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W ithout memory for storing data, it’s impossible for a program to get any
work done. (Or rather, it’s impossible to get any useful work done.) Real-

world programs can’t afford to rely on fixed-size buffers or arrays of data structures.
They have to be able to handle inputs of varying sizes, from small to large. This in
turn leads to the use of dynamically allocated memory—memory allocated at runtime
instead of at compile time. This is how the GNU “no arbitrary limits” principle is
put into action.

Because dynamically allocated memory is such a basic building block for real-world
programs, we cover it early, before looking at everything else there is to do. Our
discussion focuses exclusively on the user-level view of the process and its memory;
it has nothing to do with CPU architecture.

Linux/Unix Address Space3.1
For a working definition, we’ve said that a process is a running program. This means

that the operating system has loaded the executable file for the program into memory,
has arranged for it to have access to its command-line arguments and environment
variables, and has started it running. A process has five conceptually different areas of
memory allocated to it:

Code
Often referred to as the text segment, this is the area in which the executable in-
structions reside. Linux and Unix arrange things so that multiple running instances
of the same program share their code if possible; only one copy of the instructions
for the same program resides in memory at any time. (This is transparent to the
running programs.) The portion of the executable file containing the text segment
is the text section.

Initialized data
Statically allocated and global data that are initialized with nonzero values live in
the data segment. Each process running the same program has its own data segment.
The portion of the executable file containing the data segment is the data section.
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Zero-initialized data
Global and statically allocated data that are initialized to zero by default are kept
in what is colloquially called the BSS area of the process.1 Each process running
the same program has its own BSS area. When running, the BSS data are placed
in the data segment. In the executable file, they are stored in the BSS section.

The format of a Linux/Unix executable is such that only variables that are initialized
to a nonzero value occupy space in the executable’s disk file. Thus, a large array
declared ‘static char somebuf[2048];’, which is automatically zero-filled,
does not take up 2 KB worth of disk space. (Some compilers have options that let
you place zero-initialized data into the data segment.)

Heap
The heap is where dynamic memory (obtained by malloc() and friends) comes
from. As memory is allocated on the heap, the process’s address space grows, as
you can see by watching a running program with the ps command.

Although it is possible to give memory back to the system and shrink a process’s
address space, this is almost never done. (We distinguish between releasing no-
longer-needed dynamic memory and shrinking the address space; this is discussed
in more detail later in this chapter.)

It is typical for the heap to “grow upward.” This means that successive items that
are added to the heap are added at addresses that are numerically greater than
previous items. It is also typical for the heap to start immediately after the BSS
area of the data segment.

Stack
The stack segment is where local variables are allocated. Local variables are all
variables declared inside the opening left brace of a function body (or other left
brace) that aren’t defined as static.

On most architectures, function parameters are also placed on the stack, as well
as “invisible” bookkeeping information generated by the compiler, such as room
for a function return value and storage for the return address representing the return
from a function to its caller. (Some architectures do all this with registers.)

BSS is an acronym for “Block Started by Symbol,” a mnemonic from the IBM 7094 assembler.1
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It is the use of a stack for function parameters and return values that makes it
convenient to write recursive functions (functions that call themselves).

Variables stored on the stack “disappear” when the function containing them re-
turns; the space on the stack is reused for subsequent function calls.

On most modern architectures, the stack “grows downward,” meaning that items
deeper in the call chain are at numerically lower addresses.

When a program is running, the initialized data, BSS, and heap areas are usually
placed into a single contiguous area: the data segment. The stack segment and code
segment are separate from the data segment and from each other. This is illustrated in
Figure 3.1.
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FIGURE 3.1
Linux/Unix process address space
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Although it’s theoretically possible for the stack and heap to grow into each other,
the operating system prevents that event, and any program that tries to make it happen
is asking for trouble. This is particularly true on modern systems, on which process
address spaces are large and the gap between the top of the stack and the end of the
heap is a big one. The different memory areas can have different hardware memory
protection assigned to them. For example, the text segment might be marked “execute
only,” whereas the data and stack segments would have execute permission disabled.
This practice can prevent certain kinds of security attacks. The details, of course, are
hardware and operating-system specific and likely to change over time. Of note is that
both Standard C and C++ allow const items to be placed in read-only memory. The
relationship among the different segments is summarized in Table 3.1.

TABLE 3.1
Executable program segments and their locations

Executable file sectionAddress space segmentProgram memory

TextTextCode

DataDataInitialized data

BSSDataBSS

DataHeap

StackStack

The size program prints out the size in bytes of each of the text, data, and BSS
sections, along with the total size in decimal and hexadecimal. (The ch03-memaddr.c
program is shown later in this chapter; see Section 3.2.5, “Address Space Examination,”
page 78.)

$ cc -O ch03-memaddr.c -o ch03-memaddr Compile the program
$ ls -l ch03-memaddr Show total size
-rwxr-xr-x    1 arnold   devel       12320 Nov 24 16:45 ch03-memaddr
$ size ch03-memaddr Show component sizes
   text    data     bss     dec     hex filename
   1458     276       8    1742     6ce ch03-memaddr
$ strip ch03-memaddr Remove symbols
$ ls -l ch03-memaddr Show total size again
-rwxr-xr-x    1 arnold   devel        3480 Nov 24 16:45 ch03-memaddr
$ size ch03-memaddr Component sizes haven’t changed
   text    data     bss     dec     hex filename
   1458     276       8    1742     6ce ch03-memaddr
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The total size of what gets loaded into memory is only 1742 bytes, in a file that is
12,320 bytes long. Most of that space is occupied by the symbols, a list of the program’s
variables and function names. (The symbols are not loaded into memory when the
program runs.) The strip program removes the symbols from the object file. This can
save significant disk space for a large program, at the cost of making it impossible to
debug a core dump2 should one occur. (On modern systems this isn’t worth the trouble;
don’t use strip.) Even after removing the symbols, the file is still larger than what gets
loaded into memory since the object file format maintains additional data about the
program, such as what shared libraries it may use, if any.3

Finally, we’ll mention that threads represent multiple threads of execution within a
single address space. Typically, each thread has its own stack, and a way to get thread
local data, that is, dynamically allocated data for private use by the thread. We don’t
otherwise cover threads in this book, since they are an advanced topic.

