Embedding Redhat Linux in a DiskOnChip - HOWTO

Don Davies, Prosig Ltd (don.davies@prosig.com)
October 2002

Describes the configuration and setup of a development environment for a Single Board
Computer running Redhat Linux from a DiskOnChip device.

Contents

1.0 INEFOTUCTION .. 3
1.1 Hardware DetallS.........cooooeeiieiieeeeeeeeeeeeee e 3
1.2 System CONfIQUIALIONccooeeeeeeeeeeeeeee e 4
2.0 DOS Development ENVIFONMENT........coooiiiiiiiiiiiiieeeeeeeeeee e 5
2.1 DiSKONCHIP TOOIS ...ccoeiiiiiiiiieeeeeee e 5
2.2 BOOt LOAET ..o 6
2.3 MS-DOS SYSIEM STAIUPD.....eeeerriinieeeee et e e e r e e e e e e eesnnnanns 6
3.0 Linux Development ENVIFONMENTcoooiiiiiiiiiiiiiieeeeeeeeeeeee 7
3.1 Custom Kernel CoNfIQUIAtIONuuuuuueuueiriieiiiiriiieiieiieeeeeeneeeneseeseeseeeeeneneennene 8
3.2 Building CUSIOM KEIMNEIuuiiiiiiiiiiiiiiiiiiiiiiiiiii e eeeeeeeeeneee 10
3.3 B0oOtiNg CUSIOM KEIMELuuiiiiiiiiiiiiiiiiiiiiiiiii it eeeeeeeeeeeneees 10
3.4 Formatting DiSKONCHIP fOr LINUXuuvvuuriiiiiiiiiiiiiiiiiiiieiiiiiieiieeeeeeseeeeeeseeeennnnnnn 12
3.5 Embedded SyStem ULIITIES............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieveeeeeeeeeeeeeeeeeeees 12
a. BusyBoX (WWW.DUSYDOX.NEL).....uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 13
b. TinyLogin (http://tinylogin.busyboX.nNet) ... 13
C. WU-Ttpd (WWW.WU-TEPA.OMG) ..evveiiiiiiiiiiiiiiiiiiiiiiiiiieee e 14
0. TELNET SEIVET ..ottt sesssessnnnnes 14
3.6 Linux System for DISKONCIIPuuiiuiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieeieeeeeeeeeeeeeeeeeeeneeeee 15
3.7 Making the DiskOnChip Bootableuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiis 15
3.8 APPIICALION STAITUD ...coeiiiieieeeieeeee e 16
4.0 SUIMIMAIY ...ttt ettt e ettt e e e e ettt e et bt e e e e et e eee bbb r e e e et eeesbbnn e eeeas 17

APPENTIX A Lttt n e e 19

1.0 Introduction

Central to the development of the PROTOR distributed vibration monitoring system is
the setup and configuration of an embedded single board computer for remote
monitoring applications. The embedded processor sits within a special purpose chassis
along with data acquisition and conditioning modules. External communication is via
Ethernet and internal via both PC-104 and USB. These units may be installed in
potentially harsh environments and so a system which supports solid-state storage
rather than a mechanical device is required. These units also run Linux as this provides

the most reliable, best cost-performance platform for a remote monitoring applications.

This note describes the setup and configuration of a development system for a suitable
single board computer which supports the solid-state DiskOnChip device from M-
Systems Inc. The note also shows how to access the DiskOnChip from within a Linux
environment and how to make the system bootable from DiskOnChip so that no hard
disk is required. In order to run Linux from a DiskOnChip device some details are
provided on the essential files needed from a standard Redhat Linux distribution,
together with some useful utilities which allow a fully functional, small-footprint Linux

system to be stored and run from a 32MB DiskOnChip device.

1.1 Hardware Details

The single board computer chosen as the embedded processor for these units is the

Nova 7892 card by ICP Electronics Inc (www.icpacquire.com). This card meets all the

general requirements of an SBC for use within PROTOR. Other cards with similar

facilities are available from other manufacturers.

Footprint 146mm x 203mm (5.25" footprint)

CPU Supports Socket 370 Celeron and Pentium Il CPUs
Memory Supports one 168-pin DIMM socket (upto 256Mbytes)
Ethernet On-board Intel 82559 10/100 Mbps interface with RJ45

connector.

