
Building Embedded

LINUX
SYSTEMS

CONCEPTS, TECHNIQUES, TRICKS, AND TRAPS

KARIM YAGHMOUR

Building Embedded

LINUX
SYSTEMS

Related titles from O’Reilly

Building Secure Servers with Linux

Learning Red Hat Linux

Linux Device Drivers

Linux in a Nutshell

Linux Network Administrator’s Guide

LPI Linux Certification in a Nutshell

Programming Embedded Systems in C
and C++

Running Linux

Understanding the Linux Kernel

Also available

The Linux Web Server CD Bookshelf

Building Embedded

LINUX
S Y S T E M S

Karim Yaghmour

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

156

Chapter 5CHAPTER 5

Kernel Considerations

The kernel is the central software component of all Linux systems. Its capabilities
very much dictate the capabilities of the entire system. If the kernel you use fails to
support one of your target’s hardware components, for instance, this component will
be useless as long as this specific kernel runs on your target.

Many books and online documentation already discuss the kernel’s internals, its pro-
gramming, its setup, and its use in user systems at length. I will not, therefore, cover
these issues here. If you are interested in such issues, have a look at Running Linux,
Linux Device Drivers, and Understanding the Linux Kernel by O’Reilly. These books
cover the kernel’s setup and use, its programming, and its internals, respectively. You
may also want to take a look at the Linux Kernel HOWTO available from the LDP.

Our discussion will be limited to issues about the preparation of a Linux kernel for
use in an embedded system. Specifically, we will discuss kernel selection, configura-
tion, compilation, and installation. Each step will get us closer to the goal of obtain-
ing a functional kernel with its related modules for our target system. Our discussion
will end with coverage of the aspects of the kernel’s operation that are specific to
embedded systems.

Selecting a Kernel
Though there is only one main repository for the kernel, http://www.kernel.org/, the
versions available from that site aren’t always appropriate for all the architectures
supported by Linux. In fact, these versions will often not even build for, much less
run on, some of the most popular architectures in embedded Linux systems. This is
primarily because the development of Linux for these architectures isn’t synchro-
nized with the main kernel releases.

To have a working kernel for your target, you need to obtain one of the versions
made available by the development team in charge of your target’s underlying pro-
cessor architecture. Since each architecture is maintained by a different team, the site

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Kernel | 157

of choice for a kernel varies accordingly. Table 5-1 provides a list of locations where
you will find the most appropriate kernel for your architecture, along with the means
of download available from that site.

As you can see, most of these sites are the same ones I recommended for each archi-
tecture in Chapter 3. That said, these are not the only kernel locations for each tar-
get. Other locations may also provide versions for your target. To begin with, some
of these sites have mirrors that provide the same content. Then there are the kernels
provided by various individuals, companies, and organizations. Exercise caution if
you intend to use the latter type of kernel, as these kernels may not be supported by
the community* and you may be forced to rely on the provider’s support, if avail-
able, in case of problems.

Once you have found the download site that is most appropriate for you, you will
need to select a kernel version from that site. This is a difficult decision, as some ver-
sions have broken features, even if the same features were fully functional in older
versions. The best way to find this sort of information is to stay in touch with the
community maintaining the kernel for your architecture. This doesn’t mean sending
any emails or contacting anyone, but it involves subscribing to the appropriate mail-
ing lists and keeping watch of the important notices on that list and on the port’s
main web site.

Some of these sites, such as the ARM site, don’t necessarily distribute full kernels.
Rather, they distribute patches to the official kernel. To obtain the appropriate ker-
nel for your architecture, you must then download the kernel from the main reposi-
tory and apply to it the appropriate patch provided by your port’s site.

For our ARM-based user interfaces, we download plain 2.4.18 from http://www.kernel.
org/ and the 2.4.18-rmk5 patch from the official ARM Linux site, http://www.arm.

