
Temporal inventory and real-time synchronization in

RTLinuxPro(R)

Victor Yodaiken

Finite State Machine Labs (FSMLabs)
Copyright Finite State Machine Labs 2001

April 7, 2003

Abstract

This paper is a short tour of the synchronization methods for real-time with special
attention to the RTCore (RTLinux) real-time operating system. A glossary is provided for
some tutorial material.

1 Real-time software is like an automobile factory

Synchronization operations impose temporal order on a software system by forcing some com-
putations to wait until other computations complete. Waiting and negotiating over which
computation should take place next can easily absorb significant fractions of processing power
and can cause significant delays. To compensate, engineers can specify more powerful pro-
cessors and more resources, maybe even multiple processors — but such things are not free.
Even worse, synchronization can easily produce timing failures or deadlocks that may elude
testing and this becomes more of a hazard as more complex and sophisticated synchronization
operations are employed. It’s not uncommon for control system software to spiral in com-
plexity as more hardware is added to provide the compute power needed for synchronization,
necessitating more synchronization which requires more resources and also more sophisticated
special case software to compensate for hard to find sporadic timing problems and so on.

This note is a tutorial on synchronization of real-time software, focused on applications
running under the RTCore operating system (RTLinux is RTCore plus Linux). Throughout
the design and ongoing development of RTCore, we have tried to solve problems by simplifica-
tion instead of by adding features. One of the most brilliant practitioners of this approach to
engineering is Taishi Ohno, who helped develop Toyota’s manufacturing process. Ohno noticed
that large parts inventories in production plants were a significant cost and that they masked
inefficiencies. When inventory was reduced and the factory was designed to run, just-in-time
problems in quality and reliability were exposed and fixed. The result was greatly increased
productivity. Using up parts inventory and using up slack time ”inventory” during synchro-
nization are analogous. If a task is scheduled to start at time t and only starts at time t + w

because of delays waiting and negotiating for resources, we have to relax deadlines and build

1

slack time into the system to compensate for w. The slack time is temporal inventory — time
we stockpile in order to compensate for resource conflicts, the overhead of arbitration, and
other scheduling inefficiencies. We cannot expect to reduce inventory to zero or to do without
any synchronization at all, but we can produce cleaner and more reliable software by working
to minimize synchronization time.

2 Basics

Some of the technical terms here are defined in a glossary section indicated by a reference to
such as [G1] for glossary reference 1. I will use the term task to indicate a section of executable
code plus state. Tasks include processes, POSIX style threads[G12] and interrupt handlers[G7].

2.1 Goals

Designers of any concurrent[G3] software must ensure that synchronization[G2] operations are
(1) usually fast (2) take up a small percentage of total computation time, (3) do not dead-
lock[G1] and (4) do not defeat modularity. The last item is perhaps the only surprise on this
list, but synchronization points can be among the most dangerous global data structures —
causing scheduling dependencies between components that are logically unrelated. Designers of
real-time[G4] software must impose two additional requirements for synchronization operations;
(5) worst-case delays are bounded and small, and (6) interactions among logically distinct com-
ponents do not cause unacceptable timing changes. If the average delay for starting a critical
task is within tolerance but the worst-case is out of tolerance, the system may still fail spec-
tacularly. The often misunderstood Mars Pathfinder[G8] near-disaster is an example of how a
hidden shared synchronization point changed system timing enough to cause a catastrophic
failure. I will go into some depth on pitfalls in section 4.2, but satisfying all six constraints is
usually not too hard as long as sensible design procedures are followed.

2.2 Priorities

Real-time programming is generally based on a priority ranking of tasks and simple rule.

Rule 1 Nothing should delay the highest priority runnable tasks.

Priority makes synchronization more difficult because priority and synchronization can
come into conflict and because too many priority levels can sabotage performance.

2.2.1 Too many levels

When a system spends its time rescheduling differently prioritized computations and doesn’t
get enough work done, this may be a sign that there are too many computations with too
many levels of priority. If you have n computations at different priority levels, the worst case
is n preemptions with no real work done. One question to always ask is what is the difference
between computations at different priority levels? Suppose you have 100 priority levels. Can
you clearly specify the rationale for the priority level differences between computations at
priority 95,96,... 100?

2

Scheduling large numbers of prioritized computations is a problem that is incorrectly
believed to be solved by rate monotonic scheduling[?]. RMA provides a formula for deriving
priorities from rates, based on the sensible rule of thumb that the highest frequency tasks are
often the most important. There is a large literature on rate-monotonic scheduling, and it
may be useful for your application, but RMA assumes a great deal about the application that
is not generally true and one is better off simplifying when determining priority becomes too
complex to do by hand.

Rule 2 Do not add priority levels unless you can precisely specify why tasks at one level should
preempt tasks at the next lower level. Do not add tasks to avoid thinking about control flow.

2.2.2 Too much pre-emption

The complementary problem is when a critical task does not get to finish its computations
because it is interrupted by higher priority tasks. Here we have to face an unfortunate reality:
we are designing real-time systems without the appropriate mathematical and engineering
tools. The current state of the art provides no way to precisely analyze the worst case timing of
anything but the most elementary computations. Even in the simpler cases, the uncertainties
of cache misses, DMA, memory, and processor pipelines cause great difficulties. Note that
RMA depends on a quite precise calculation of worst case timing for each task — something
that is generally not available. Testing and approximate analysis are the only tools we have.
Which brings us to the next rule.

Rule 3 Design so that you can reliably test worst case timing. Keep real-time tasks
simple and their primary control loops simple because if there are too many code paths, tests
and analysis will not find all code paths or identify all delays.
And run tests for long periods under varying worst-case loads. Do not assume you know what
is the worst case load.