PC-104 Supports PC-104 expansion
USB Supports 2 USB Ports
Solid-state storage Supports M-System DiskOnChip

For the PROTOR application the NOVA-7892 card has been populated with an 866MHz
Pentium Il CPU and 64Mbytes of memory. For initial development a standard IDE hard
disk is used. The eventual embedded application code is to run under Linux from
DiskOnChip.

A general development system for the embedded system was assembled which
consisted of :

Nova 7892 SBC

Pentium Il CPU

64Mbytes memory

4Gbyte IDE Disk

32Mbyte DiskOnChip

1.4Mbyte floppy drive

CD-ROM drive

1.2 System Configuration

In order for the DiskOnChip device to be recognised by the system BIOS and therefore
useable within this environment it must firstly be initialised and formatted. Unfortunately
the tools necessary to perform this action are DOS based. Therefore, for this
development environment, the hard disk for the system is best partitioned with a small
32Mbyte partition was reserved at the beginning of the disk for DOS. The rest of the disk
was reserved for the Linux system and Linux swap partition. The following is an

example configuration.

Di sk /dev/ hda: 255 heads, 63 sectors, 524 cylinders
Units = cylinders of 16065 * 512 bytes

Devi ce Boot Start End Bl ocks Id System
/ dev/ hdal 5 495 3911827+ 83 Linux
/dev/ hda2 * 1 4 32098+ 4 FAT16 <32M
/ dev/ hda3 496 524 265072+ 82 Linux swap

The system was initially booted from a standard DOS boot floppy. The hard disk
partitioned and the initial DOS partition (C:\) formatted and made bootable.

2.0 DOS Development Environment

As mentioned in the previous section a simple DOS development environment is
required for the initialisation and formatting of the DiskOnChip device. This environment
is only required for the initial setup of the device. Once the DiskOnChip has been
formatted, Linux loaded and made bootable then DOS is no longer required. The
following describes the tools needed for the DOS environment in order to simplify the

DiskOnChip development.

2.1 DiskOnChip Tools

In order to initialise and format a new DiskOnChip device a set of tools provided by the
DiskOnChip manufacturers, M-Systems must be obtained. These tools (called TrueFFS
or True Flash File System) are DOS uitilities and must be downloaded from the web site

http://www.m-sys.com/content/Developer/DOS.asp and installed into the DOS partition

provided on the development system for this purpose.

Of the software provided my M-Systems, DFORMAT is probably the main tool required
to get started with the DiskOnChip. DFORMAT initializes a "virgin" DiskOnChip and
prepares it for the application's needs. DFORMAT provides the following.

Bad block scanning
Partitioning the DiskOnChip to disk and binary partitions
Setting hardware protection configurations

BIOS related operations
Boot replacement operations

Note. M-Systems provide two versions of these tools (the latest release v5.0.4 and an
older release v4.2). The following sections describe the configuration of Linux using
MTD device support. Currently this software only works with the older (V4.2) TrueFFS

format utility and so the newer (v5.0.4) should not be used.

You can try the format of the DiskOnChip device with the following command

DFORVAT /W N: D600 / S: DOCA2. EXB

Note this command is for the v4.2 toolset. If a higher version is used then the EXB

filename will need to change accordingly.

If the device is recognised then the format utility will show the capacity and show
progress as the device is formatted. Following the format the DiskOnChip device should

be acccessible as device D:\ from DOS.

2.2 Boot Loader

In order to simplify the development and booting of Linux kernels and to allow simple co-
existence with DOS then the widely available DOS Linux loader module LOADLIN is
recommended to be downloaded and installed within the DOS partition. Loadlin is a
simple DOS based utility that loads the Linux kernel into memory from DOS. This allows
a number of development Linux kernels to be built , copied to the DOS patrtition and

loaded. Loadlin may be downloaded from ftp://ftp.linux.sh/pub/loadlin.exe.

2.3 MS-DOS System Startup

To facilitate DiskOnChip development the AUTOEXEC.BAT and CONFIG.SYS files

within the DOS partition may be customised to allow various utilities and boot options to

be readily available from the menu presented at boot time. The following are typical

entries which may be added to any existing files.