Table 5-1. Most appropriate kernel location for each processor architecture

Processor architecture Most appropriate kernel location Available download means

x86 http://www.kernel.org/ ftp, http, rsync

ARM http://www.arm.linux.org.uk/developer/ ftp, rsync

PowerPC http://penguinppc.org/ ftp, http, rsync, bitkeeper

MIPS http://www.linux-mips.org/ cvs

SuperH http://linuxsh.sourceforge.net/ cvs

M68k http://www.linux-m68k.org/ ftp, http

* This lack of support from the community won’t necessarily be due to lack of code availability (which
shouldn’t happen since Linux is distributed under the terms of the GPL), but most likely because the modi-
fications to the kernel’s functionality made by that provider are understood only by her. It may also be that
the kernel modifications are not considered mature enough, or even desirable, by the community to warrant
inclusion in the main kernel tree.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 5: Kernel Considerations

linux.org.uk/. By applying the rmk5 patch to the vanilla 2.4.18, we obtain the 2.4.18-
rmk5 kernel, which contains all the features required for ARM-based systems.

Most of the time, the latest known-to-be-functional version is the best one to use. So
if 2.4.17 and 2.4.18 are known to work on your target, 2.4.18 should be the prefera-
ble one. There are cases, however, in which this doesn’t hold true. Most folks who
follow the kernel’s development are aware, for example, that Versions 2.4.10 to 2.4.
15, inclusive, are to be avoided, because they were part of a period during which a lot
of changes were being integrated into the kernel and are therefore sometimes unsta-
ble. Again, this is the sort of information you can obtain by keeping in touch with
the appropriate mailing lists and web sites.

If you find it too time consuming to subscribe to your port’s mailing list or to the
main kernel mailing list, you owe it to yourself to at least visit your port’s web site
once a week and read the Kernel Traffic (http://kt.zork.net/kernel-traffic/) weekly
newsletter. Kernel Traffic provides a summary of the most important discussions that
occurred on the main kernel mailing list during the past week.

Once you have found the appropriate kernel version for your target, download it into
the ${PRJROOT}/kernel directory, extract it, and rename it if necessary, as we have
done in the previous chapter in “Kernel Headers Setup.” Renaming the kernel direc-
tory will avoid the mistake of overwriting it while extracting another kernel you
might download in the future.

Whichever version you choose, do not refrain from trying a couple of different ker-
nel versions for your target. In addition to the recommendations and bug reports
seen on the Net, your evaluation of different versions will provide you with insight
on your hardware’s interaction with the kernel.

You may also want to try some of the various patches made available by some devel-
opers. Extra kernel functionality is often available as an independent patch before it

Kernel Version Variations
The versions distributed by the alternative repositories often use variations on the ker-
nel’s versioning scheme to identify their work. Russell King, the maintainer of the
ARM tree, distributes his kernels with the -rmk extension. Other developers base their
work on Russell’s work and add their own extensions. Nicolas Pitre, another ARM
Linux developer, adds the -np extension to his kernels, and the maintainers of the
handhelds.org Familiar distribution add the -hh extension to their kernels. Hence, ker-
nel 2.4.20-rmk3-hh24, which I mentioned in Chapter 1, is handhelds.org’s Release 24
of Russell’s Release 3, which is itself based on Marcelo Tosatti’s 2.4.20.

(Though Linus Torvalds is the usual maintainer of Linux releases, Linus passed the
maintenance of the 2.4.x series on to Marcelo so he could concentrate on the 2.5.x
development series.)

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Kernel | 159

is integrated into the mainstream kernel. Robert Love’s kernel preemption patch, for
instance, was maintained as a separate patch before it was integrated by Linus into
the 2.5 development series. We will discuss a few kernel patches in Chapter 11. Have
a look at Running Linux (O’Reilly) if you are not familiar with patches.

Configuring the Kernel
Configuration is the initial step in the build of a kernel for your target. There are many
ways to configure the kernel, and there are many options from which to choose .