2.2.3 Priority Inversion

Priority inversion is the term used to describe violations of rule 1 due to synchronization. If
task A has exclusive use of resource R and higher priority task B becomes runnable, B must
wait for A - inverting priorities. Priority inversion is possible when there is a resource that
requires synchronized access and is shared between tasks with unequal priority. If we think
about it, such situations are intractably bad. If Task A is more important than task B, and
A can preempt B, then what possible reason can we have for allowing B to get exclusive use
of a resource that A requires? Priority inheritance and priority ceiling algorithms are widely,
and incorrectly, believed to fix priority inversion problems. I’ll look at these in more detail in
section 4.2.1, but the best solution is to avoid the entire problem.

3 Just-in-time scheduling

The best synchronization is no synchronization. Synchronization permits us to use sloppy
schedules and to delay execution of a scheduled task until the resources are ready.

3

Rule 4 It is best to schedule just in time. Whenever possible, real-time systems should
make sure that no two real-time tasks are scheduled to run during a common interval and that
scheduled real-time tasks are never blocked waiting for resources.

3.1 Scheduling just-in-time

For many years, engineers designed real-time software as explicit loops or slot schedulers and
these are still perfectly good designs for many software systems. A classical data acquisition
application for example, may simply poll a set of sensors on a periodic schedule. No synchro-
nization required. A control system may stagger a data acquisition task and a control output
task. If the periods and start times are correctly chosen, the system runs just-in-time. No
synchronization is needed. As an example, suppose we poll the sensor every k nanoseconds
and generate an output every 3k nanoseconds. In RTLinux we could design this quite simply.
We would create two real-time threads. The input task waits for its time to run, gets data,
queues it, and loops. Note the three lines marked DEBUG TEST. These would be used during
test phase to make sure that the two tasks never overlap in execution time.

Example 1 Alternating threads: input

task_input:
clock_gettime(CLOCK_REALTIME,&t0); // read the time
while(!stop)
{

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);
/*DEBUG TEST*/if(sem_trylock(&overlap_sem))fail();}
collect_data_from_a2d_device(data);
queue_data(data);
timespec_add_ns(&t0,INPUT_DELAY_NS);

}

The output task does much the same thing, but it waits for the offset interval before
starting to ensure that the two tasks are out of phase.

Example 2 Alternating threads: output

task_ouput:
clock_gettime(CLOCK_REALTIME,&t1); // read the time
timespec_add_ns(&t1,OFFSET_NS); // compute start time
while(!stop){

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t1, NULL);
/*DEBUG TEST*/if(sem_trylock(&overlap_sem))fail();}
dequeue_data(data);
compute_output();
output_control();
timespec_add_ns(&t1,OUTPUT_DELAY_NS);
/*DEBUG TEST*/sem_post(&overlap_sem);

}
....

4

What happens if there is an overlap? This can only happen if the execution times of the
threads are too long for the period. Testing and analysis should eliminate the possibility of
such an error during development. Making the two threads equal priority ensures that in the
case of a failure, there will be no preemption – as long as the clock nanosleep operation is the
only blocking operation of either thread. For some applications, the fail operation may allow
for runtime recovery and in this case the overlap test may be left in production code.

This same system can be exceptionally efficient on an SMP multi-processor. In RTCore,
when you create threads, you can set the CPU attributes of the two threads so they run on
different processors. The offset is still needed to make sure that there is fresh data to output
when the output thread runs.

This section has illustrated an old and time-tested design technique that requires abso-
lutely no synchronization. No time is wasted negotiating over access to shared objects, there
are no false starts, and no required preemption. For many projects a design like this can reduce
processing requirements — potentially allowing for a lower power lower speed processor.

3.2 Asymmetric just-in-time and non-blocking I/O

One design issue that can cause programmers to abandon just-in-time is the use of low priority
non-real-time tasks for housekeeping and other functions that are either not critical or that
can use buffering to compensate for timing fluctuations. For example, consider a system where
a real-time task collects video frames from a camera and a second task displays the video
and stores it in a file. Given a big enough buffer and a “makes progress during any 1 second
interval” assurance from the non-real-time scheduler, the second task does not need to be made
real-time. Real-time applications of this kind consist of a real-time component and a (typically
much larger) non-real-time component. RTCore/RTLinux is is specifically designed to simplify
such systems by running an non real-time operating system from a real-time kernel.

Rule 5 Asymmetric just-in-time: Pre-empting and blocking non-real-time tasks is not a vio-
lation of the just-in-time scheduling rule.

Note that rule 5 is not the same as saying that pre-empting lower priority threads is
ok. All real-time threads have time constraints. Pre-empting non-real-time threads is entirely
different from pre-empting real-time threads.

The standard method to connect the real-time and non-real-time components in RTCore
is via an asymmetric device interface in which the real-time side always sees a non-blocking
interface. For example, consider the following code from an application that logs data from an
analog-to-digital device.

Example 3 Using asymmetric FIFO

clock_gettime(CLOCK_REALTIME,&t);
while(!stop)
{

collect_data_from_a2d_device(&data);
write(fd,&D,sizeof(D)); /* async write to rt-fifo */
timespec_add_ns(&t,DELAY_NS);

5

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t, NULL);
}

If the write cannot advance because buffers are full, data is simply dropped1.
On the other side of the write may be something as simple as a UNIX shell script:

cat < /dev/rtfifo0 > logfile

This would be implemented by a UNIX process that had no real-time requirement,
could be preempted at will and made to block when no data is present in the fifo. The read
operations that cat does to collect data are synchronous and block when there is no data. The
write operations that cat does to logfile are also synchronous and block. The real-time
task preempts any UNIX process every DELAY NS nanoseconds. But none of this violates the
just-in-time rule and none of it interferes with precise timing of real-time tasks because the
cat process is not a real-time task.