CONFIG.SYS

[MENU]

MENUl TEM=LLOCAL, Boot Linux 2.4.7 kernel (MID) root on /dev/hdal
MVENUI TEM=FFORVATS, For mat Di skOnChi p2000 with TrueFFS v5.0

MVENUI TEM=FFORVAT4, For mat Di skOnChi p2000 with TrueFFS v4.2

MENUI TEM=EMBDOS, Exit to MSDOS

VENUDEFAULT=LLOCAL, 5

[LLOCAL]

[FFORVATS5]
[FFORVAT4]
[MSDOS]

[COMMON]

AUTOEXEC.BAT

SET PATH=c:\; C:\ DCS; c: \ DOC- V42
GOTO %CONFI G%
. FFORVATS
echo "formatting D skOnChi p2000 usi ng doc504. exb"
cd \ DOC V50
df ormat /w n: d600 /s:doc504.exb /y
goto end
. FFORVAT4
echo "formatting D skOnChi p2000 usi ng doc42. exb"
cd \ DCC V42
df ormat /w n: d600 /s:doc42.exb /y
goto end
: LLOCAL
\LINUX\ I oadlin \Iinux\Iin247c\bzi mage root=/dev/hdal ro
GOTO END
: MBDOS
: END

3.0 Linux Development Environment

The development system used for the embedded system is based on the standard
REDHAT v7.2 distribution. LINUX may be installed from CD to the hard disk. The disk

should already have been partitioned something like:

Di sk /dev/ hda: 255 heads, 63 sectors, 524 cylinders
Units = cylinders of 16065 * 512 bytes

Devi ce Boot Start End Bl ocks Id System
/ dev/ hdal 5 495 3911827+ 83 Linux
/dev/ hda2 * 1 4 32098+ 4 FAT16 <32M
/ dev/ hda3 496 524 265072+ 82 Linux swap

LINUX should be installed onto device / dev/ hdal with / dev/ hda3 used for swap. The
LINUX disk partitions will need to be initialised appropriately. Take care not to initialise
the DOS patrtition (/ dev/ hda2).

The installation procedure should automatically detect any hardware devices present
such as keyboard, mouse and video. It should also detect the Ethernet interface. Setup
and appropriate IP address for your network. At this stage it is advisable not setup any

firewall configuration.

No boot loader should be installed for LINUX as we are using LOADLIN as described
above, however a boot floppy disk should be created. This disk will be needed to boot
LINUX until a suitable kernel has been built and copied to the DOS partition for
LOADLIN.

A minimalist custom installation should be selected with general development and
network options but with no X-windows or window managers installed. Ensure that you
provide a password for the root user but it is not necessary at this stage to setup any

other user accounts.

3.1 Custom Kernel Configuration

Having successfully loaded REDHAT 7.2 you should be able to boot LINUX using the

boot disk created above. Login to the root account using the password defined.

The standard set of kernel sources supplied with REDHAT 7.2 are based on kernel
release 2.4.7. In order to develop the system for PROTOR a custom kernel needs to be
built with additional support for Memory Technology Devices (MTD) in order to support
the DiskOnChip device.

Kernel 2.4.7 contains general drivers and development for solid-state flash disks such as
the M-System DiskOnChip.

Note it is possible to use binary drivers available from M-Systems however, being
binary, these drivers contravene the Open Source GPL licence and should not be
released as part of a production item. It was therefore decided to use the general MTD

drivers available within the Linux kernel sources.

The latest set of kernel sources for MTD should be downloaded from the web site

www.linux-mtd.infradead.org and loaded on top of the standard 2.4.7 sources. This set

of sources also contains some useful utilities for MTD development.

The kernel sources are contained in directory / usr/src/ | i nux-2. 4. 7-10. To build a

custom kernel use the command.

make nenuconfig

from within this directory.

The following is a brief summary of the important kernel options to be selected within the
MTD section. This shows only the main options turned on or included within the kernel.
Most other options may be selected as modules and loaded at run-time in order to keep

the resultant kernel size to a minimum.

Secti on Option Reason
Menory CONFI G_MID=y I ncl ude MID support
Technol ogy CONFI G_MTD_DEBUG=y Turn on Debug
Devi ces CONFI G_MID_DEBUG_VERBCSE=0 Ver bose |l evel = 0 (quietest)
(MID) CONFI G_MID_CHAR=y
CONFI G_MID_BLOCK=y
CONFI G_FTL=y
CONFI G_NFTL=y
CONFI G_NFTL_RWey Turn on Read/ Wite to MID device

Sel f CONFI G_MrD_DOC2000=y Di skOnChi p 2000

Cont ai ned CONFI G_MID_DOCPROBE=y Probe for address
MID devi ces CONFI G_MID_DOCPROBE_ADVANCED=y Advanced Probe option
CONFI G_MID_DOCPROBE_ADDRESS=D6000 DOC2000 as specific address D6000

NAND Fl ash CONFI G_MID_NAND=y I ncl ude NAND support
Devi ce CONFI G_MID_NAND_ECC=y I ncl ude software ECC
Drivers

With this configuration we are enabling support for the DiskOnChip 2000 specifically and
also at the address 0Xd6000 which is the default for the DiskOnChip on the Nova range

of processor cards.