Regardless of the configuration method you use or the actual configuration options
you choose, the kernel will generate a .config file at the end of the configuration and
will generate a number of symbolic links and file headers that will be used by the rest
of the build.

We will limit our discussion to the aspects of kernel configuration that differ in
embedded systems. You can consult the various references I mentioned earlier if you
are not familiar with kernel configuration.

Configuration Options
It is during configuration that you will be able to select the options you want to see
included in the kernel. Depending on your target, the option menus available will
change, as will their content. Some options, however, will be available no matter
which embedded architecture you choose. The following is the list of main menu
options available to all embedded Linux architectures:

• Code maturity level options

• Loadable module support

• General setup

• Memory technology devices

• Block devices

• Networking options

• ATA/IDE/MFM/RLL support

• SCSI support

• Network device support

• Input core support

• Character devices

• Filesystems

• Console drivers

• Sound

• Kernel hacking

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 5: Kernel Considerations

I will not give the details of each option, since the kernel configuration menu pro-
vides help capabilities you can refer to as you perform the configuration. Notice,
however, that we discussed many of these options in Chapter 3.

One of the most important option menus is the one in which you choose the exact
instance of the processor architecture that best fits your target. The name of this
menu, however, varies according to your architecture. Table 5-2 provides the system
and processor selection option menu name, along with the correct kernel architec-
ture name for each. When issuing make commands, we need to set the ARCH variable
to the architecture name recognized by the kernel Makefiles.

Some options are available only for certain architectures. Table 5-3 lists these options
and indicates their availability for each architecture, as displayed by the kernel’s con-
figuration menus.

Some architectures have their own specific configuration option menus. The follow-
ing is a list of such menus for the ARM architecture:

• Acorn-specific block devices

• Synchronous serial interfaces

• Multimedia capabilities port drivers

Table 5-2. System and processor selection option and kernel architecture name according to
processor architecture

Processor architecture System and processor selection option Kernel architecture name

x86 Processor type and features i386

ARM System type arm

PPC Platform support ppc

MIPS Machine selection/CPU selection mips or mips64a

a Depending on the CPU.

SH Processor type and features sh

M68k Platform-dependent support m68k

Table 5-3. Hardware support options for each architecture

Option x86 ARM PPC MIPS SH M68k

Parallel port support X X X

IEEE 1394 support X X X X

IrDA support X X X X

USB support X X X X

Bluetooth support X X X

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Kernel | 161

Here is the list of menus specific to the PPC:

• MPC8xx CPM options

• MPC8260 communication options

The fact that an option is available in your architecture’s configuration menu does
not automatically mean that this feature is supported for your target. Indeed, the
configuration menus may allow you to enable many kernel features that have never
been tested for your target. There is no VGA console, for instance, on ARM systems.
The configuration menu of the kernel, however, will allow you to enable support for
the VGA console. In this case, the actual kernel build will fail if you enable support
for this option. In other cases, the selected feature, or even the entire kernel, will not
be functional. To avoid these types of problems, make sure the options you choose
are supported for your target. Most of the time, as in the case of the VGA console, it
is a matter of common sense. When the choice doesn’t seem as evident, visiting the
appropriate project web site, such as the ones provided in Chapter 3, will help you
determine whether the feature is supported for your target.

In some cases, the fact that an option is not displayed in your architecture’s configu-
ration menu doesn’t mean that this feature can’t actually be used on your target.
Many of the features listed in Table 5-3, such as Bluetooth, are mostly architecture
independent, and should run on any architecture without a problem. They aren’t
listed in the configuration menus of certain architectures, because they’ve either not
been tested on those architectures, or the maintainers of those ports or the maintain-
ers of the feature haven’t been asked to add the feature in the architecture’s main
config.in file.* Again, the resources listed in Chapter 3 are a good start for finding out
about which unlisted features are possibly supported on your target.

