv.so.2 -> libresolv-2.2.4.so
libtermcap.so.2 -> libtermcap.so.2.0.8
libtermcap.so.2.0.8
libutil-2.2.4.so
libutil.so.1 -> libutil-2.2.4.so
libuuid.so.1 -> libuuid.so.1.2
libuuid.so.1.2

/lib/modules Directory

File
Description

/lib/modules/2.4.7-10/modules.dep Module dependencies
/lib/modules/2.4.7-10/modules.usbmap USB map

/lib/modules/2.4.7-10/kernel/drivers/net/eepro100.o Driver for Intel
82559 on Nova 7892

/lib/modules/2.4.7-10/kernel/drivers/net/eepro.o "
/lib/modules/2.4.7-10/kernel/drivers/net/eexpress.o "

/lib/modules/2.4.7-10/kernel/drivers/usb/uhci.o USB drivers
/lib/modules/2.4.7-10/kernel/drivers/usb/usbcore.o "
/lib/modules/2.4.7-10/kernel/drivers/usb/usbnet.o "
/lib/modules/2.4.7-10/kernel/drivers/usb/usb-ohci.o "
/lib/modules/2.4.7-10/kernel/drivers/usb/usb-uhci.o "

/sbin Directory

Most of these utilities are linked to the Busybox module. The
additional modules are highlighted.

File Description
fsck.ext2 File system check for EXT2 (from

Redhat 7.2)
getty -> ../bin/tinylogin
halt -> ../bin/busybox
hwclock Hwclock read/write (Redhat 7.2)
ifconfig -> ../bin/busybox
init -> ../bin/busybox
insmod -> ../bin/busybox
klogd -> ../bin/busybox
lsmod -> ../bin/busybox
mkfs.minix -> ../bin/busybox
mkswap -> ../bin/busybox
modprobe -> ../bin/busybox
poweroff -> ../bin/busybox
reboot -> ../bin/busybox
rmmod -> ../bin/busybox
route -> ../bin/busybox
swapoff -> ../bin/busybox
swapon -> ../bin/busybox
syslogd -> ../bin/busybox
update -> ../bin/busybox

/usr/bin Directory

Most of these utilities are linked to the Busybox module. The
additional modules are highlighted.

File Description
basename -> ../../bin/busybox
chvt -> ../../bin/busybox
clear -> ../../bin/busybox
cut -> ../../bin/busybox
dirname -> ../../bin/busybox
du -> ../../bin/busybox
env -> ../../bin/busybox
find -> ../../bin/busybox
free -> ../../bin/busybox
head -> ../../bin/busybox
id -> ../../bin/busybox
ipcrm IPCRM utility from Redhat 7.2
ipcs IPCS utility from Redhat 7.2
killall -> ../../bin/busybox
logger -> ../../bin/busybox

passwd -> ../../bin/tinylogin
reset -> ../../bin/busybox
sort -> ../../bin/busybox
tail -> ../../bin/busybox
telnet -> ../../bin/busybox
telnetd -> ../../bin/busybox
test -> ../../bin/busybox
tftp -> ../../bin/busybox
traceroute -> ../../bin/busybox
tty -> ../../bin/busybox
uniq -> ../../bin/busybox
uptime -> ../../bin/busybox
wc -> ../../bin/busybox
which -> ../../bin/busybox
whoami -> ../../bin/busybox
xargs -> ../../bin/busybox
yes -> ../../bin/busybox

/usr/sbin Directory

File Description
chroot -> ../../bin/busybox Link to Busybox
in.ftpd FTP daemon built from wu-ftpd
in.telnetd TELNET daemon
wu-ftpd -> in.ftpd Link to FTP daemon
xinetd Xinetd from Redhat 7.2

/var Directory

File Description
log Directory header for Log files
pid Directory header for PIDs
run Directory header for run PIDS