Memory Allocation3.2
Four library functions form the basis for dynamic memory management from C.

We describe them first, followed by descriptions of the two system calls upon which
these library functions are built. The C library functions in turn are usually used to
implement other library functions that allocate memory and the C++ new and delete
operators.

Finally, we discuss a function that you will see used frequently, but which we don’t
recommend.

Library Calls: malloc(), calloc(), realloc(), free()3.2.1
Dynamic memory is allocated by either the malloc() or calloc() functions. These

functions return pointers to the allocated memory. Once you have a block of memory

A core dump is the memory image of a running process created when the process terminates unexpectedly. It may
be used later for debugging. Unix systems named the file core, and GNU/Linux systems use core.pid, where
pid is the process ID of the process that died.

2

The description here is a deliberate simplification. Running programs occupy much more space than the size
program indicates, since shared libraries are included in the address space. Also, the data segment will grow as a
program allocates memory.

3
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of a certain initial size, you can change its size with the realloc() function. Dynamic
memory is released with the free() function.

Debugging the use of dynamic memory is an important topic in its own right. We
discuss tools for this purpose in Section 15.5.2, “Memory Allocation Debuggers,”
page 612.

Examining C Language Details3.2.1.1
Here are the function declarations from the GNU/Linux malloc(3) manpage:
#include <stdlib.h>                                              ISO C

void *calloc(size_t nmemb, size_t size);     Allocate and zero fill
void *malloc(size_t size);                   Allocate raw memory
void free(void *ptr);                        Release memory
void *realloc(void *ptr, size_t size);       Change size of existing allocation

The allocation functions all return type void *. This is a typeless or generic pointer;
all you can do with such a pointer is cast it to a different type and assign it to a typed
pointer. Examples are coming up.

The type size_t is an unsigned integral type that represents amounts of memory.
It is used for dynamic memory allocation, and we see many uses of it throughout the
book. On most modern systems, size_t is unsigned long, but it’s better to use
size_t explicitly than to use a plain unsigned integral type.

The ptrdiff_t type is used for address calculations in pointer arithmetic, such as
calculating where in an array a pointer may be pointing:

#define MAXBUF ...
char *p;
char buf[MAXBUF];
ptrdiff_t where;

p = buf;
while (some condition) {
    ...
    p += something ;
    ...
    where = p - buf;    /* what index are we at? */
}

The <stdlib.h> header file declares many of the standard C library routines and
types (such as size_t), and it also defines the preprocessor constant NULL, which rep-
resents the “null” or invalid pointer. (This is a zero value, such as 0 or ‘((void *) 0)’.
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The C++ idiom is to use 0 explicitly; in C, however, NULL is preferred, and we find it
to be much more readable for C code.)

Initially Allocating Memory: malloc()3.2.1.2
Memory is allocated initially with malloc(). The value passed in is the total number

of bytes requested. The return value is a pointer to the newly allocated memory or NULL
if memory could not be allocated. In the latter event, errno will be set to indicate the
error. (errno is a special variable that system calls and library functions set to indicate
what went wrong. It’s described in Section 4.3, “Determining What Went Wrong,”
page 86.) For example, suppose we wish to allocate a variable number of some structure.
The code looks something like this:

struct coord {                         /* 3D coordinates */
    int x, y, z;
} *coordinates;
unsigned int count;                     /* how many we need */
size_t amount;                          /* total amount of memory */

/* ... determine count somehow... */
amount = count * sizeof(struct coord);  /* how many bytes to allocate */

coordinates = (struct coord *) malloc(amount);  /* get the space */
if (coordinates == NULL) {
    /* report error, recover or give up */
}
/* ... use coordinates ... */

The steps shown here are quite boilerplate. The order is as follows:

1. Declare a pointer of the proper type to point to the allocated memory.

2. Calculate the size in bytes of the memory to be allocated. This involves multi-
plying a count of objects needed by the size of the individual object. This size
in turn is retrieved from the C sizeof operator, which exists for this purpose
(among others). Thus, while the size of a particular struct may vary across
compilers and architectures, sizeof always returns the correct value and the
source code remains correct and portable.

When allocating arrays for character strings or other data of type char, it is
not necessary to multiply by sizeof(char), since by definition this is always
1. But it won’t hurt anything either.

3. Allocate the storage by calling malloc(), assigning the function’s return value
to the pointer variable. It is good practice to cast the return value of malloc()
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to that of the variable being assigned to. In C it’s not required (although the
compiler may generate a warning). We strongly recommend always casting the
return value.

Note that in C++, assignment of a pointer value of one type to a pointer of
another type does requires a cast, whatever the context. For dynamic memory
management, C++ programs should use new and delete, to avoid type prob-
lems, and not malloc() and free().

4. Check the return value. Never assume that memory allocation will succeed. If
the allocation fails, malloc() returns NULL. If you use the value without
checking, it is likely that your program will immediately die from a segmentation
violation (or segfault), which is an attempt to use memory not in your address
space.

If you check the return value, you can at least print a diagnostic message and
terminate gracefully. Or you can attempt some other method of recovery.

Once we’ve allocated memory and set coordinates to point to it, we can then treat
coordinates as if it were an array, although it’s really a pointer:

int cur_x, cur_y, cur_z;
size_t an_index;
an_index = something;
cur_x = coordinates[an_index].x;
cur_y = coordinates[an_index].y;
cur_z = coordinates[an_index].z;

The compiler generates correct code for indexing through the pointer to retrieve the
members of the structure at coordinates[an_index].

NOTE   The memory returned by malloc() is not initialized. It can contain any
random garbage. You should immediately initialize the memory with valid data
or at least with zeros. To do the latter, use memset() (discussed in Section 12.2,
“Low-Level Memory: The memXXX() Functions,” page 432):

memset(coordinates, '\0', amount);

Another option is to use calloc(), described shortly.