3.3 Event driven scheduling

Blocking operations, operations that may cause a task to be suspended until data is available
or a lock is released must be treated with great care in real-time programming. If our task
is time constrained, what is it doing invoking an operation that may suspend it for some
indefinite period? Often times code analysis shows that blocking operations are used because
programmers are not thinking carefully about system design and are reusing non-real-time
programming techniques in the wrong place. But event driven programming is one of the
most useful methods in real-time software and it depends on blocking threads until some event
triggers the activation of the thread. Blocking I/O operations and semaphores[G6]are the
traditional tools for this type of programming.

Consider the following code

Example 4 Blocking producer.

Thread A:
do {

read data by a blocking operation
process the data
if space on output queue

enqueue data
else

discard data
} while(not done);

Thread A uses the blocking operation to drive its schedule. After completing the loop, the task
blocks waiting to run again at when new data shows up. The same design can be implemented
using semaphores. Suppose that an interrupt handler is called when data is produced by a
device.

1Error handling is omitted in this example, just to make the example simpler. In a real system, we dropping
data might be correct or we might want to take some corrective action.

6

Example 5 Blocking consumer

Thread A:
do {

semaphore decrement. /* the interrupt routine does post*/
do something
yield

} while(not done);

In this case the schedule for A is determined by an interrupt handler that presumably
does some simple processing and leaves A to complete the job. Just as in the first case, the
blocking operation drives the schedule.

Here’s an example where a high frequency thread checks the temperature, does a simple
operation, and wakes up a thread that will do some background processing if the temperature
is too high

Example 6 Semaphore powered event driven.

check_temp_thread(){
if(temp > 100) sem_put(&sem_help_me);
timespec_add_ns(&t0,SMALL_PERIOD_NS);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);

}

...
help_thread(void){

sem_get(&sem_help_me);
/* sound the alarm */

...
}

As a second example, consider a producer and consumer on an asynchronous non-
blocking queue where we would like the consumer to block if there is no data.

Example 7 Producer/Consumer 2

producer() {
pq_enq(&q,newpacket());
sem_post(&q_sem);

}
// we assume here there is never more than one consumer task
consumer() {

sem_wait(&q); // when we pass here we know deq will succeed.
m = pq_deq(&tx);

}

We might do more sophisticated flow control and error handling by putting low level
control into an interrupt handler and activating an error thread if space gets short.

7

3.4 Interrupt handlers

Interrupt handlers or interrupt service routines (ISRs) are functions that are activated asyn-
chronously by hardware events. An interrupt handler[G7] version of example 3 is simpler than
the thread.

Example 8 Interrupt handler using FIFO.

rtl_request_irq(A2DDEVICEIRQ,handler);
...
handler()
{

collect_data_from_a2d_device(&data);
write(fd,&D,sizeof(D)); /* async write to rt-fifo */
return;

}

RTCore, following the UNIX tradition, runs interrupt handlers in the context of whatever
thread was executing when the interrupt is caught. The motivation for this approach is to avoid
the cost of switching to a handler thread when that is not necessary.

Rule 6 Interrupt service overhead minimization. The least possible context should be
saved and restored during an interrupt service operation.

When a handler starts in RTCore further interrupts are disabled and the current interrupt
is masked. When the handler is ready, it must unmask the interrupt but the handler should
never re-enable interrupts directly. The RTCore kernel re-enables interrupts when it restores
the context of the interrupted thread.

Example 9 Interrupt Handler

rtl_request_irq(A2DDEVICEIRQ,handler);
fd = fd_normal;
..
handler(){
collect_data_from_a2d_device(data);

reenable_the_device(); // but interrupts are still disabled on this cpu
if (write(fd,data,DATA_SIZE) != DATA_SIZE) {

if (!overflow) {
write(fd_error,DATA_SIZE));
overflow = 1;
fd = fd_overflow;
sem_post(&failure_sem);

} // else drop the data
return;

}
}

8

The basic idea here should be clear. The second thread is scheduled just-in-time by
a semaphore post operation and this is a common and invaluable technique. In many cases
where a static just-in-time schedule is impossible to design, it is possible to schedule real-time
threads using semaphores. What does the thread waiting on the semaphore do when it wakes
up? This depends on the data semantics. Possibilities include turning on an error indicator,
some flow control, interpolating data and increasing the priority of the UNIX process at the
other end.

Suppose, that the producer is interrupt driven as above, but the consumer is also a
real-time task. For example, the second task may wait for a counting semaphore and a post
operation from the first task may be the correct way to wake it up. In this case, the schedule
adapts to data arrival times and both criteria of the just-in-time rule are met.

3.4.1 Interrupts and semaphores

It’s worth looking at semaphore wakeups in a little more detail. Rule 1 determines much of
the design of RTCore semaphores. A sem post operation has the following semantics

Example 10 Semaphore semantics:

sem_post(s){
atomically{ increment s

if there are waiters wake the highest priority one
}

if we woke a higher priority thread, on our CPU, switch.
}

A sem post operation will reschedule the system so that if a higher priority thread is
released by a post operation, the time that the higher priority thread waits to run is minimized.
This may seem to be obviously good, but what what happens when an interrupt service routine
calls sem post? If high priority thread T ′ is waiting on a semaphore and thread T is the running
thread and an interrupt causes an ISR to run in the context of T and call sem post then a
thread switch will preempt T .