Configuration Methods
The kernel supports four main configuration methods:

make config
Provides a command-line interface where you are asked about each option one
by one. If a .config configuration file is already present, it uses that file to set the
default values of the options it asks you to set.

make oldconfig
Feeds config with a an existing .config configuration file, and prompts you to
configure only those options you had not previously configured. This contrasts
with make config, which asks you about all options, even those you may have
previously configured.

* config.in files control the options displayed in the configuration menus.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 5: Kernel Considerations

make menuconfig
Displays a curses-based terminal configuration menu. If a .config file is present, it
uses it to set default values, as with make config.

make xconfig
Displays a Tk-based X Window configuration menu. If a .config file is present, it
uses it to set default values, as with make config and make menuconfig.

Any of these can be used to configure the kernel. They all generate a .config file in the
root directory of the kernel sources. (This is the file that contains the full detail of the
options you choose.)

Few developers actually use the make config command to configure the kernel.
Instead, most use make menuconfig. You can also use make xconfig. Keep in mind,
however, that make xconfig may have some broken menus in some architectures; as
is the case for the PowerPC, for instance.

To view the kernel configuration menu, type the appropriate command at the com-
mand line with the proper parameters. For our ARM-based user interface modules,
we use the following command line:

$ make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

We then proceed to choose the configuration options appropriate to our target.
Many features and drivers are available as modules and we can choose here whether
to have them built in the kernel or whether to build them as modules. Once we are
done configuring the kernel, we use the Escape key or select the Exit item to quit the
configuration menu. We are then prompted by the configuration utility to confirm
that we want to save the configuration. By choosing Yes, we save the kernel’s config-
uration and create a .config file. In addition to creating the .config file, a few header
files and symbolic links are created. If we choose No, the configuration is not saved
and any existing configuration is left unmodified.

Apart from the main configuration options, some architectures, such as the PPC and
the ARM, can be configured using custom tailored configurations for the various
boards implemented using the architecture. In those cases, the defaults provided
with the kernel will be used to generate the .config file. For example, here is how I
configure the kernel for the TQM860L PowerPC board I have:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- TQM860L_config

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- oldconfig

Managing Multiple Configurations
It is often desirable to test different configurations using the same kernel sources. By
changing the kernel’s configuration, however, we destroy the previous configura-
tion, because all the configuration files are overwritten by the kernel’s configuration
utilities. To save a configuration for future use, we need to save the .config files cre-
ated by the kernel’s configuration. These files can later be reused to restore a previ-
ous kernel configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Kernel | 163

The easiest way to back up and retrieve configurations is to use the kernel’s own con-
figuration procedures. The menus displayed by both the menuconfig and xconfig

Makefile targets allow you to save and restore configurations. In each case, you need
to provide an appropriate filename.

You can also save the .config files by hand. In that case, you need to copy the con-
figuration file created by the kernel configuration utilities to an alternative location
for future use. To use a saved configuration, you will need to copy the previously
saved .config file back into the kernel’s root directory and then use the make com-
mand with the oldconfig Makefile target to configure the kernel using the newly
copied .config. As with the menuconfig Makefile target, the oldconfig Makefile tar-
get creates a few headers files and symbolic links.

Whether you copy the files manually or use the menus provided by the various utili-
ties, store the configurations in an intuitive location and use a meaningful naming
scheme for saving your configurations. Using our project layout, I suggest that you
store all your configurations in the ${PRJROOT}/kernel directory so that the configu-
ration files may live independently from the actual kernel sources while still remain-
ing with the other kernel-related material. To identify each configuration file,
prepend each filename with the kernel version it relates to and a small descriptive
comment or a date or both. Leave the .config extension as-is, nevertheless, to iden-
tify the file as a kernel configuration file.