Geoff Collyer recommends the following technique for allocating memory:
some_type *pointer;

pointer = malloc(count * sizeof(*pointer));
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This approach guarantees that the malloc() will allocate the correct amount of
memory without your having to consult the declaration of pointer. If pointer’s type
later changes, the sizeof operator automatically ensures that the count of bytes to al-
locate stays correct. (Geoff’s technique omits the cast that we just discussed. Having
the cast there also ensures a diagnostic if pointer’s type changes and the call to
malloc() isn’t updated.)

Releasing Memory: free()3.2.1.3
When you’re done using the memory, you “give it back” by using the free()

function. The single argument is a pointer previously obtained from one of the other
allocation routines. It is safe (although useless) to pass a null pointer to free():

free(coordinates);
coordinates = NULL;     /* not required, but a good idea */

Once free(coordinates) is called, the memory pointed to by coordinates is
off limits. It now “belongs” to the allocation subroutines, and they are free to manage
it as they see fit. They can change the contents of the memory or even release it from
the process’s address space! There are thus several common errors to watch out for with
free():

Accessing freed memory
If unchanged, coordinates continues to point at memory that no longer belongs
to the application. This is called a dangling pointer. In many systems, you can get
away with continuing to access this memory, at least until the next time more
memory is allocated or freed. In many others though, such access won’t work.

In sum, accessing freed memory is a bad idea: It’s not portable or reliable, and the
GNU Coding Standards disallows it. For this reason, it’s a good idea to immediately
set the program’s pointer variable to NULL. If you then accidentally attempt to
access freed memory, your program will immediately fail with a segmentation
fault (before you’ve released it to the world, we hope).

Freeing the same pointer twice
This causes “undefined behavior.” Once the memory has been handed back to
the allocation routines, they may merge the freed block with other free storage
under management. Freeing something that’s already been freed is likely to lead
to confusion or crashes at best, and so-called double frees have been known to
lead to security problems.
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Passing a pointer not obtained from malloc(), calloc(), or realloc()
This seems obvious, but it’s important nonetheless. Even passing in a pointer to
somewhere in the middle of dynamically allocated memory is bad:
free(coordinates + 10);         /* Release all but first 10 elements. */

This call won’t work, and it’s likely to lead to disastrous consequences, such as a
crash. (This is because many malloc() implementations keep “bookkeeping”
information in front of the returned data. When free() goes to use that informa-
tion, it will find invalid data there. Other implementations have the bookkeeping
information at the end of the allocated chunk; the same issues apply.)

Buffer overruns and underruns
Accessing memory outside an allocated chunk also leads to undefined behavior,
again because this is likely to be bookkeeping information or possibly memory
that’s not even in the address space. Writing into such memory is much worse,
since it’s likely to destroy the bookkeeping data.

Failure to free memory
Any dynamic memory that’s not needed should be released. In particular, memory
that is allocated inside loops or recursive or deeply nested function calls should
be carefully managed and released. Failure to take care leads to memory leaks,
whereby the process’s memory can grow without bounds; eventually, the process
dies from lack of memory.

This situation can be particularly pernicious if memory is allocated per input
record or as some other function of the input: The memory leak won’t be noticed
when run on small inputs but can suddenly become obvious (and embarrassing)
when run on large ones. This error is even worse for systems that must run contin-
uously, such as telephone switching systems. A memory leak that crashes such a
system can lead to significant monetary or other damage.

Even if the program never dies for lack of memory, constantly growing programs
suffer in performance, because the operating system has to manage keeping in-use
data in physical memory. In the worst case, this can lead to behavior known as
thrashing, whereby the operating system is so busy moving the contents of the
address space into and out of physical memory that no real work gets done.
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While it’s possible for free() to hand released memory back to the system and shrink
the process address space, this is almost never done. Instead, the released memory is
kept available for allocation by the next call to malloc(), calloc(), or realloc().

Given that released memory continues to reside in the process’s address space, it may
pay to zero it out before releasing it. Security-sensitive programs may choose to do this,
for example.

See Section 15.5.2, “Memory Allocation Debuggers,” page 612, for discussion of a
number of useful dynamic-memory debugging tools.

Changing Size: realloc()3.2.1.4
Dynamic memory has a significant advantage over statically declared arrays, which

is that it’s possible to use exactly as much memory as you need, and no more. It’s not
necessary to declare a global, static, or automatic array of some fixed size and hope
that it’s (a) big enough and (b) not too big. Instead, you can allocate exactly as much
as you need, no more and no less.

Additionally, it’s possible to change the size of a dynamically allocated memory area.
Although it’s possible to shrink a block of memory, more typically, the block is grown.
Changing the size is handled with realloc(). Continuing with the coordinates
example, typical code goes like this:

int new_count;
size_t new_amount;
struct coord *newcoords;

/* set new_count, for example: */
new_count = count * 2;          /* double the storage */
new_amount = new_count * sizeof(struct coord);

newcoords = (struct coord *) realloc(coordinates, new_amount);
if (newcoords == NULL) {
    /* report error, recover or give up */
}

coordinates = newcoords;
/* continue using coordinates ... */

As with malloc(), the steps are boilerplate in nature and are similar in concept:

1. Compute the new size to allocate, in bytes.

2. Call realloc() with the original pointer obtained from malloc() (or from
calloc() or an earlier call to realloc()) and the new size.
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3. Cast and assign the return value of realloc(). More discussion of this shortly.

4. As for malloc(), check the return value to make sure it’s not NULL. Any
memory allocation routine can fail.

When growing a block of memory, realloc() often allocates a new block of the
right size, copies the data from the old block into the new one, and returns a pointer
to the new one.

When shrinking a block of data, realloc() can often just update the internal
bookkeeping information and return the same pointer. This saves having to copy the
original data. However, if this happens, don’t assume you can still use the memory beyond
the new size!

In either case, you can assume that if realloc() doesn’t return NULL, the old data
has been copied for you into the new memory. Furthermore, the old pointer is no
longer valid, as if you had called free() with it, and you should not use it. This is true
of all pointers into that block of data, not just the particular one used to call free().

