
1. Introduction 
In this article we want to expose the results of a benchmark concerning real time performances of three 
RTOS: VRTXsa, RTAI and RTLinux. 
The goal of the project was to evaluate the possibility to migrate the operating system of an embedded 
telecommunication SBC from VRTXsa to a linux based one. 
This project has been realized as thesis work for a famous telecommunication company and has evolved 
under the supervision of the Rome’s University “La Sapienza”. 

2. Tests 
We executed hardware tests and software tests with different modalities to evaluate all parameters 
described  above. This is the platform we used to execute these tests: 
Motorola Freescale PQ2FADS-VR 
CPU: PowerPc 8275 @ 200 Mhz - bus 66 Mhz.  
RAM: 32 Mb  
FLASH: 8   Mb. 
Tests have been executed without load and with two different load solutions in order to evaluate differences 
between the executions in relationship with the changing load. 

2.1 Hardware Tests 
In hardware tests we use oscilloscope to measure hardware latency time: time which elapses between the 
generation of an interrupt and the moment its handler starts. 

2.1.1 Test modality 
Hardware test have been done using oscilloscope. We made a little hardware modification: we built a bridge 
between LD13 led and C11 pin (of system expansion connector). C11 pin is the interrupt request pin and is 
connected with irq 6 signal (DP6/CSE0/IRQ6#). Connection created between LD13 led and C11 pin is 
fundamental to reply infinitely the interrupt generation and its handling. Test program uses LD13 led pin  to 
generate tension levels of +5V/0V. Installing a new Interrupt Service Routine on interrupt 6 is possible to 
handle this interrupt. Turning on LD13 led we’ll get a transition High � Low of the tension level. Such event 
generate interrupt 6 and handler is started. The handler we defined will turn off, and on afterwards, LD13 led 
generating in this way a new interrupt and so on. In this way an infinite sequence of interrupt is generated. 
Applying the oscilloscope probe on the connection it’s possible to analyse the wave form and to estimate 
with a good precision the time which elapses between the event and its handler starting. This time includes 
hardware latency and interrupt latency. 
 
Wave form on the monitor will be similar to the following one: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2.1.2 RTAI Measurements 

Figure 1 – RTAI: Measure of maximum IRQ latency 

 



Figure 2 - RTAI: Measure of minimum IRQ latency 

 



 
Figure 3 - RTAI: Measure of maximum IRQ variation 

 



2.1.3 RTLinux Measurements 

Figure 4 - RTLinux: Measure of maximum IRQ latency 

 



 
Figure 5 - RTLinux: Measure of minimum IRQ latency 

 



Figure 6 - RTLinux: Measure of maximum IRQ variation 



2.1.4 VRTXsa Measurements 

Figure 7 - VRTXsa: Measure of maximum IRQ latency 



Figure 8 - VRTXsa: Measure of minimum IRQ 
latency



Figure 9 - VRTXsa: Measure of maximum IRQ variation 

2.1.5 Results analysis 
We compiled the following graph to understand and analyse the data collected: 
 

680

530

1110

350

170

600

330 360

510

0

200

400

600

800

1000

1200

la
te

nz
e 

in
 n

an
os

ec
on

di

Confronto latenza minima Massima e varianza IRQ

RTAI RTLinux VRTXsa
 

Maximum Latency                    minimum Latency                       maximum Variation 



In a RTOS Variation should be minimized. The difference between the quickest execution and the slowest 
one has to tend to zero to have a predictable system. 
RTAI is the best system with a value of 330 nanoseconds. RTLinux is 30 nanoseconds worst while VRTXsa 
reports even worst values overstepping 500 nanoseconds. A so high value in variation is given by some 
executions which raise the maximum latency value over one microsecond. The quickest executions instead 
report a time around the 600 nanoseconds.  
Considering the efficiency VRTXsa surely is the slowest system with a maximum latency higher than a 
microsecond. RTLinux is the quickest system with a minimum latency lower than 200 nanoseconds. 
RTAI reaches intermediate values: it has a slightly more uniform values’ set and is able to get the best 
variation value, 30 nanoseconds lower than RTLinux, being so the most predictable system. 



2.2 Software Tests 
 
In software tests we measure ipc times using fifo queues and mailboxes. 
We’re able to measure latency of fifo and mailboxes calls, “intratask” ipc times, and “intertask” ipc times plus 
context switching. We’re able to obtain context switch time too, confronting the previous results. 
 