3.2 Building a Custom Kernel

Build the new kernel with the command

nmake dep cl ean bzl mage nodul es nodul es_i nst al

The resultant kernel and its equivalent system map are found in the files

fusr/src/linux-2.4.7-10/arch/i 386/ boot/ bzl mrage and
fusr/src/linux-2.4.7-10/ System nmap

3.3 Booting Custom Kernel

To boot the system from this new kernel you will need to mount the DOS partition and

copy both these files to the appropriate directory. For example

nkdir / mt/ dos

mount /dev/hda2 / mt/dos -t nsdos

In the example AUTOEXEC.BAT file shown above the directory used for storage of the
Linux kernel is C:\LINUX\LIN247C. Therefore the new kernel image may be copied using

the command

cp /usr/src/linux-2.4.7-10/arch/i 386/ boot/ bzl mage

/it /dos/linux/lin247c/ bzi mage

Before booting the new kernel it is necessary to create device entries within the system

for the DiskOnChip. A script exists within in the MTD utilities which may be downloaded

from the MTD web site as described above. If this software is downloaded and unpacked

into directory / usr/ protor4/ ntd then action this script by the commands:

cd /usr/protor4/ md/util
. | MAKEDEV

The devices created should be as follows and have a major node of 93.

Is -1 /dev/nft*

brwr--r-- 1 root r oot 93, 0 Sep 3 15:23 nftla
brwr--r-- 1 root r oot 93, 1 Sep 3 15:23 nftlal
brwr--r-- 1 root r oot 93, 2 Sep 3 15:23 nftla2

You should now be able to shutdown Linux and reboot. The system boots to MS-DOS

and shows the options defined in the CONFIG.SYS file. Firstly select the option

Format Di skOnChi p using TrueFFS v4.2

The DiskOnChip will be formatted , loosing any previous information stored on the
device. This procedure also loads software to the device which enables it to be detected
by the system BIOS. Reboot the system again in order to detect the device.

Now select the option :

Boot Linux 2.4.7 kernel (MID) root on /dev/hdal

The LINUX system should now boot. During the boot procedure there should be
messages showing that the DiskOnChip has been detected. You should also see

messages about the device / dev/ nftl a.

For example, following a reboot, try the command

dnmesg | grep Di skOnChip

Which should show messages similar to the following if the device has been correctly
detected.

Usi ng configured D skOnChi p probe address 0xd6000
Di skOnChi p 2000 found at address 0xD6000

2 flash chips found. Total D skOnChip size: 32 MB
ntd: Gving out device 0 to D skOnChi p 2000

Additionally
dnesg | grep nftl

Should show something like:

NFTL driver: nftlcore.c $Revision: 1.86 $, nftlnmount.c
$Revision: 1.28 $

nftl a:

3.4 Formatting DiskOnChip for Linux

Provided that the DiskOnChip has been detected then the chip can be formatted and
mounted for use within LINUX. Before formatting the chip it is easiest to remove any

existing partition information using the command

dd if=/dev/zero of=/dev/nftla count=1 bs=512

To test the device it should how be possible to format the device and mount it. For this
application it is probably best to make a filesystem over the whole device rather than
setup individual partitions. The following commands make a file system on the device,

create a mount point and mount the device.

nke2fs /dev/nftla
nkdir /flash
mount /dev/nftla /flash -t ext2

You should now be able to copy files and read them from the DiskOnChip device using
the mount point/ f | ash.

3.5 Embedded system Utilities

Having now successfully installed and accessed the DiskOnChip it is now the aim to
identify and load sufficient system files and application tasks onto the DiskOnChip to

allow the system to be bootable and usable from stand-alone DiskOnChip , that is with

no hard-disk present. The main challenge being the space available on the DiskOnChip.
Searches on the Internet yielded a number of useful utilities designed for small-footprint ,

embedded applications. The applications chosen are described below.

a. BusyBox (www.busybox.net)

This single program can be used to emulate a large number of UNIX utilities. A
configuration file used during the build process allows the utilities supported to be
defined and hence control the size of the eventual task. The size of the single task is
much less than the combined size of the equivalent Unix utilities. Another advantage is

that the task can also built without gl i bc NSS support.