You may have noticed that our example code used a separate variable to point to the
changed storage block. It would be possible (but a bad idea) to use the same initial
variable, like so:

coordinates = realloc(coordinates, new_amount);

This is a bad idea for the following reason. When realloc() returns NULL, the
original pointer is still valid; it’s safe to continue using that memory. However, if you
reuse the same variable and realloc() returns NULL, you’ve now lost the pointer to
the original memory. That memory can no longer be used. More important, that
memory can no longer be freed! This creates a memory leak, which is to be avoided.

There are some special cases for the Standard C version of realloc(): When the
ptr argument is NULL, realloc() acts like malloc() and allocates a fresh block of
storage. When the size argument is 0, realloc() acts like free() and releases the
memory that ptr points to. Because (a) this can be confusing and (b) older systems
don’t implement this feature, we recommend using malloc() when you mean
malloc() and free() when you mean free().
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Here is another, fairly subtle, “gotcha.”4 Consider a routine that maintains a static
pointer to some dynamically allocated data, which the routine occasionally has to grow.
It may also maintain automatic (that is, local) pointers into this data. (For brevity, we
omit error checking code. In production code, don’t do that.) For example:

void manage_table(void)
{
    static struct table *table;
    struct table *cur, *p;
    int i;
    size_t count;

    ...
    table = (struct table *) malloc(count * sizeof(struct table));
    /* fill table */
    cur = & table[i];       /* point at i'th item */
    ...
    cur->i = j;             /* use pointer */
    ...
    if (some condition) {    /* need to grow table */
        count += count/2;
        p = (struct table *) realloc(table, count * sizeof(struct table));
        table = p;
    }

    cur->i = j;             /* PROBLEM 1: update table element */

    other_routine();        /* PROBLEM 2: see text */
    cur->j = k;             /* PROBLEM 2: see text */
    ...
}

This looks straightforward; manage_table() allocates the data, uses it, changes the
size, and so on. But there are some problems that don’t jump off the page (or the screen)
when you are looking at this code.

In the line marked ‘PROBLEM 1’, the cur pointer is used to update a table element.
However, cur was assigned on the basis of the initial value of table. If some
condition was true and realloc() returned a different block of memory, cur now
points into the original, freed memory! Whenever table changes, any pointers into
the memory need to be updated too. What’s missing here is the statement ‘cur = &
table[i];’ after table is reassigned following the call to realloc().

It is derived from real-life experience with gawk.4
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The two lines marked ‘PROBLEM 2’ are even more subtle. In particular, suppose
other_routine() makes a recursive call to manage_table(). The table variable
could be changed again, completely invisibly! Upon return from other_routine(),
the value of cur could once again be invalid.

One might think (as we did) that the only solution is to be aware of this and supply
a suitably commented reassignment to cur after the function call. However, Brian
Kernighan kindly set us straight. If we use indexing, the pointer maintenance issue
doesn’t even arise:

table = (struct table *) malloc(count * sizeof(struct table));
/* fill table */
...
table[i].i = j;         /* Update a member of the i'th element */
...
if (some condition) {   /* need to grow table */
    count += count/2;
    p = (struct table *) realloc(table, count * sizeof(struct table));
    table = p;
}

table[i].i = j;         /* PROBLEM 1 goes away */
other_routine();        /* Recursively calls us, modifies table */
table[i].j = k;         /* PROBLEM 2 goes away also */

Using indexing doesn’t solve the problem if you have a global copy of the original
pointer to the allocated data; in that case, you still have to worry about updating your
global structures after calling realloc().

NOTE   As with malloc(), when you grow a piece of memory, the newly
allocated memory returned from realloc() is not zero-filled. You must clear
it yourself with memset() if that’s necessary, since realloc() only allocates
the fresh memory; it doesn’t do anything else.

Allocating and Zero-filling: calloc()3.2.1.5
The calloc() function is a straightforward wrapper around malloc(). Its primary

advantage is that it zeros the dynamically allocated memory. It also performs the size
calculation for you by taking as parameters the number of items and the size of each:

coordinates = (struct coord *) calloc(count, sizeof(struct coord));

Conceptually, at least, the calloc() code is fairly simple. Here is one possible
implementation:
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void *calloc(size_t nmemb, size_t size)
{
    void *p;
    size_t total;

    total = nmemb * size;                      Compute size
    p = malloc(total);                         Allocate the memory

    if (p != NULL)                             If it worked …
        memset(p, '\0', total);                Fill it with zeros

    return p;                                  Return value is NULL or pointer
}

Many experienced programmers prefer to use calloc() since then there’s never any
question about the contents of the newly allocated memory.

Also, if you know you’ll need zero-filled memory, you should use calloc(), because
it’s possible that the memory malloc() returns is already zero-filled. Although you,
the programmer, can’t know this, calloc() can know about it and avoid the call
to memset().

Summarizing from the GNU Coding Standards3.2.1.6
To summarize, here is what the GNU Coding Standards has to say about using the

memory allocation routines:

Check every call to malloc or realloc to see if it returned zero. Check
realloc even if you are making the block smaller; in a system that rounds
block sizes to a power of 2, realloc may get a different block if you ask for
less space.

In Unix, realloc can destroy the storage block if it returns zero. GNU
realloc does not have this bug: If it fails, the original block is unchanged.
Feel free to assume the bug is fixed. If you wish to run your program on
Unix, and wish to avoid lossage in this case, you can use the GNU malloc.

You must expect free to alter the contents of the block that was freed.
Anything you want to fetch from the block, you must fetch before calling
free.

In three short paragraphs, Richard Stallman has distilled the important principles
for doing dynamic memory management with malloc(). It is the use of dynamic
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memory and the “no arbitrary limits” principle that makes GNU programs so robust
and more capable than their Unix counterparts.

We do wish to point out that the C standard requires realloc() to not destroy the
original block if it returns NULL.

Using Private Allocators3.2.1.7
The malloc() suite is a general-purpose memory allocator. It has to be able to

handle requests for arbitrarily large or small amounts of memory and do all the book-
keeping when different chunks of allocated memory are released. If your program does
considerable dynamic memory allocation, you may thus find that it spends a large
proportion of its time in the malloc() functions.