2.2.1 Efficiency 
These tests measure the time spent by the operating system to execute some ipc calls. 
 
LatencyFIFO is a test which measures latency times of a call which writes 4 bytes of data on a FIFO queue 

Confronti latenza FIFO NS

8.383

6.495

53.647

5.765

51.434

664.337

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

la
te

nz
a 

FI
FO

RTAI RTLinux VRTXsa
 

 



Confronti latenza FIFO US

8.446

6.694

1.437.217 263.946

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

la
te

nz
a 

FI
FO

RTAI RTLinux VRTXsa

 

Confronti latenza FIFO KS

8.507 9.235 8.992 8.992 9.052

3.731.2951.439.693

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

la
te

nz
a 

FI
FO

RTAI RTLinux VRTXsa

 
VRTXsa is the slowest system reporting times near 5k nanoseconds. RTAI and RTLinux are much quicker: 
about 1k nanoseconds for RTAI and about 700 for RTLinux. 
These times really are very good and very hard to maintain stable especially under stress, in rare occasions 
in fact RTAI graph shows some peaks around 9k nanoseconds. VRTXsa graphs don’t change very much: 
some peaks are present in the executions without stress, and these peaks increase in the executions under 
stress. RTLinux isn’t affected by the stress increment and it would have the lowest variation if we don’t 
consider a peak around 53k nanoseconds. This peak is a unique event and may be ignored as an anomaly. 
 
Fifo.c evaluates the time that a task spends to write and read a 4 bytes data block in a fifo queue. 



Confronti efficienza FIFO NS - exec. 3

15.877

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

la
te

nz
a 

FI
FO

VRTXsa RTLinux RTAI
 

 
 

Confronti efficienza FIFO US - exec. 2

59.928

15.292

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

la
te

nz
a 

FI
FO

VRTXsa RTLinux RTAI
 



 

Confronti efficienza FIFO KS - exec. 2

12.018
59.71115.354

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

la
te

nz
a 

FI
FO

VRTXsa RTLinux RTAI

 
RTAI reports times about 2k nanoseconds lower than RTLinux which has however the less perturbed graph 
and, consequently, a lower variation than RTAI. The best system, considering the graph perturbation, is 
VRTXsa, but it’s much slower than the other systems. 
 
FifoCS.c runs two concurrent tasks synchronized on a FIFO queue used to exchange messages. The time 
measured is the sum of writing and reading time from fifo queue, synchronization time and context switch 
time. 
Message is a struct of 16 bytes. VRTsa in this case moves only the address pointing to the struct, so only 4 
bytes instead of 16. We have to consider this advantage while evaluating the following graphs. 

Confronti IPC FIFO NS - exec. 3

116.783

157.229

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

65.000

70.000

te
m

po
 IP

C
 F

IF
O

VRTXsa RTLinux RTAI
 

 



 

Confronti IPC FIFO US - exec. 2158.765
2.820.163

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

65.000

70.000

te
m

po
 IP

C
 F

IF
O

VRTXsa RTLinux RTAI

 
 
 

Confronti IPC FIFO KS - exec. 1
2.379.253

1.486.120

158.982

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

65.000

70.000

te
m

po
 IP

C
 F

IF
O

VRTXsa RTLinux RTAI
 

VRTXsa is still the slowest system but with less perturbed graph. It seem it isn’t affected by the stress 
increment: it shows peaks in all three executions although with different values. 
Linux systems are more similar considering both variation and efficiency. Also in this case efficiency is 
constant if stress increases. 
 
mbox.c runs two distinct tests: the first one measures the latency of a call writing a 16 bytes data block to a 
mailbox. 



Confronti latenza mailboxes NS - exec. 1

17.442

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

6.500

7.000

la
te

nz
a 

m
ai

lb
ox

es

VRTXsa RTLinux RTAI

 
 

Confronti latenza mailboxes US - exec. 217.564

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

6.500

7.000

la
te

nz
a 

m
ai

lb
ox

es

VRTXsa RTLinux RTAI
 

 



Confronti latenza mailboxes KS - exec. 3
911.620

12.71317.683

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

6.500

7.000

la
te

nz
a 

m
ai

lb
ox

es

VRTXsa RTLinux RTAI

 
 
RTLinux seems to be the quickest system and VRTXsa the slowest one. 
RTAI is in the middle. RTAI’s graph seems to be the less perturbed followed by RTLinux  and VRTXsa which 
report very high peaks. 
RTAI seems to be much slower with stress in kernel space: it has a more perturbed graph. RTLinux instead 
is the system which isn’t affected by the stress increment. Efficiency is constant for all the three systems but 
VRTXsa variation increases very much as RTAI variation increases a little. 
 
The second test is a mailboxes ipc test: two concurrent tasks exchange a message using a mailbox. 
In this case time is the sum of writing and reading from mailbox, synchronization time and context switch 
time. Message is a struct of a 16 bytes data block. VRTXsa moves only the addresses of this messages, so 
only 4 bytes instead of 16. We have to consider this advantage while evaluating the following graphs. 