T running ISR sem post ... resumes ISR returns runs
T’ waiting wake runs ... pre-empted

As a result, ISR code must allow for possible long delays between a sem post and the
completion of the ISR. It’s generally wrong to have code that re-enables a hardware interrupt
after a semaphore post. This is an example of one of the places where real-time constraints
expose system behaviors that can easily be hidden on non-real-time systems. In the average
case, there will not be wakeups of higher priority threads so it is possible to keep good average
latency by simply setting a flag in sem post and calling the scheduler in the low level ISR
return code. But average case does not help us. We have to immediately switch and pay the
price of needing some more vigilance in ISR code development. In cases where this behavior is
not wanted, RTCore provides both a pthread kill to wake a waiting thread on a semaphore
without an immediate re-schedule and the mutex operations are also specifically designed not
to call the scheduler. Since POSIX semantics for mutexes are kind of complex already, we
decided that an additional small delay in mutex unlock would not be an issue.

9

3.5 Lock-free structures

Sometimes it is possible to design data structures so that even though they are shared, there
is no need to synchronize access.

Rule 7 Lock free data structures Where there are fast algorithms, use lock-free structures
to avoid synchronization.

In RTCore we have a couple of useful primitives for building lock-free data structures
and a high speed lock-free queue. The POSIX sem getvalue (atomic read) sem trylock (atomic
decrement if greater than 0, fail otherwise) operations which are exceptionally useful for atomic
access to counters. RTCore also offers rtl test and set which is passed a pointer and a bit
position, and atomically sets the indicated bit and returns the previous value. On the x86 test
and set bit uses a special instruction, on other machines it is more complex and some processors
have other useful atomic primitives. But the programmer can just use rtl test and set and ignore
processor differences. To illustrate, consider a system for sharing a collection of buffers among
a set of concurrent tasks. This algorithm works well as long as the search is not too long and it
works just as well on multiprocessor machines as it does on uniprocessors. Furthermore, both
the allocate and free functions are interrupt handler safe.

struct mybuffer { unsigned int flags; char data[DATASIZE];};
struct mybuffer B[NUMBER_OF_BUFFERS] = {0, }; //zero it

struct mybuffer *allocate_mybuffer(void){
int i;
for(i=0; i< NUMBER_OF_BUFFERS; i++)

if(!rtl_test_bit_and_set(0,&B[i].flags))
return &B[i];

return (struct mybuffer *)0;
}

void free_mybuffer (struct mybuffer *b){
b->flags = 0; // store is atomic
return;

}

Test and set is not free, however and SMP programmers need to be aware of the problem
of cache ping-pong[G9].

The RTCore one-way-queues do not need locks or even test-and-set operations. The one-
way-queues work when there is a single reader and a single writer. I’ll illustrate with a packet
routing system. The rx handler could be called on interrupt, get a message and queue it for
a thread that could modify and then queue the modified messages for output. The tx handler
would then be called on interrupts to recycle storage of transmitted messages.

10

Example 11 #include <onewayq.h>

typedef struct {int flags; unsigned char d[SZ];} *mypacket_t;
BUILD_OWQ(pq_t,128,mypacket_t,-1);
pq_t txq,modifyq;

rx_handler() {
if(norxerror()){

if(-1 == pq_enq(&modifyq,newpacket())) fail();
}

}
tx_handler() {

/* one transmit done. throw away sent packet */
m= pq_deq(&txq);
free_message(m);

}

...

modify_thread(){

while(!stop){
while((m = pq_deq(&modifyq)){

process(m);
pq_enq(&txq,m);

}
timespec_add_ns(&t0,DELAY_NS);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);

}
}

In this example, violations of the just-in-time rule don’t cause a problem. Even if the
two interrupt driven tasks and the periodic thread all run in parallel on a shared memory
multi-processor they can safely share the queues. The RTCore one-way-queues take advantage
of the fact that for a circular array based queue, the head pointer and tail pointer are not
shared – the consumer needs the head, and the producer needs the tail. And a very large
number of shared data structures can be treated as single-producer/single-consumer queues.
Note that we defeat concurrency problems here without explicit locks, simply by designing the
system to avoid a contention that, at first look, seems unavoidable.

How do we cope with multiple consumers or multiple producers? In that case, one answer
is to use locks. But note that we can have one lock for consumers and one lock for producers
— effectively decoupling two groups of threads in accordance with rule 7.

11

4 Unavoidable synchronization

There are systems where scheduling conflicts are inescapable, but not as many as are generally
believed. Unfortunately, sometimes we cannot guarantee that tasks obey the just-in-time rule.
Before we discuss how to synchronize, consider why we need to synchronize. When careful
design analysis, or more likely, software based on legacy architecture, cannot be designed just-
in-time, synchronization is required.

I want to distinguish three types of synchronization that are often used in combination.

1. Atomic code blocks. Using primitives to prevent protecting blocks of instructions so that
they are executed as a single block — as if they were a single atomic operation.

2. Synchronization via pre-emptible critical regions. This is the standard mutex-protected
critical region.

3. Synchronization via server centralization.

4.1 Atomic code block

”Atomic” is a relative term and needs to be qualified. A block of code between mutexes is
atomic with respect to thread switching: once the mutex is locked, no other thread can enter
the code region. A block of code between interrupt disable and interrupt enable operations is
atomic with respect to uniprocessor computations: no other computation on this processor can
start until interrupts are re-enabled (unless the code causes an exception like a divide-y-zero
or page fault). A block of of code betwee

Almost every modern processor provides methods of guarding a block of instructions so
it can run atomically. On a uniprocessor, we can usually just disable hardware interrupts which
prevents interrupts or preemption, on a multiprocessor we can use spin locks to prevent parallel
computation. These primitive operations are the basis for all other blocking synchronization
methods: including semaphores2

On a uniprocessor, any section of code can be made atomic by simply disabling interrupts.
RTCore offers methods that are similar to those found on nearly every operating system. Here’s
a low level method, not recommended, but shown for understanding.