One thing you can do is write a private allocator—a set of functions or macros that
allocates large chunks of memory from malloc() and then parcels out small chunks
one at a time. This technique is particularly useful if you allocate many individual in-
stances of the same relatively small structure.

For example, GNU awk (gawk) uses this technique. From the file awk.h in the gawk
distribution (edited slightly to fit the page):

#define getnode(n)   if (nextfree) n = nextfree, nextfree = nextfree->nextp;\
                     else n = more_nodes()

#define freenode(n)  ((n)->flags = 0, (n)->exec_count = 0,\
                     (n)->nextp = nextfree, nextfree = (n))

The nextfree variable points to a linked list of NODE structures. The getnode() macro
pulls the first structure off the list if one is there. Otherwise, it calls more_nodes() to
allocate a new list of free NODEs. The freenode() macro releases a NODE by putting it
at the head of the list.

NOTE   When first writing your application, do it the simple way: use malloc()
and free() directly. If and only if profiling your program shows you that it’s
spending a significant amount of time in the memory-allocation functions
should you consider writing a private allocator.

Example: Reading Arbitrarily Long Lines3.2.1.8
Since this is, after all, Linux Programming by Example, it’s time for a real-life

example. The following code is the readline() function from GNU Make 3.80
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(ftp://ftp.gnu.org/gnu/make/make-3.80.tar.gz). It can be found in the file
read.c.

Following the “no arbitrary limits” principle, lines in a Makefile can be of any
length. Thus, this routine’s primary job is to read lines of any length and make sure
that they fit into the buffer being used.

A secondary job is to deal with continuation lines. As in C, lines that end with a
backslash logically continue to the next line. The strategy used is to maintain a buffer.
As many lines as will fit in the buffer are kept there, with pointers keeping track of the
start of the buffer, the current line, and the next line. Here is the structure:

struct ebuffer
  {
    char *buffer;       /* Start of the current line in the buffer.  */
    char *bufnext;      /* Start of the next line in the buffer.  */
    char *bufstart;     /* Start of the entire buffer.  */
    unsigned int size;  /* Malloc'd size of buffer. */
    FILE *fp;           /* File, or NULL if this is an internal buffer.  */
    struct floc floc;   /* Info on the file in fp (if any).  */
  };

The size field tracks the size of the entire buffer, and fp is the FILE pointer for the
input file. The floc structure isn’t of interest for studying the routine.

The function returns the number of lines in the buffer. (The line numbers here are
relative to the start of the function, not the source file.)

1  static long
2  readline (ebuf)                        static long readline(struct ebuffer *ebuf)
3       struct ebuffer *ebuf;
4  {
5    char *p;
6    char *end;
7    char *start;
8    long nlines = 0;
9

10    /* The behaviors between string and stream buffers are different enough to
11       warrant different functions.  Do the Right Thing.  */
12
13    if (!ebuf->fp)
14      return readstring (ebuf);
15
16    /* When reading from a file, we always start over at the beginning of the
17       buffer for each new line.  */
18
19    p = start = ebuf->bufstart;
20    end = p + ebuf->size;
21    *p = '\0';
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We start by noticing that GNU Make is written in K&R C for maximal portability.
The initial part declares variables, and if the input is coming from a string (such as
from the expansion of a macro), the code hands things off to a different function,
readstring() (lines 13 and 14). The test ‘!ebuf->fp’ (line 13) is a shorter (and less
clear, in our opinion) test for a null pointer; it’s the same as ‘ebuf->fp == NULL’.

Lines 19–21 initialize the pointers, and insert a NUL byte, which is the C string
terminator character, at the end of the buffer. The function then starts a loop (lines
23–95), which runs as long as there is more input.

23    while (fgets (p, end - p, ebuf->fp) != 0)
24      {
25        char *p2;
26        unsigned long len;
27        int backslash;
28
29        len = strlen (p);
30        if (len == 0)
31          {
32            /* This only happens when the first thing on the line is a '\0'.
33               It is a pretty hopeless case, but (wonder of wonders) Athena
34               lossage strikes again!  (xmkmf puts NULs in its makefiles.)
35               There is nothing really to be done; we synthesize a newline so
36               the following line doesn't appear to be part of this line.  */
37            error (&ebuf->floc,
38                   _("warning: NUL character seen; rest of line ignored"));
39            p[0] = '\n';
40            len = 1;
41          }

The fgets() function (line 23) takes a pointer to a buffer, a count of bytes to read,
and a FILE * variable for the file to read from. It reads one less than the count so that
it can terminate the buffer with '\0'. This function is good since it allows you to avoid
buffer overflows. It stops upon encountering a newline or end-of-file, and if the newline
is there, it’s placed in the buffer. It returns NULL on failure or the (pointer) value of the
first argument on success.

In this case, the arguments are a pointer to the free area of the buffer, the amount
of room left in the buffer, and the FILE pointer to read from.

The comment on lines 32–36 is self-explanatory; if a zero byte is encountered, the
program prints an error message and pretends it was an empty line. After compensating
for the NUL byte (lines 30–41), the code continues.
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43        /* Jump past the text we just read.  */
44        p += len;
45
46        /* If the last char isn't a newline, the whole line didn't fit into the
47           buffer.  Get some more buffer and try again.  */
48        if (p[-1] != '\n')
49          goto more_buffer;
50
51        /* We got a newline, so add one to the count of lines.  */
52        ++nlines;

Lines 43–52 increment the pointer into the buffer past the data just read. The code
then checks whether the last character read was a newline. The construct p[-1] (line 48)
looks at the character in front of p, just as p[0] is the current character and p[1] is the
next. This looks strange at first, but if you translate it into terms of pointer math,
*(p-1), it makes more sense, and the indexing form is possibly easier to read.

If the last character was not a newline, this means that we’ve run out of space, and
the code goes off (with goto) to get more (line 49). Otherwise, the line count is
incremented.