In the case of the 2.4.18 kernel we are using, for instance, I tried a configuration
where I disabled serial port support. I called the corresponding configuration file 2.4.
18-no-serial.config. I also maintain the latest known “best” configuration as 2.4.18.
config. Feel free to adopt the naming convention that is most intuitive for you, but
you may want to avoid generic names such as 2.4.18-test1.config.

Using the EXTRAVERSION Variable
If you are using multiple variants of the same kernel version, you will find the
EXTRAVERSION variable to be quite useful in identifying each instance. The EXTRAVERSION

variable is appended to the kernel’s version number to provide the kernel being built
with its final name. The rmk5 patch we applied on our plain 2.4.18, for example, sets
EXTRAVERSION to -rmk5 and the resulting version for that kernel is 2.4.18-rmk5.

The final version number is also used to name the directory where the modules built
for the kernel are stored. Hence, modules built for two kernels based on the same ini-
tial version but with different EXTRAVERSIONs will be stored in two different directo-
ries, whereas modules built for two kernels based on the same initial version but that
have no EXTRAVERSION will be stored in the same directory.

You can also use this variable to identify variants based on the same kernel version.
To do so, edit the Makefile in the main kernel directory and set EXTRAVERSION to your
desired value. You will find it useful to rename the directory containing this modi-
fied source code using this same value. If, for example, the EXTRAVERSION of a 2.4.18

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 5: Kernel Considerations

kernel is set to -motor-diff, the parent directory should be named 2.4.18-motor-diff.
The naming of the backup .config files should also reflect the use of EXTRAVERSION.
The configuration file for the kernel with disabled serial support should therefore be
called 2.4.18-motor-diff-no-serial.config in this case.

Compiling the Kernel
Compiling the kernel involves a number of steps: building the kernel dependencies,
building the kernel image, and building the kernel modules. Each step uses a sepa-
rate make command and is described separately in this section. However, you could
also carry out all these steps using a single command line.

Building Dependencies
Most files in the kernel’s sources depend on a number of header files. To build the
kernel adequately, the kernel’s Makefiles need to know about these dependencies.
For each subdirectory in the kernel tree, a hidden .depend file is created during the
dependencies build. This contains the list of header files that each file in the direc-
tory depends on. As with other software that relies on make, only the files that
depend on a header that changed since the last build will need to be recompiled
when a kernel is rebuilt.

From the kernel source’s root directory, the following command builds the kernel’s
dependencies:

$ make ARCH=arm CROSS_COMPILE=arm-linux- clean dep

As in the configuration of the kernel earlier, we set the ARCH and CROSS_COMPILE vari-
ables. As I explained in Chapter 4, CROSS_COMPILE is only required when source code
is actually compiled, and could be omitted here. On the other hand, we will need to
set at least the ARCH variable for every make command we issue because we are cross-
compiling the kernel. Even when issuing make clean or make distclean, we will need
to set this variable. Otherwise, the kernel’s Makefiles assume that the operations are
to be carried out for the kernel code related to the host’s architecture.

The ARCH variable indicates the architecture for which this kernel is built. This vari-
able is used by the kernel Makefiles to choose which architecture-dependent direc-
tory is going to be used. When compiling the kernel for your target, you must set this
variable to your target’s architecture.

The CROSS_COMPILE variable is used by the kernel’s Makefiles to construct the names
of the tools used in the kernel’s build. The name of the C compiler, for instance, is
the result of the concatenation of the value of CROSS_COMPILE and the letters “gcc”. In
the case of our ARM target, the C compiler’s final name is arm-linux-gcc, which is
the actual name of the compiler we built for this target using the instructions in
Chapter 4. This also explains why the trailing hyphen on the previous command line

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Compiling the Kernel | 165

is important. Without this hyphen, the Makefile would try to use the arm-linuxgcc
compiler, which doesn’t exist.

The building of the dependencies is relatively short. On my PowerBook, this takes
two minutes. There are usually no errors possible at this stage. If you do see errors,
the kernel you have probably suffers from fundamental problems.