For the most recent C compilor (GNU C Lib 2.0) access to various system files and
databases is controlled through the NSS suite. This requires the final system to have a
large number of run-time libraries (/1 i b/ security/libnss*). It would seem to be
advantageous to build BusyBox without NSS support however for our application
subsequent utilities such as FTP and TELNET require NSS support and so Busybox was
built with NSS support included.

Installation procedure:

Download latest source tree (busybox-0.60.3) from site

Unpack into directory /usr/protor4/busybox-0.60.3

Edit file busybox/Config.h to define entries to include

Run makefile to build resultant task image

Install the task onto DiskOnChip and make entry links to all included utilities.

b. TinyLogin (http://tinylogin.busybox.net)

From the same developers as BusyBox , this single module emulates a number of Unix

processes for Login and access.

Installation procedure:

Download latest source tree (tinylogin-1.0.2) from site

Unpack into directory /usr/protor4/tinylogin-1.0.2

Edit file busybox/Config.h to define entries to include

Run makefile to build task image

Install the task onto DiskOnChip and make entry links to all included utilities.

C. wu-ftpd (www.wu-ftpd.org)

In order to be able to copy files to and from the embedded system an FTP daemon is
required. In our configuration the embedded system will be used in a private network
and so we can afford to be more relaxed about security. REDHAT 7.2 make extensive
use of the PAM security system and so the standard FTP daemon requires the
additional overhead of the PAM run-time libraries. To avoid this requirement download
the latest set of sources for the wu- f t pd daemon. It is possible to build this daemon

without PAM support.

Installation procedure:

Download latest source tree (wu-ftpd-2.6.2) from site.
Unpack into directory /usr/protord/wu-ftpd
Configure software to disable PAM facilities and make new distribution :

./ configure --disable_pam
nmake

The resultant executable (. ./ bi n/ ft pd) needs to be copied to the flash
disk (. . / sbi n/in. ftpd) along with the various access files (/ et c/ft p*)
This FTP daemon requires a number of runtime libraries to be present. These

are:
/Tib/libcrypt.so.1
/lib/libnsl.so.1
/1ibllibresolv.so.2
d. TELNET server

Prosig have developed their own simple telnet style command server. This process
attaches to a specific socket and waits for a connection from a telnet client. On
connection a password command/response mechanism authenticates the user.
Provided the correct password is given then system commands may be entered and

responses echoed to the user.

Installation procedure:

Download latest source tree from site.
Unpack into directory /usr/protord/command_server.
Copy executable to flash disk (../usr/protor4)

3.6 Linux System for DiskOnChip

The tables provide in Appendix A describe the complete set of system files created for
the DiskOnChip device in order to create a fully functional operational system. This set
of files represented a small footprint system which allowed sufficient space on a

32Mbyte DiskOnChip device for the additional application code.

3.7 Making the DiskOnChip Bootable

In order to boot the embedded system from DiskOnChip then the kernel image and
System map file created above need to be copied to the device into the directory
/ boot .

The image also needs to be modified to select the correct root file system when it boots.
The kernel built on the development disk will expect the root file system on /dev/hdal.
To change the kernel to boot with the root file system on the DiskOnChip use the

command

rdev /flash/boot/ bzl mage /dev/nftla

The standard boot loaders either LILO or GRUB cannot be used as they do not have in-
built support for the DiskOnChip. However the MTD source tree downloaded above
contains sources and an executable for a modified LILO which is DiskOnChip aware.
This source tree also contains a boot block file suitable for use with the DiskOnChip.

The following LILO configuration file (lilo.conf) was created and copied to the device.

boot = /dev/nftla

di sk=/dev/ nftl a bi o0s=0x80

i mage = /boot/ bzl mage
root = /dev/nftla
| abel = protor
read-only

With the DiskOnChip mounted on /flash and the following files in the directory /flash
/boot

Bzl mage
System map
boot . b

Then issue the following command to create a boot block on the DiskOnChip

lilo-md —r /flash —C /etc/ |il o. conf

The DiskOnChip should now be stand-alone and bootable. Shutdown the system.
Remove the hard disk. Reboot and enter the system BIOS setup. Set the primary boot
device for SCSI for the DiskOnChip. When the system now boots it should detect the
DiskOnChip , find its boot block and load the kernel. When the kernel is loaded this
should execute the / shi n/ i nit program which when complete executes the script
letc/init.d/rcS.