/* DANGER! don’t do this use pthread_spin_lock instead */
rtl_stop_interrupts();
do some work // no preemption, no interrupts
...

rtl_allow_interrupts();

There are no fewer than four things to worry about in this simple example:
2 Unfortunately, it is no longer possible to always rely on the atomicity of primitive atomic operations.

Chip designers and firmware designers keep wanting to interfere with operating systems, mainly so they can
“transparently” compensate for buggy hardware. In this cause, x86 processors have SMI and other interrupts
that ignore operating system directives and advance anyway! This is really a tough one and can require careful
selection of motherboards and BIOS software.

12

1. What if interrupts were disabled already when we entered this code? In that case, we
enable interrupts at the end when we should not. This is easily solved. See below.

2. How long does do some work take? It had better be a small, simple and fast section of
code because disabling interrupts strikes at the heart of our response time.

3. What about a multiprocessor system? Disabling interrupts means that this task won’t
be interrupted or preempted. On an SMP system, it is still possible for another processor
to ruin the atomicity of the code. The answer here is spin locks - see below.

To solve the problem with multiprocessor systems, we need spin locks. The idea with
a spin lock is that a task loops trying test and set until it succeeds and the task gets the
lock. The task spins until it gets the lock. The POSIX defined spin locks are pthread spin lock
and pthread spin unlock. In RTCore, the locking call disables interrupts before the lock is set,
and unlocking restores the interrupt In a uniprocessor system setting and clearing the lock
is omitted as an optimization (Linux spin-lock does this too). Note that once a thread has
acquired a spin lock, it cannot be interrupted or preempted until it releases the lock or calls
a blocking function of some sort (VERY inadvisable). Code within a spin lock should be fast
and deterministic. Don’t try to do complex computations with spin locks held.

The implementation of POSIX spin locks in RTCore is designed to prevent one of the
standard spin lock errors. If you acquire a spin lock without disabling interrupts, it is possible
to deadlock when a signal handler or preempting thread gets stuck on the same lock. Since
the thread holding the lock is not able to run, the attempt to get the lock results in deadlock.
In RTCore, pthread spin lock disables interrupts first and the unlock operation restores the
previous interrupt state. This also solves our problem of re-enabling interrupts by mistake.
That’s why we recommend using the POSIX spin lock operations on both SMP and uniproces-
sor systems. The ugly parts are hidden in the call, the interface is a POSIX standard, and you
won’t get a nasty surprise 3 years later when someone runs your code on an SMP machine!

pthread_spin_lock(&myspin);
critical section // no preemption, no interrupts
...

pthread_spin_unlock(&myspin); // in a uniprocessor myspin is not locked

Suppose we altered our example above to allow for two receive devices sharing the same
modify queue (we could perhaps do better by using multiple modify queues and having the
thread loop through them, but let’s suppose we had no choice.) In this case we would have
two producers, needing a spin lock. The first rx handler could then be rewritten as follows.

rx_handler() {
if(norxerror()){

pthread_spin_lock(&modifylock);
error = myq_enq(&tx,newpacket());
pthread_spin_unlock(&modifylock);
if(error)fail();

13

}
}

Note that the consumer of the modify queue does not need the spin lock since there is
still only a single consumer.

It’s possible to construct much more elaborate lock free data structures and many very
clever ones have been invented. [2] is a good start on the subject.

Just for completeness, here’s how you would implement a spin lock from test and set
lock. Note the optimization of not using the expensive test and set operation while we loop.
The volatile key word is used to prevent the compiler from deciding it can read the memory
location once, put it in a register and loop until the register value changes3.

void pthread_spin_lock(rtl_spin_t *s){
while(rtl_test_bit_and_set(0,&s->lock)){

// don’t use the expensive test and set,
while((volatile)s->lock & 1);

}
}

Cache ping-pong is also a problem for spin locks.
For comparison, let’s do a quick analysis of semaphore costs and it’s here that the

difference between real-time and non-real-time becomes painfully obvious. On Linux, where
semaphores have been obsessively optimized the code for a IA32 processor is a macro that
looks something like this:

down_semaphore:
atomic_decrement_instruction address_of_counter
jump_if_nonzero down_failed_code

The idea is that in the common case there will be no contention and down semaphore takes one
atomic decrement instruction and one failed branch and just falls through. On a fail, we jump
to a ”C” function since the semaphore blocking code is so costly anyways. For Linux, if 99.99%
semaphore down operations have no contention, the cost of the failure case is not significant
and if there are many failure cases, the problem should be solved by reducing contention. For a
real-time programmer, this solution is a partial solution but we need to always consider worst
case.

See Vahalia [5] for an excellent textbook coverage of locking.

4.2 Guarded critical sections

Semaphores were used in section 3.3 as signaling mechanisms. They can also be used to guard
critical sections of code. A binary semaphore (mutex) may be locked as a thread enters a
critical section and unlocked as the thread leaves the critical section. In theory, semaphores
have an advantage over disabling interrupts and setting spin locks by imposing less delay for

3Not all ”C” compilers do volatile properly. Sometimes you want to use an assembler escape to force correct
behavior.

14

more important tasks and allowing more efficient use of the processor. In practice, semaphore
guarded critical regions need to be used with care and are often much less efficient than the
alternatives.

When they are correctly used, semaphore guarded critical regions are fine. I particularly
recommend use of the POSIX mutex conditional waits to avoid the standard pitfall of missed
wakeups[G10].