Building the Kernel
With the dependencies built, we can now compile the kernel image:

$ make ARCH=arm CROSS_COMPILE=arm-linux- zImage

The zImage target instructs the Makefile to build a kernel image that is compressed
using the gzip algorithm.* There are, nevertheless, other ways to build a kernel
image. The vmlinux target instructs the Makefile to build only the uncompressed
image. Note that this image is generated even when a compressed image is requested.

On the x86, there is also the bzImage target. The “bzImage” name stands for “big
zImage,” and has nothing to do with the bzip2 compression utility. In fact, both the
bzImage and zImage Makefile targets rely on the gzip algorithm. The difference
between the two Makefile targets is that the compressed kernel images generated
using zImage cannot be larger than 512 KB, while those generated using bzImage are
not bound by this limit. If you want more information regarding the differences
between zImage and bzImage, have a look at the Documentation/i386/boot.txt file
included in the kernel sources.

If you chose any options not supported by your architecture during the kernel con-
figuration or if some kernel option is broken, your build will fail at this stage. If all
goes well, this should take a few minutes longer than the dependency build. On my
hardware configuration, it takes five minutes.

* Though zImage is a valid Makefile target for all the architectures we discussed in depth in Chapter 3, there
are other Linux architectures for which it isn’t valid.

Verifying the Cross-Development Toolchain
Notice that the kernel build is the first real test for the cross-development tools we built
in the previous chapter. If the tools you built earlier compile a functional kernel suc-
cessfully, all the other software should build perfectly. Of course, you will need to
download the kernel you built to your target to verify its functionality, but the fact that
it builds properly is already a positive sign.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 5: Kernel Considerations

Building the Modules
With the kernel image properly built, we can now build the kernel modules:

$ make ARCH=arm CROSS_COMPILE=arm-linux- modules

The duration of this stage depends largely on the number of kernel options you
chose to build as modules instead of having linked as part of the main kernel image.
This stage is seldom longer than the build of the kernel image. As with the kernel
image, if your configuration is inadequate for your target or if a feature is broken,
this stage of the build may fail.

With both the kernel image and the kernel modules now built, we are ready to install
them for our target. Before we do so, note that if you needed to clean up the kernel’s
sources and return them to their initial state prior to any configuration, dependency
building, or compilation, you could use the following command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- distclean

Be sure to backup your kernel configuration file prior to using this command, since
make distclean erases all the files generated during the previous stages, including the
.config file, all object files, and the kernel images.

Installing the Kernel
Ultimately, the kernel we generated and its modules will have to be copied to your
target to be used. I will cover the actual copying of the kernel and its modules in
Chapters 6 and 9. Meanwhile, we will discuss how to manage multiple kernel images
and their corresponding module installations. The configuration of the target’s boot
layout and its root filesystem depend on the techniques we discuss below.

Managing Multiple Kernel Images
In addition to using separate directories for different kernel versions, you will find it
useful to have access to multiple kernel images to test on your target. Since these
images may be built using the same sources, we need to copy them out of the kernel
source and into a directory where they can be properly identified. In our setup, the
repository for these images is the ${PRJROOT}/images directory.

For each kernel configuration, we will need to copy four files: the uncompressed ker-
nel image, the compressed kernel image, the kernel symbol map, and the configura-
tion file. The last three are found within the kernel sources’ root directory and are
called vmlinux, System.map, and .config, respectively. The compressed kernel image
file is found in the arch/YOUR_ARCH/boot directory, where YOUR_ARCH is the name of
your target’s architecture, and is called zImage or bzImage, depending on the Make-
file target you used earlier. For our ARM-based target, the compressed kernel image
is arch/arm/boot/zImage.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Installing the Kernel | 167

Some architectures, such as the PPC, have many boot directories. In those cases, the
kernel image to use is not necessarily the one located at arch/YOUR_ARCH/boot/zImage.
In the case of the TQM board mentioned above, for example, the compressed kernel
image that should be used is arch/ppc/images/vmlinux.gz. Have a look at the arch/
YOUR_ARCH/Makefile for a full description of all the Makefile boot image targets for
your architecture. In the case of the PPC, the type of boot image generated depends
on the processor model for which the kernel is compiled.