54  #if !defined(WINDOWS32) && !defined(__MSDOS__)
55        /* Check to see if the line was really ended with CRLF; if so ignore
56           the CR.  */
57        if ((p - start) > 1 && p[-2] == '\r')
58          {
59            --p;
60            p[-1] = '\n';
61          }
62  #endif

Lines 54–62 deal with input lines that follow the Microsoft convention of ending
with a Carriage Return-Line Feed (CR-LF) combination, and not just a Line Feed (or
newline), which is the Linux/Unix convention. Note that the #ifdef excludes the code
on Microsoft systems; apparently the <stdio.h> library on those systems handles this
conversion automatically. This is also true of other non-Unix systems that support
Standard C.

64        backslash = 0;
65        for (p2 = p - 2; p2 >= start; --p2)
66          {
67            if (*p2 != '\\')
68              break;
69            backslash = !backslash;
70          }
71
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72        if (!backslash)
73          {
74            p[-1] = '\0';
75            break;
76          }
77
78        /* It was a backslash/newline combo.  If we have more space, read
79           another line.  */
80        if (end - p >= 80)
81          continue;
82
83        /* We need more space at the end of our buffer, so realloc it.
84           Make sure to preserve the current offset of p.  */
85      more_buffer:
86        {
87          unsigned long off = p - start;
88          ebuf->size *= 2;
89          start = ebuf->buffer = ebuf->bufstart = (char *) xrealloc (start,
90                                                                 ebuf->size);
91          p = start + off;
92          end = start + ebuf->size;
93          *p = '\0';
94        }
95      }

So far we’ve dealt with the mechanics of getting at least one complete line into the
buffer. The next chunk handles the case of a continuation line. It has to make sure,
though, that the final backslash isn’t part of multiple backslashes at the end of the line.
It tracks whether the total number of such backslashes is odd or even by toggling the
backslash variable from 0 to 1 and back. (Lines 64–70.)

If the number is even, the test ‘! backslash’ (line 72) will be true. In this case, the
final newline is replaced with a NUL byte, and the code leaves the loop.

On the other hand, if the number is odd, then the line contained an even number
of backslash pairs (representing escaped backslashes, \\ as in C), and a final backslash-
newline combination.5 In this case, if at least 80 free bytes are left in the buffer, the
program continues around the loop to read another line (lines 78–81). (The use of
the magic number 80 isn’t great; it would have been better to define and use a symbolic
constant.)

This code has the scent of practical experience about it: It wouldn’t be surprising to learn that earlier versions
simply checked for a final backslash before the newline, until someone complained that it didn’t work when there
were multiple backslashes at the end of the line.

5
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Upon reaching line 83, the program needs more space in the buffer. Here’s where
the dynamic memory management comes into play. Note the comment about preserving
p (lines 83–84); we discussed this earlier in terms of reinitializing pointers into dynamic
memory. end is also reset. Line 89 resizes the memory.

Note that here the function being called is xrealloc(). Many GNU programs use
“wrapper” functions around malloc() and realloc() that automatically print an
error message and exit if the standard routines return NULL. Such a wrapper might look
like this:

extern const char *myname;    /* set in main() */

void *xrealloc(void *ptr, size_t amount)
{
    void *p = realloc(ptr, amount);

    if (p == NULL) {
        fprintf(stderr, "%s: out of memory!\n", myname);
        exit(1);
    }
}

Thus, if xrealloc() returns, it’s guaranteed to return a valid pointer. (This strategy
complies with the “check every call for errors” principle while avoiding the code clutter
that comes with doing so using the standard routines directly.) In addition, this allows
valid use of the construct ‘ptr = xrealloc(ptr, new_size)’, which we otherwise
warned against earlier.

Note that it is not always appropriate to use such a wrapper. If you wish to handle
errors yourself, you shouldn’t use it. On the other hand, if running out of memory is
always a fatal error, then such a wrapper is quite handy.

97    if (ferror (ebuf->fp))
98      pfatal_with_name (ebuf->floc.filenm);
99

100    /* If we found some lines, return how many.
101       If we didn't, but we did find _something_, that indicates we read the last
102       line of a file with no final newline; return 1.
103       If we read nothing, we're at EOF; return -1.  */
104
105    return nlines ? nlines : p == ebuf->bufstart ? -1 : 1;
106  }
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Finally, the readline() routine checks for I/O errors, and then returns a descriptive
return value. The function pfatal_with_name() (line 98) doesn’t return.

GLIBC Only: Reading Entire Lines: getline() and getdelim()3.2.1.9
Now that you’ve seen how to read an arbitrary-length line, you can breathe a sigh

of relief that you don’t have to write such a function for yourself. GLIBC provides two
functions to do this for you:

#define _GNU_SOURCE 1                                            GLIBC
#include <stdio.h>
#include <sys/types.h>         /* for ssize_t */

ssize_t getline(char **lineptr, size_t *n, FILE *stream);
ssize_t getdelim(char **lineptr, size_t *n, int delim, FILE *stream);

Defining the constant _GNU_SOURCE brings in the declaration of the getline()
and getdelim() functions. Otherwise, they’re implicitly declared as returning int.
<sys/types.h> is needed so you can declare a variable of type ssize_t to hold the
return value. (An ssize_t is a “signed size_t.” It’s meant for the same use as a size_t,
but for places where you need to be able to hold negative values as well.)

Both functions manage dynamic storage for you, ensuring that the buffer containing
an input line is always big enough to hold the input line. They differ in that getline()
reads until a newline character, and getdelim() uses a user-provided delimiter character.
The common arguments are as follows:

char **lineptr

A pointer to a char * pointer to hold the address of a dynamically allocated
buffer. It should be initialized to NULL if you want getline() to do all the work.
Otherwise, it should point to storage previously obtained from malloc().

size_t *n

An indication of the size of the buffer. If you allocated your own buffer, *n should
contain the buffer’s size. Both functions update *n to the new buffer size if they
change it.