4.2.1 Priority and semaphores

The biggest problem with semaphore guarded critical regions is that priority scheduling inter-
acts with semaphores in a very ugly way. Let’s first look at the simplest case.

A high priority task simply preempts a lower one, whether the lower priority task holds
a lock or not. If the time required for spin lock; critical; spin unlock is more than the time
required for semaphore wait, then a high priority task will be delayed less by a semaphore
protected critical section than a spin-lock protected region. But, this supposes that the critical
region is relatively expensive and that the high priority task does not need the semaphore. If
the critical section cost is small, then spin locks work better. One of the nice things about
spin lock protected critical sections is that they are totally modular: nobody waits more than
the computation time of the slowest critical section.

Rule 8 If you are tempted to put a critical section within semaphores in order to allow pre-
emption during the section, try shortening your critical section.

If semaphores used to guard critical regions are shared between threads that are not all
the same priority, the system will encounter priority inversion. Suppose that task High and
task Low share a resource guarded by a semaphore or some other blocking synchronization
primitive. The standard worst case is:

1. Low acquires the lock;

2. High preempts and there is a context switch;

3. High blocks on the lock, runs the scheduler;

4. Low restarts after a second context switch and then completes the protected operation,
releases the lock,and triggers scheduler.

5. High restarts after a third context switch and completes the protected operation and
releases the lock

To make this a little more concrete, if over-optimistic, suppose that context switches
take 200 cycles, successful lock operations take 10 cycles, blocking lock operations take 100
cycles and the scheduler takes 50 cycles. Then if the computation guarded by the semaphore
takes t cycles, High waits 100 + 50 + 200 + t + 10 + 100 + 200 = 660 + t cycles for Low to
complete. Note that if Low used a RTCore spin-lock, then the total wait time for High would
be t + 10 = 210 (in both cases I’m ignoring the cost of the first context switch to run High
since we have to pay it anyways.) The advantage of the semaphore guarded method is that

15

SuperHigh can pre-empt both High and Low as long as SuperHigh does not also need the same
semaphore.

The analysis above is optmistic for a couple of reasons, most notably the assumption
that Low will get to run uninterrupted while High waits. Many multi-tasking systems have
a wonderful scheduling property called “liveness”which guarantees that every task will get to
run. In traditional UNIX systems, the longer a process waits to run, the higher its priority,
and the longer a task uses the CPU, the lower its priority. One result is that a task that holds
a lock will eventually get to advance and release the lock. Most real-time systems are not
“live”. A low priority task may be delayed, indefinitely by higher priority tasks. If the low
priority task is indefinitely delayed while it holds a lock that a higher priority task is waiting
for, we have unbounded priority inversion.

It is widely, but incorrectly, believed the priority ceiling and priority inherit mutexes
solve priority inversion. The actual purpose of these methods is to solve only unbounded priority
inversion and they do that at a cost. Priority ceiling associates a mutex with a priority so
that if a lower priority thread locks the mutex, it gets the higher priority while it holds the
mutex, and if a higher priority thread tries to lock the mutex, there is a failure. The cost
is a priority switch on a mutex acquisition. This may or may not be a big deal, depending
on how the operating system is implemented — but think about what happens to a priority
ordered run-queue when a thread acquires a priority ceiling mutex. Priority inheritance is a
dynamic version of the algorithm that promotes a thread that holds a mutex to the highest
priority of any thread waiting for the mutex. See [6] for a detailed analysis of what is wrong
with priority inheritance, but note the intractability of the problem. In the example above,
the high priority thread is required to wait for the low priority thread, by design. Even if
the various priority juggling algorithms worked well (and they do not), they could not cure
the design error of making the high priority thread wait for the low priority thread that owns
the semaphore. And the complexity of these algorithms increases the cost of avoiding the
spin locks. Unfortunately, we can often create such situations unthinkingly by overuse of
mutex or semaphore guarded critical regions. In many cases, the purported gain of permitting
preemption during the critical section is not worth the cost of synchronization.

I wrote a completely unoptimized enqueue function, ran it through the gcc compiler with
optimization turned off and counted a total of under 20 instructions in the entire routine - the
code path is even shorter. Suppose we multiply by 5 to get 100 instruction cycles. You can
see that enabling preemption during execution of this operation gains us very little — and it
can make the worst case much worse.

4.3 Avoiding priority inversion

Rule 9 Semaphores guarding critical regions should never be shared by tasks of
different priorities. There is never a need to violate this rule.

Suppose we have a critical section that seems to contradict rule 9.

1. Make sure that there are no just-in-time solutions, the slow operations cannot be dele-
gated to the non-real-time side, and there are no lock-free solutions. If this fails, go to
the next step.

16

2. Apply rule 8 and make the critical section so fast that spin locks work better. All critical
sections that refer to the same shared data need to be optimized in this way in any event.

3. If we have concluded that there is an absolute requirement for a slow atomic operation
on the data structure, design the system to make sure only tasks with the equal priority
access this data structure. If we cannot do that, it means that we have designed a system
so that some task A is more important than some task B but B still has the ability to
block A. Try very hard to remove this contradiction. If this fails, go to the next step.

4. Essentially, priority ceiling is an indirect method of building a server. If you need a
server, build one directly don’t make an obscurely hidden one that can cause surprises
later. Threads should be cheap in the OS (they are in RTCore), make use of them.
Servers are easy - see the example below.