3.8 Application Startup

As mentioned above, on boot the kernel is loaded from DiskOnChip and the file system
mounted and started. The script/ et ¢/ i nit. d/ r ¢S controls the startup and
initialisation of individual files. The following is a suitable rcS script for a NOVA-7892

card and initialising PROTOR software.

#!/ bi n/ bash

#

Jetc/init.d/rcS Single User Startup script for PROTOR
#

1. Set systemdate/tine from CMOS cl ock

echo "Setting date..
/ sbi n/ hwel ock -s -u
2. Mount /proc filesystem
echo "Munting proc.."
/bin/nmount -n -t proc /proc /proc
3. Check flash filesystemevery reboot
echo "Checking filesystens.."
/sbin/fsck.ext2 -a /dev/nftlal
4. Renmount flash filesystemread-wite
echo "Rermounting flash filesystemas root (rw..!
/bin/mount -n -0 renmount,rw/ > /etc/ ntab
5. Cear nmab and renpove stal e backups
rm-f /etc/ntab
rm-f /etc/ntab~ /etc/ ntab~~
6. Enter root, /proc and (potentially)
/ proc/ bus/ usb and devfs into ntab.
mount -f /

mount -f /proc
[-f /proc/bus/usb/devices | & nmount -f -t usbdevfs
usbdevfs [/ proc/ bus/ usb
[-e /dev/.devfsd] && mount -f -t devfs devfs /dev
7. Setup path
export PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/protor4
8. Setup networking. Load driver and setup |P address
echo "Setting up network interfaces.\n"
nodpr obe eeprol00
/sbin/ifconfig ethO “cat /usr/protord/ipfile up
/sbin/route add default ethO
echo ""
9. Initialise USB Controller and | oad devices
echo "Initialising USB controller "
nodpr obe usb- uhc
nmount -t usbdevfs usbdevfs /proc/bus/usb
10. Startup system daenons (syslogd, klogd, xinetd etc)
chnmod 777 [usr/protord/*
echo "Application startup...”
echo "Starting network daenons .."

#

truncate the nessages file

#
tail -n 100 /var/l og/ messages > /var/l og/ nessages. 0
rm-f /var/log/ nmessages
echo "...syslogd " ; /sbhin/syslogd -mO

#echo "...klogd " ; /sbin/klogd -2
echo "...xinetd " ; /usr/sbin/xinetd -stayalive
echo "...Protor conmand_server "

[usr/ protor4/conmmand_server &
11. Startup PROTOR specific applications
cd /usr/protor4
startup
/ bi n/ bash

4.0 Summary

By following these procedures and loading the various software packages we have
produced an embedded system which provides all of the necessary devices and drivers
for a PROTOR system. The system supports the following key requirements of an
embedded PROTOR system.

System bootable from solid-state disk device (DiskOnChip). No requirement for
floppy disk or hard disk devices.
System supports USB devices.

System supports Ethernet.
Cut-down Linux installed to provide sufficient utilities for operation but remain within
space constraints on DiskOnChip.

Remote access utilities available for view and file transfer.

Appendix A

The following listing shows all files for the complete embedded small-footprint system for
PROTOR. The majority of the files are taken from a standard Redhat 7.2 system
together with additional files from the Busybox amd TinyLogin packages.

/| Directory

File

/ bin

/ boot

/ dev

/etc

/lib

Li nuxrc -> bi n/ busybox
/1 ost +f ound
/ mt

/ proc

/sbin

[usr

[var

/bin Directory

Descri ption

Di rectory header
Di rectory header
Di rectory header
Di rectory header
Di rectory header
Startup script for initrd (not used)
Di rectory header
Di rectory header
Di rectory header
Directory header
Directory header
Di rectory header

Most of the utilities in this directory are provided by the Busybox and
Tinyl ogin nodul es. Each utility is sinply a link to the appropriate

nodul e.

File

addgroup -> tinylogin
adduser -> tinylogin
ash -> busybox

bash

busybox

cat -> busybox

chgrp -> busybox
chrmod -> busybox
Chown -> busybox

Cp -> busybox

Date -> busybox

Dd -> busybox

Del group -> tinylogin
Del user -> tinylogin
Df -> busybox

Dresg -> busybox
Echo -> busybox

Fal se -> busybox
Grep -> busybox
@Qunzi p -> busybox
&i p -> busybox

Host nane -> busybox
Kill -> busybox

Descri ption

Bash shell (from Redhat 7.2 /bin/bash)
Busybox utility built from source.