FILE *stream

The location from which to get input characters.
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The functions return -1 upon end-of-file or error. The strings hold the terminating
newline or delimiter (if there was one), as well as a terminating zero byte. Using
getline() is easy, as shown in ch03-getline.c:

/* ch03-getline.c --- demonstrate getline(). */

#define _GNU_SOURCE 1
#include <stdio.h>
#include <sys/types.h>

/* main --- read a line and echo it back out until EOF. */

int main(void)
{
    char *line = NULL;
    size_t size = 0;
    ssize_t ret;

    while ((ret = getline(& line, & size, stdin)) != -1)
        printf("(%lu) %s", size, line);

    return 0;
}

Here it is in action, showing the size of the buffer. The third input and output lines
are purposely long, to force getline() to grow the buffer; thus, they wrap around:

$ ch03-getline Run the program
this is a line
(120) this is a line
And another line.
(120) And another line.
A llllllllllllllllloooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnngggg
gggggggg   llliiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnneeeeeeeeee
(240) A llllllllllllllllloooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnng
nnnggggggggggg   llliiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnneeeeeeeeee

String Copying: strdup()3.2.2
One extremely common operation is to allocate storage for a copy of a string. It’s so

common that many programs provide a simple function for it instead of using inline
code, and often that function is named strdup():
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#include <string.h>

/* strdup --- malloc() storage for a copy of string and copy it */

char *strdup(const char *str)
{
    size_t len;
    char *copy;

    len = strlen(str) + 1;   /* include room for terminating '\0' */
    copy = malloc(len);

    if (copy != NULL)
        strcpy(copy, str);

    return copy;             /* returns NULL if error */
}

With the 2001 POSIX standard, programmers the world over can breathe a little
easier: This function is now part of POSIX as an XSI extension:

#include <string.h>                                              XSI

char *strdup(const char *str);        Duplicate str

The return value is NULL if there was an error or a pointer to dynamically allocated
storage holding a copy of str. The returned value should be freed with free() when
it’s no longer needed.

System Calls: brk() and sbrk()3.2.3
The four routines we’ve covered (malloc(), calloc(), realloc(), and free())

are the standard, portable functions to use for dynamic memory management.

On Unix systems, the standard functions are implemented on top of two additional,
very primitive routines, which directly change the size of a process’s address space. We
present them here to help you understand how GNU/Linux and Unix work (“under
the hood” again); it is highly unlikely that you will ever need to use these functions in
a regular program. They are declared as follows:

#include <unistd.h>                                              Common
#include <malloc.h>      /* Necessary for GLIBC 2 systems */

int brk(void *end_data_segment);
void *sbrk(ptrdiff_t increment);
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The brk() system call actually changes the process’s address space. The address is a
pointer representing the end of the data segment (really the heap area, as shown earlier
in Figure 3.1). Its argument is an absolute logical address representing the new end of
the address space. It returns 0 on success or -1 on failure.

The sbrk() function is easier to use; its argument is the increment in bytes by which
to change the address space. By calling it with an increment of 0, you can determine
where the address space currently ends. Thus, to increase your address space by 32
bytes, use code like this:

char *p = (char *) sbrk(0);     /* get current end of address space */
if (brk(p + 32) < 0) {
    /* handle error */
}
/* else, change worked */

Practically speaking, you would not use brk() directly. Instead, you would use
sbrk() exclusively to grow (or even shrink) the address space. (We show how to do
this shortly, in Section 3.2.5, “Address Space Examination,” page 78.)

Even more practically, you should never use these routines. A program using them
can’t then use malloc() also, and this is a big problem, since many parts of the standard
library rely on being able to use malloc(). Using brk() or sbrk() is thus likely to
lead to hard-to-find program crashes.

But it’s worth knowing about the low-level mechanics, and indeed, the malloc()
suite of routines is implemented with sbrk() and brk().

Lazy Programmer Calls: alloca()3.2.4
“Danger, Will Robinson! Danger!”

—The Robot—

There is one additional memory allocation function that you should know about.
We discuss it only so that you’ll understand it when you see it, but you should not use
it in new programs! This function is named alloca(); it’s declared as follows:

/* Header on GNU/Linux, possibly not all Unix systems */         Common
#include <alloca.h>

void *alloca(size_t size);
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The alloca() function allocates size bytes from the stack. What’s nice about this
is that the allocated storage disappears when the function returns. There’s no need to
explicitly free it because it goes away automatically, just as local variables do.

At first glance, alloca() seems like a programming panacea; memory can be allo-
cated that doesn’t have to be managed at all. Like the Dark Side of the Force, this is
indeed seductive. And it is similarly to be avoided, for the following reasons:

• The function is nonstandard; it is not included in any formal standard, either ISO
C or POSIX.

• The function is not portable. Although it exists on many Unix systems and
GNU/Linux, it doesn’t exist on non-Unix systems. This is a problem, since it’s
often important for code to be multiplatform, above and beyond just Linux
and Unix.

• On some systems, alloca() can’t even be implemented. All the world is not an
Intel x86 processor, nor is all the world GCC.

• Quoting the manpage (emphasis added): “The alloca function is machine
and compiler dependent. On many systems its implementation is buggy. Its use is
discouraged.”

• Quoting the manpage again: “On many systems alloca cannot be used inside
the list of arguments of a function call, because the stack space reserved by alloca
would appear on the stack in the middle of the space for the function arguments.”

• It encourages sloppy coding. Careful and correct memory management isn’t hard;
you just to have to think about what you’re doing and plan ahead.

GCC generally uses a built-in version of the function that operates by using inline
code. As a result, there are other consequences of alloca(). Quoting again from
the manpage:

The fact that the code is inlined means that it is impossible to take the address
of this function, or to change its behavior by linking with a different library.

The inlined code often consists of a single instruction adjusting the stack
pointer, and does not check for stack overflow. Thus, there is no NULL error
return.
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The manual page doesn’t go quite far enough in describing the problem with GCC’s
built-in alloca(). If there’s a stack overflow, the return value is garbage. And you have
no way to tell! This flaw makes GCC’s alloca() impossible to use in robust code.

All of this should convince you to stay away from alloca() for any new code that
you may write. If you’re going to have to write portable code using malloc() and
free() anyway, there’s no reason to also write code using alloca().