To identify the four files needed, we use a naming scheme similar to that of the ker-
nel’s version. In the case of the kernel generated using 2.4.18-rmk5 sources, for
instance, we copy the files as follows:

$ cp arch/arm/boot/zImage ${PRJROOT}/images/zImage-2.4.18-rmk5

$ cp System.map ${PRJROOT}/images/System.map-2.4.18-rmk5

$ cp vmlinux ${PRJROOT}/images/vmlinux-2.4.18-rmk5

$ cp .config ${PRJROOT}/images/2.4.18-rmk5.config

You could also include the configuration name in the filenames. So in the case of the
kernel without serial support, for instance, we could name the four kernel files
zImage-2.4.18-rmk5-no-serial, System.map-2.4.18-rmk5-no-serial, vmlinux-2.4.18-
rmk5-no-serial, and 2.4.18-rmk5-no-serial.config.

Installing Kernel Modules
The kernel Makefile includes the modules_install target for installing the kernel
modules. By default, the modules are installed in the /lib/modules directory. Since we
are in a cross-development environment, however, we need to instruct the Makefile
to install the modules in another directory.

As the kernel modules need to be used with the corresponding kernel image, we will
install the modules in a directory with a name similar to that of the kernel image. So
in the case of the 2.4.18-rmk5 kernel we are using, we install the modules in the
${PRJROOT}/images/modules-2.4.18-rmk5 directory. The content of this directory
will later be copied to the target’s root filesystem for use with the corresponding ker-
nel on the target. To install the modules in that directory, we use:

$ make ARCH=arm CROSS_COMPILE=arm-linux- \

> INSTALL_MOD_PATH=${PRJROOT}/images/modules-2.4.18-rmk5 \

> modules_install

The INSTALL_MOD_PATH variable is prepended to the /lib/modules path, so the modules
are therefore installed in the ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules
directory.

Once it is done copying the modules, the kernel tries to build the module dependen-
cies needed for the module utilities during runtime. Since depmod, the utility that
builds the module dependencies, is not designed to deal with cross-compiled mod-
ules, it will fail.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 5: Kernel Considerations

To build the module dependencies for your modules, you will need to use another
module dependency builder provided with the BusyBox package. We will discuss
BusyBox at length in Chapter 6. For now, download a copy of the BusyBox archive
from http://www.busybox.net/ into your ${PRJROOT}/sysapps directory and extract it
there.* From the BusyBox directory, copy the scripts/depmod.pl Perl script into the
${PREFIX}/bin directory.

We can now build the module dependencies for the target:

$ depmod.pl \

> -k ./vmlinux -F ./System.map \

> -b ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules > \

> ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules/2.4.18-rmk5/modules.dep

The -k option is used to specify the uncompressed kernel image, the -F option is used
to specify the system map, and the -b option is used to specify the base directory con-
taining the modules for which we need to build dependencies. Because the tool’s
output goes to the standard output, we redirect it to the actual dependency file,
which is always called modules.dep.

In the Field
Let’s take a look at the kernel’s operation once it’s installed on your target and ready
to run. Because the algorithms and underlying source code is the same for embed-
ded and regular systems, the kernel will behave almost exactly the same as it would
on a workstation or a server. For this reason, the other books and online material on
the subject, such as Linux Device Drivers and Understanding the Linux Kernel from
O’Reilly, are much more appropriate for finding in-depth explanations of the kernel.
There are, nevertheless, aspects particular to embedded Linux systems or that war-
rant particular emphasis.