Ln -> busybox
Login -> tinylogin
Ls -> busybox
Mkdi r -> busybox
Mknod -> busybox
More -> busybox
Mount -> busybox
M/ -> busybox

Pi dof -> busybox
Pi ng -> busybox
Ps -> busybox

Pwd -> busybox
Rm - > busybox
Rmdi r -> busybox
Sed -> busybox

Sh -> busybox

Sl eep -> busybox
Stty -> busybox
Su -> tinylogin
Sync -> busybox
Tar -> busybox

Ti nyl ogi n Ti nyl ogi n nodul e built from source
Touch -> busybox
True -> busybox
Urount -> busybox
Unane -> busybox
Vi -> busybox
Zcat -> busybox

/boot Directory

Descri ption
File
Boot . 5D00 Created by Lilo
Boot . b Boot bl ock file. From MID distribution
Bzl mage Kernel |mage built for MID support
Map Map file created by Lilo
Syst em map Systemmap file built for MID support

/dev Directory

Major 1D M nor Descri ption

File ID

Consol e 4 0 Consol e devi ce

FdO 2 0 Fl oppy Di sk device

Hda 3 0 1% I DE Disk

Hdal 3 1 Di sk partition #1

Hda2 3 2 Di sk partition #2

Hda3 3 3 Di sk partition #3

Hda4 3 4 Di sk partition #4
Initrd 1 250 Initrd device

Kmem 1 2 Kmem devi ce

Mem 1 1 Mem devi ce

Nftla 93 0 MID Fl ash Di sk devi ce
Nftlal 93 1 Fl ash Disk partiton #1
Nftl a2 93 2 Fl ash Disk partition #2
Nul | 1 3 Nul | devi ce

Pt ypO 2 0
Ptypl 2 1
Pt yp2 2 2
Ram 1 1 Ram devi ce
Tty 5 0 Term nal Device
TtypO 3 0 Term nal #1
Ttypl 3 1 Term nal #2
Ttyp2 3 2 Term nal #2
TtySO 4 64 Conil devi ce
TtySl 4 65 Con?2 device
Zero 1 5 Zero device
/etc Directory
Descri ption
File
Adj tine
Fst ab File Systemtable
Ft paccess FTP access file {
Ft pconver si ons FTP access file {
Ft pgr oups FTP access file { from wu-ftpd distribution
Ft phost s FTP access file {
Ft pusers FTP access file {
G oup Goup file
Host s Hosts file
host s. conf Hosts.conf file
init.d Di rectory header
lilo.conf Lilo configuration file
nt ab Mount tabl e
nsswi t ch. conf NSS configuration file
passwd Password file
passwd- Password backup
protocol s Protocols file
rc.d Di rectory header
resol v. conf Resol ver configuration file
servi ces Services file
shadow Shadow password file
shadow Shadow backup
sysl og. conf Syslog configuration file
xi net d. conf Xinetd configuration file
xinetd.d Di rectory header
/etc/init.d Directory
Descri ption
File
rcS -> rcS. Nova7892 Link to appropriate startup script
rcS. Nova600 Startup script for Nova 600 card
rcS. Nova7892 Startup script for Nova 7892 card
/etc/rc.d Directory
Descri ption

File
rc.sysinit Mai n system startup script

/etc/xinetd.d Directory

Descri ption
File
t el net Xi netd configuration for tel net
wu- f t pd Xi netd configuration for wu-ftpd

/1ib Directory

This directory contains the runtinme libraries required by the system

utilities.

-2.2.4.s0

-linux.so0.2 ->1d-2.2.4.s0

bc-2.2.4.s0

libcomerr.so.2 -> libcomerr.so.2.0
[ibcomerr.so.2.0

[ibcrypt-2.2.4.s0

libcrypt.so.1 -> libcrypt-2.2.4.s0
libc.so.6 -> libc-2.2.4.s0

[ibdl-2.2.4.50

libdl.s0.2 ->libdl-2.2.4.s0

i bext2fs.so0.2 -> |ibext2fs.so0.2.4

i bext2fs.so.2.4

libm2.2.4.s0

libmso.6 -> libm2.2.4.s0

[ibnsl-2.2.4.s0

libnsl.so.1 -> libnsl-2.2.4.s0

libnssl files-2.2.4.s0

libnssl files.so.1 -> libnssl files-2.2.4.s0
libnss files-2.2.4.s0

libnss files.so0.1 -> libnssl files-2.2.4.5s0
libnss files.s0.2 -> libnss files-2.2.4.s0
i bproc.so.2.0.7

libresolv-2.2.4.s0

libresolv.so.2 -> libresolv-2.2.4.s0

i bterncap.so.2 -> |ibterncap.so.2.0.8

i bternctap.so.2.0.8

[ibutil-2.2.4.s0

libutil.so.1 -> libutil-2.2.4.s0

i buuid.so.1 -> libuuid. so.1.2

['i buuid.so.1.2

Id
Id
[

/1ib/nmodul es Directory

File
/1i b/ modul es/ 2. 4. 7- 10/ nodul es. dep
/1ib/modul es/ 2. 4. 7- 10/ nodul es. usbmap