Suppose we have a data structure D that is accessed by methods m1, . . .mn (these
are all the operations on this data structure). After much analysis, we see that D must be
shared among tasks of unequal priorities, and that just-in-time and lock-free cannot be applied.
Furthermore at least one of the methods takes too much time to permit a spin-lock guard and
there is no way to shorten it. Just to make things interesting, say that there are many possible
tasks that need to access D and that we cannot use reader/writer locks or otherwise structure
access. There are several alternative methods here, but one useful one is to use RT-FIFOs
and semaphores to construct a server. If the RT-FIFOs turn out to be too slow, then we were
probably wrong about how computationally expensive the methods are, but we could replace
the fifos with one-way queues if needed. The server will serialize all operations on D. No other
task will directly operate on D, instead the tasks will make requests to the server. The method
is simple. Create a FIFO. Size the FIFO to be k ∗ r where k is the size of a request structure
and r is the max number of requests that can be outstanding. The request structure may look
like

struct myrequest{
sem_t *wakeme;
enum method_t method;
int priority;
int arg1,arg2,arg3;
}

A task makes a request by filling in a myrequest structure with a pointer to a semaphore
that is private to that task, a method identifier naming the operation to be executed, and some
arguments. The task then makes the request and waits.

r.wakeme = &mysem;
r.method = SortTheDatabase;
r.arg1 = 0;
r.arg2 = MAXROW;
write(req_fd,&r, sizeof(r));
sem_post(&server_wake);
sem_wait(&mysem);

17

The server looks something like the following.

while(1){
sem_wait(&server_wake);
while(read(req_fd,&req[next_free()],sizeof(struct myrequest)))

== sizeof(struct myrequest)
mark_used(next_free());

if(stuff_2_do()){
i = most_important();
do_request(i);
sem_post(req[i].wakeme);
mark_done(i);

}
}

The priority of the server should be set to depend on the importance of operations on
D. One guide will the highest priority thread to touch D. A more sophisticated server could
abort long running low priority requests when higher priority ones showed up.

A Glossary

Glossary Definition 1 Deadlock is the condition where some task waits for another task
to release a resource and the second task is waiting (maybe indirectly) for the first task
to release a resource: so there is no forward path. For example if task A has a code se-
quence locksem1; locksem2; work; releasesem2; releasesem1 and task B has a code sequence
locksem2; locksem1; work; releasesem1; releasesem2, then if A is locks 1 and then B locks
2, neither will be able to progress to release. Another classical deadlock case is cause by taking
a spin-lock without disabling interrupts. Suppose that task A sets spin-lock L and then is
interrupted by a service routine that spins on L - there is no way to advance.

To prevent deadlock, there are two answers. First, use atomic or safe operations whenever
possible instead of building your own synchronizing systems. The RTCore RT-FIFOs offer
a safe and efficient method of exchanging information between threads that has been well
debugged and validated by years of use. Second, KEEP IT SIMPLE. The times in which it is
a good idea to acquire multiple locks are exceptionally rare and it is almost always the case
that a design of that form is just plain wrong. Never acquire a lock in one function and release
it in a second — locks and unlock should be close together in the code text (unless the lock
is a signalling lock). One of my cautions about using mutexes anywhere is that it is easy to
create mutex chains without thinking about it. If function f gets mutex a and calls function g

which gets mutex b and we modify g to call h which also gets a, we have created a deadlock.
Some people advocate recursive mutexes as a solution — based on the theory that it is ok to
write software without understanding what components lock which mutexes.

Glossary Definition 2 Synchronization Even something as simple as x = x + 1 is a three
step operation on most processors: (1) fetch, (2) increment, and (3) store the result. On a
multiprocessor computer, as one processor goes through these three steps, it is possible that

18

another processor will read x or store a new value in x in parallel. For example, suppose that x

contains the number 100 and processor A and B both start to increment at the same time. If
A and B complete 1 and 2 at the same time, then both will store the value 101 to x in step 3 —
while the correct value should be 102. The same problem occurs in single processor computers
due to input/output operations and interrupt processing. Input/output devices capable of
direct memory access (DMA) can change memory in parallel with the processor. Interrupts
cause the processor to jump to an interrupt handler, which may call a scheduler. In such a
situation, task A may be interrupted, say, after step 1, and then if task B is run and modifies
x, when task A is resumed it will store the wrong value.

Task A fetch x store x
Task B fetch x add 1 store x

Glossary Definition 3 Concurrent is used to refer to either actual parallel computation or
pseudo parallel computation caused by interrupts and preemption (when the running task is
forced to stop to let a second task run). In either case, competing operations on the same data
can result in data corruption.

Synchronization operations act as gateways to ensure that only one task can use a shared
resource at one moment.

Glossary Definition 4 Real-time Definition of real-time software

Glossary Definition 5 Deadlocks A deadlock is when no task can progress because each is
waiting for another one to release some resource. For example, if we have 2 buffers and task
A and B both need to allocate 2 buffers, and each allocates 1 and then blocks waiting for the
other to release the other buffer. or live-lock4

Glossary Definition 6 Semaphores Semaphores are perfect for event driven programming
although they certainly were not designed with real-time in mind. In Dijkstra’s famous paper
on the THE operating system introduced semaphores [1], he notes specifically that the absence
of timing constraints on processes was a key design consideration. As Parnas notes, THE was
not a particularly fast system even in non-real-time terms [3].

Glossary Definition 7 Interrupt handler.An interrupt handler is a function that is called
in response to a hardware interrupt. For example, a data acquisition device may signal the
processor that it has collected a sample. When hard interrupts are enabled and such a signal
is asserted, the processor will save a small subset of processor state and jump to low level
operating system code that will, in turn, call any interrupt handlers that users have installed.
In RTCore, real-time interrupt handlers can be installed via the rtl request irq operation or
via the POSIX sigaction call. Interrupt handlers run effectively at the highest priority level,
pre-empting any running task but they run at the priority of the interrupted thread.