Address Space Examination3.2.5
The following program, ch03-memaddr.c, summarizes everything we’ve seen about

the address space. It does many things that you should not do in practice, such as call
alloca() or use brk() and sbrk() directly:

1  /*
2   * ch03-memaddr.c --- Show address of code, data and stack sections,
3   *                    as well as BSS and dynamic memory.
4   */
5
6  #include <stdio.h>
7  #include <malloc.h>     /* for definition of ptrdiff_t on GLIBC */
8  #include <unistd.h>
9  #include <alloca.h>     /* for demonstration only */

10
11  extern void afunc(void);    /* a function for showing stack growth */
12
13  int bss_var;            /* auto init to 0, should be in BSS */
14  int data_var = 42;      /* init to nonzero, should be data */
15
16  int
17  main(int argc, char **argv) /* arguments aren't used */
18  {
19      char *p, *b, *nb;
20
21      printf("Text Locations:\n");
22      printf("\tAddress of main: %p\n", main);
23      printf("\tAddress of afunc: %p\n", afunc);
24
25      printf("Stack Locations:\n");
26      afunc();
27
28      p = (char *) alloca(32);
29      if (p != NULL) {
30          printf("\tStart of alloca()'ed array: %p\n", p);
31          printf("\tEnd of alloca()'ed array: %p\n", p + 31);
32      }
33
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34      printf("Data Locations:\n");
35      printf("\tAddress of data_var: %p\n", & data_var);
36
37      printf("BSS Locations:\n");
38      printf("\tAddress of bss_var: %p\n", & bss_var);
39
40      b = sbrk((ptrdiff_t) 32);   /* grow address space */
41      nb = sbrk((ptrdiff_t) 0);
42      printf("Heap Locations:\n");
43      printf("\tInitial end of heap: %p\n", b);
44      printf("\tNew end of heap: %p\n", nb);
45
46      b = sbrk((ptrdiff_t) -16);  /* shrink it */
47      nb = sbrk((ptrdiff_t) 0);
48      printf("\tFinal end of heap: %p\n", nb);
49  }
50
51  void
52  afunc(void)
53  {
54      static int level = 0;       /* recursion level */
55      auto int stack_var;         /* automatic variable, on stack */
56
57      if (++level == 3)           /* avoid infinite recursion */
58          return;
59
60      printf("\tStack level %d: address of stack_var: %p\n",
61              level, & stack_var);
62      afunc();                    /* recursive call */
63  }

This program prints the locations of the two functions main() and afunc() (lines
22–23). It then shows how the stack grows downward, letting afunc() (lines 51–63)
print the address of successive instantiations of its local variable stack_var. (stack_var
is purposely declared auto, to emphasize that it’s on the stack.) It then shows the loca-
tion of memory allocated by alloca() (lines 28–32). Finally it prints the locations of
data and BSS variables (lines 34–38), and then of memory allocated directly through
sbrk() (lines 40–48). Here are the results when the program is run on an Intel
GNU/Linux system:

$ ch03-memaddr
Text Locations:
    Address of main: 0x804838c
    Address of afunc: 0x80484a8
Stack Locations:
    Stack level 1: address of stack_var: 0xbffff864
    Stack level 2: address of stack_var: 0xbffff844    Stack grows downward
    Start of alloca()'ed array: 0xbffff860
    End of alloca()'ed array: 0xbffff87f               Addresses are on the stack
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Data Locations:
    Address of data_var: 0x80496b8
BSS Locations:
    Address of bss_var: 0x80497c4                      BSS is above data variables
Heap Locations:
    Initial end of heap: 0x80497c8                     Heap is immediately above BSS
    New end of heap: 0x80497e8                         And grows upward
    Final end of heap: 0x80497d8                       Address spaces can shrink

Summary3.3

• Every Linux (and Unix) program has different memory areas. They are stored in
separate parts of the executable program’s disk file. Some of the sections are loaded
into the same part of memory when the program is run. All running copies of the
same program share the executable code (the text segment). The size program
shows the sizes of the different areas for relocatable object files and fully linked
executable files.

• The address space of a running program may have holes in it, and the size of the
address space can change as memory is allocated and released. On modern systems,
address 0 is not part of the address space, so don’t attempt to dereference
NULL pointers.

• At the C level, memory is allocated or reallocated with one of malloc(),
calloc(), or realloc(). Memory is freed with free(). (Although realloc()
can do everything, using it that way isn’t recommended). It is unusual for freed
memory to be removed from the address space; instead, it is reused for
later allocations.

• Extreme care must be taken to

• Free only memory received from the allocation routines,

• Free such memory once and only once,

• Free unused memory, and

• Not “leak” any dynamically allocated memory.

• POSIX provides the strdup() function as a convenience, and GLIBC provides
getline() and getdelim() for reading arbitrary-length lines.
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• The low-level system call interface functions, brk() and sbrk(), provide direct
but primitive access to memory allocation and deallocation. Unless you are writing
your own storage allocator, you should not use them.

• The alloca() function for allocating memory on the stack exists, but is not rec-
ommended. Like being able to recognize poison ivy, you should know it only so
that you’ll know to avoid it.

Exercises

1. Starting with the structure—
struct line {
    size_t buflen;
    char *buf;
    FILE *fp;
};

—write your own readline() function that will read an any-length line.
Don’t worry about backslash continuation lines. Instead of using fgets() to
read lines, use getc() to read characters one at a time.

2. Does your function preserve the terminating newline? Explain why or why not.

3. How does your function handle lines that end in CR-LF?

4. How do you initialize the structure? With a separate routine? With a document-
ed requirement for specific values in the structure?

5. How do you indicate end-of-file? How do you indicate that an I/O error has
occurred? For errors, should your function print an error message? Explain why
or why not.

6. Write a program that uses your function to test it, and another program to
generate input data to the first program. Test your function.

7. Rewrite your function to use fgets() and test it. Is the new code more complex
or less complex? How does its performance compare to the getc() version?

8. Study the V7 end(3) manpage (/usr/man/man3/end.3 in the V7 distribution).
Does it shed any light on how ‘sbrk(0)’ might work?

9. Enhance ch03-memaddr.c to print out the location of the arguments and the
environment. In which part of the address space do they reside?
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