/1'i b/ nmodul es/ 2. 4. 7-10/ kernel / dri vers/ net/eepro0l00. 0

[1'i b/ modul es/ 2. 4. 7-10/ kernel / dri vers/ net/eepro.o
/1'i b/ nmodul es/ 2. 4. 7-10/ kernel / dri vers/ net/eexpress. o

Descri ption

Modul e dependenci es
USB map

Driver for Intel
82559 on Nova 7892

/1ib/nodul es/ 2. 4.7-10/ kernel /drivers/usb/uhci.o

USB drivers

/1ib/odul es/ 2.4.7-10/ kernel /dri vers/usb/ usbcore. o "
/1ib/nodul es/ 2. 4.7-10/ kernel /dri ver s/ usb/ usbnet. o "
/1ib/odul es/ 2. 4.7-10/ kernel /dri ver s/ usb/ usb-ohci.o "
/1ib/nodul es/ 2. 4.7-10/ kernel /dri ver s/ usb/usb-uhci.o "

/sbin Directory

Most of these utilities are linked to the Busybox nodul e. The

addi ti onal nodul es are highlighted.
File

fsck. ext2

getty -> ../bin/tinylogin
halt -> ../bin/ busybox

hwel ock

ifconfig -> ../Dbin/ busybox
init -> ../bin/busybox

i nsnmod -> ../ bin/ busybox

kl ogd -> ../ bin/ busybox

I snod -> ../ bin/ busybox
nkfs. mnix -> ../bin/ busybox
nkswap -> ../bin/ busybox

nodpr obe ->
power of f ->

../ bi n/ busybox
../ bi n/ busybox

reboot -> ../bin/busybox
romod -> ../ bin/ busybox

route -> ../bin/ busybox

swapoff -> ../ bin/ busybox
swapon -> ../ bin/ busybox
sysl ogd -> ../ bin/ busybox
update -> ../bin/ busybox

/fusr/bin Directory

Descri ption
File systemcheck for EXT2 (from
Redhat 7.2)

Hacl ock read/wite (Redhat 7.2)

Most of these utilities are linked to the Busybox nodul e. The

addi ti onal nodul es are highlighted.
File

basename -> ../../bin/ busybox

chvt -> ../../Dbin/ busybox

clear -> ../../Dbin/ busybox

cut -> ../../bin/ busybox

dirnane -> ../../bin/ busybox

du -> ../../bin/ busybox

env -> ../../bin/ busybox
find -> ../../bin/ busybox
free -> ../../bin/ busybox
head -> ../../bin/ busybox
id->../../bin/ busybox

i pcrm

i pcs

killall -> ../../bin/ busybox
| ogger -> ../../Dbin/ busybox

Descri ption

IPCRM utility from Redhat 7.2
IPCS utility from Redhat 7.2

passwd -> ../../bin/tinylogin
reset -> ../../Dbin/ busybox
sort -> ../../bin/busybox
tail -> ../../bin/busybox
telnet -> ../../bin/ busybox
telnetd -> ../../bin/ busybox
test -> ../../bin/busybox
tftp -> ../../bin/ busybox

traceroute -> ../../bin/ busybox

tty -> ../../bin/ busybox
uniq -> ../../bin/ busybox
uptine -> ../../bin/ busybox
wc -> ../../bin/ busybox
which -> ../../bin/ busybox
whoam -> ../../bin/ busybox
xargs -> ../../bin/ busybox
yes -> ../../bin/ busybox

/usr/sbin Directory

File

chroot -> ../../bin/ busybox
in ftpd

in.telnetd

wu-ftpd -> in.ftpd

xinetd

/var Directory

File
| og
pi d
run

Descri ption

Li nk to Busybox

FTP daenon built from wu-ftpd
TELNET daenon

Link to FTP daenon

Xinetd from Redhat 7.2

Descri ption

Directory header for Log files
Directory header for PIDs
Directory header for run PIDS