One of the key implementation differences between UNIX and VMS operating system was
that VMS ran interrupt service routines as processes, but UNIX ran interrupt service routines
in the the context of the running process. The rationale for the UNIX implementation is to
make interrupt service more efficient by eliminating one context switch and some scheduler

4When a task is ready to run but other tasks use up all of the processor time.

19

overhead. RTCore runs interrupt handlers in the context of the current thread for the same
reason. The trade-off for running interrupts in the context of the current task is that system
state is harder to understand. Until you get used to the idea, running an interrupt handler in
any random executing task is counter-intuitive. Remember that interrupt handlers run outside
of the normal priority scheme: handlers are always higher priority than the current thread.
To take advantage of the low call overhead, interrupt service routines should be small and fast
and should activate tasks for additional work if needed.

Glossary Definition 8 . According Glenn Reeves[4] the problem was buried inside the Vx-
Works I/O subsystem. A low priority task (the ASI/MET task) was connected to the high
priority bc dist task via a VxWorks IPC mechanism. The ASI/MET task made a select call
that, within VxWorks, invoked a semaphore protecting the file descriptors under the select.
One of these file descriptors was for the IPC pipe between bc dist and ASI/MET. Before the
semaphore could be released, the ASI/MET task was preempted by some medium priority tasks.
The next invocation of the higher priority bc dist task then stalled when it attempted to send
more data on the IPC pipe. Classical unbounded priority inversion.

From Reeves summary, it appears as if the ASI/MET task broke the conventions of the
system by making use of the pipe mechanism in place of the double-buffered shared memory
used for by all other tasks. So the ASI/MET task made use of VxWorks IPC, and VxWorks
IPC made use of a semaphore. This, in my humble opinion, amply illustrates the dangers of
mutexes, buried in lower level code and producing a critical path as a side effect. Note that
double-buffered shared memory, or a lock-free queue, or even a queue with atomic enq and
deq operations would have avoided this error. To “fix” the error, NASA programmers enabled
VxWorks priority inheritance for the select code. The fix worked for two reasons: the system
generally avoided semaphores and the engineers had good luck.

Black boxes that contain mutexes are dangerous.

Glossary Definition 9 Cache ping-pong .
In a shared memory multiprocessor test and set is not necessarily a cheap operation.

I mentioned cache ping-pong above. When a processor does test and set operation on some
memory location, it must instruct all other processors to invalidate their cached copies of that
memory. Now suppose that processor 1 test and sets location a, processor 2 then tests and
sets a and so on. Each test and set will include a global invalidate and a cache miss. Cache
ping-pong can also be caused by shared locations that are on the same cache line. For example,
suppose the structure

struct { unsigned int flags; int count; }G;

was used so that G.count was read all over the place and only changed by the owner - selected by
using a test and set operation that ran often. In that case a processor that referenced G.count
would almost certainly have a cache miss, since the test and set would cause all processors to
discard the entire cache line containing G.flags.

Glossary Definition 10 Missed wakeups. Suppose that task A executes the code if(x ==

0)wait on(&q) and after the comparison, but before the mutex runs, an interrupt handler
executes the code x = 1; wake(q). The handler will find nobody to wake, but task A will

20

resume and then wait, maybe forever because it missed the wakeup. Semaphores and mutexes
are designed to minimize this problem.

Glossary Definition 11 Atomic primitives. Some processors have the ability to execute
multi-step operations atomically by locking out interrupts and other processors. For example,
in the x86 processors lock inc atomically increments a memory location, using a so-called read-
modify-write cycle to prevent any other processor from modifying the location. The x86 also
has a very useful bit test and set instruction that atomically tests a bit and sets the bit to 1.

To avoid missed wakeups, there are several good answers. The standard POSIX threads
answer is the condition wait and that’s often a good method. POSIX condition wait atomically
releases a mutex and puts a thread on the condition wait queue. A wakeup of a thread on the
condition wait queue atomically re-acquires the mutex and wakes the thread. This method is
excellent for code of the form

lock mutex
while condition is false

conditional wait
unlock mutex

It’s also possible to use timeouts — and with care this can be the best solution. The
most useful cases are where the thread that can miss the wakeups is not critical. Here we
can reduce synchronization overhead by simply ignoring the missed wakeup and arranging to
timeout.

while condition is false and time delay not expired
conditional wait

Glossary Definition 12 Threads. The POSIX standard defines a thread as follows.

A single flow of control within a process. Each thread has its own thread ID,
scheduling priority and policy, errno value, thread-specific key/value bindings, and
the required system resources to support a flow of control.

References

[1] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system. Comm. ACM,
11(5):341–346, 1968.

[2] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-safe
locking on multiprogrammed shared — memory multiprocessors. Journal of Parallel and
Distributed Computing, 51(1):1–26, 1998.

[3] David Lorge Parnas. Why software jewels are rare. IEEE Computer, 29(2):57–60, 1996.

[4] Glenn E. Reeves. What really happened on mars. In RISKS Forum (19.54), risks@sri.com,
jan 1998.

21

[5] Uresh Vahalia. Unix Internals: The new frontiers. Prentice-Hall, 1996.

[6] Victor Yodaiken. Priority inheritance is a non-solution to the wrong problem. Technical
report, FSMLabs, 2002.

22

	Real-time software is like an automobile factory
	Basics
	Goals
	Priorities
	Too many levels
	Too much pre-emption
	Priority Inversion

	Just-in-time scheduling
	Scheduling just-in-time
	Asymmetric just-in-time and non-blocking I/O
	Event driven scheduling
	Interrupt handlers
	Interrupts and semaphores

	Lock-free structures

	Unavoidable synchronization
	Atomic code block
	Guarded critical sections
	Priority and semaphores

	Avoiding priority inversion

	Glossary