Dealing with Kernel Failure
The Linux kernel is a very stable and mature piece of software. This, however, does
not mean that it or the hardware it relies on never fail. Linux Device Drivers covers
issues such as oops messages and system hangs. In addition to keeping these issues
in mind during your design, you should think about the most common form of ker-
nel failure: kernel panic.

When a fatal error occurs and is caught by the kernel, it will stop all processing and
emit a kernel panic message. There are many reasons a kernel panic can occur. One
of the most frequent is when you forget to specify to the kernel the location of its
root filesystem. In that case, the kernel will boot normally and will panic upon try-
ing to mount its root filesystem.

* Download BusyBox Version 0.60.5 or later.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

In the Field | 169

The only means of recovery in case of a kernel panic is a complete system reboot. For
this reason, the kernel accepts a boot parameter that indicates the number of sec-
onds it should wait after a kernel panic to reboot. If you would like the kernel to
reboot one second after a kernel panic, for instance, you would pass the following
sequence as part of the kernel’s boot parameters: panic=1.

Depending on your setup, however, a simple reboot may not be sufficient. In the
case of our control module, for instance, a simple reboot may even be dangerous,
since the chemical or mechanical process being controlled may get out of hand. For
this reason, we need to change the kernel’s panic function to notify a human opera-
tor who could then use emergency manual procedures to control the process. Of
course, the actual panic behavior of your system depends on the type of application
your system is used for.

The code for the kernel’s panic function, panic(), is in the kernel/panic.c file in the
kernel’s sources. The first observation to be made is that the panic function’s default
output goes to the console.* Since your system may not even have a terminal, you
may want to modify this function according to your particular hardware. An alterna-
tive to the terminal, for example, would be to write the actual error string in a spe-
cial section of flash memory that is specifically set aside for this purpose. At the next
reboot, you would be able to retrieve the text information from that flash section and
attempt to solve the problem.

Whether you are interested in the actual text message or not, you can register your
own panic function with the kernel. This function will be called by the kernel’s panic
function in the event of a kernel panic and can be used to carry out such things as
signaling an emergency.

The list that holds the functions called by the kernel’s own panic function is panic_

notifier_list. The notifier_chain_register function is used to add an item to this
list. Conversely, notifier_chain_unregister is used to remove an item from this list.

The location of your own panic function has little importance, but the registration of
this function must be done during system initialization. In our case, we add a
mypanic.c file in the kernel/ directory of the kernel sources and modify that direc-
tory’s Makefile accordingly. Here is the mypanic.c for our control module:

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/notifier.h>

static int my_panic_event(struct notifier_block *,

 unsigned long,

 void *);

static struct notifier_block my_panic_block = {

 notifier_call: my_panic_event,

* The console is the main terminal to which all system messages are sent.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 5: Kernel Considerations

 next: NULL,

 priority: INT_MAX

};

int __init register_my_panic(void)

{

 printk("Registering buzzer notifier \n");

 notifier_chain_register(&panic_notifier_list,

 &my_panic_block);

 return 0;

}

void ring_big_buzzer(void)

{

...
}

static int my_panic_event(struct notifier_block *this,

 unsigned long event,

 void *ptr)

{

 ring_big_buzzer();

 return NOTIFY_DONE;

}

module_init(register_my_panic);

The module_init(register_my_panic); statement ensures that the register_my_panic

function is called during the kernel’s initialization without requiring any modifica-
tion of the kernel’s startup functions. The registration function adds my_panic_block

to the list of other blocks in the panic notifier list. The notifier_block structure has
three fields. The first field is the function to be called, the second is a pointer to the
next notifier block, and the third is the priority of this block. In our case, we want to
have the highest possible priority. Hence the use of INT_MAX.

In case of kernel panic, my_panic_event is called as part of the kernel’s notification of
all panic functions. In turn, this function calls on ring_big_buzzer, which contains
code to start a loud alarm to attract the human operator’s attention to the imminent
problem.