Confronti IPC mailboxes NS - exec. 3

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

te
m

po
 IP

C
 m

ai
lb

ox
es

VRTXsa RTLinux RTAI

 
 
 

Confronti IPC mailboxes US - exec. 2

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

te
m

po
 IP

C
 m

ai
lb

ox
es

VRTXsa RTLinux RTAI

 
 
 
 
 
 
 



Confronti IPC mailboxes KS - exec. 2

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

te
m

po
 IP

C
 m

ai
lb

ox
es

VRTXsa RTLinux RTAI

 
 
RTLinux is the quickest system in this case too and isn’t affected by the stress increment considering both 
variarion and efficiency. RTAI shows some peaks and a more perturbed graph if stress is increased. 
VRTXsa is the slowest system but has the less perturbed graph. It reports some peak which cause a high 
variation value. 
But we have to analyse better VRTXsa’s behaviour. In the executions under stress a big number of iterations 
reported values of about 10 milliseconds. In some cases it didn’t happened and in rare cases the whole 
execution of the test reported these values. 
In some cases the concurrent VRTXsa tasks are synchronized in a bad way and a whole system tick (just 10 
milliseconds) elapses between the composition of the message and its receiving. 
This execution schema may explain better the idea: 
 



DIAGRAMMI DI FLUSSO DI ESECUZIONE           caso 1 
 
OS:  VRTXsa      sorgente:  mbox.c      tipo di carico: assente 

Il test calcola la differenza di tempo (in ns) che intercorre tra l’istante in cui il server crea il messaggio e l’istante in cui il 
client lo riceve. 
 
Un messaggio inviato ad una mailbox con sc_post è immediatamente allocato ad un eventuale task che è in attesa sulla 
mailbox. Il messaggio non è salvato nella mailbox in questo caso. Questo comportamento di VRTXsa fa in modo che al 
tempo t3 il client abbia in realtà già ricevuto il messaggio che stava aspettando. 
Dunque si avrà che: 
 

Tempo IPC:   (t3 - t1)   =    (δ1 + δ2)   =   ca. 45000 ns 

[0] server 

[1] client 

slice slice 

msg 

t1 

pend 

t3 t2 

post 
delay 

get 

�����������	�
�����	�			�			���� �����������	�
�����	�			�			����

δ� δ
 

������������������������

 
 

DIAGRAMMI DI FLUSSO DI ESECUZIONE           caso 2 
 
OS:  VRTXsa      sorgente:  mbox.c      tipo di carico: assente 

Il test calcola la differenza di tempo (in ns) che intercorre tra l’istante in cui il server crea il messaggio e l’istante in cui il 
client lo riceve. 
 
 
 
 
Dunque si avrà che: 
 

Tempo IPC:   (t3 - t1)   =    (δ1 + δ2)   =   ca. 45000 ns 

[0] server 

[1] client 

slice 

t1 

get 

t3 t2 

post 
delay 

pend 

�����������	�
�����	�			�			����

δ� δ
 

������������������������ msg 

 
Such schemas show the normal synchronization possible between client task and server task in an 
execution without stress. In both cases at instant t1 message is composed by the server and at instant t3 
message is read by the client. 



In a stressed execution the scheduler has to manage three tasks. 
It’s important to remember that these tasks are scheduled with a round robin time slice policy with a static fifo 
priority. Time slice can be set only to an integer multiple of the system tick, so minimum value is just one 
system tick = 10 milliseconds. 
Stress task is the first task to be executed. When its slice is over scheduler will bring it to ready state and will 
run instead the server task. It may happens that its slice ends after server composed the message and just 
before it writes it on the mailbox, so message contains value t1. 
Now scheduler will run client task which will execute immediately an sc_pend() call on mailbox. This call is 
blocking, so rescheduling procedure is started and scheduler will run the stress task according to fifo policy. 
Stress task will run for a time slice. After this period the server task will run again and it will write the 
message on the mailbox and then will wait on the synchronization semaphore. 
Since client task was already waiting for the message, VRTXsa will move the message right from the server 
to the client. 
So the elapsed time now will be the time between instant t4 and t1 and will comprehend a whole time slice: 
about 10 milliseconds.  
 
The following schema tries to show what just described: 
 
 

DIAGRAMMI DI FLUSSO DI ESECUZIONE  
 
OS:  VRTXsa      sorgente:  mbox.c      tipo di carico: kernel mode 

Il test calcola la differenza di tempo (in ns) che intercorre tra l’istante in cui il server crea il messaggio e l’istante in cui il 
client lo riceve. 
 
Un messaggio inviato ad una mailbox con sc_post è immediatamente allocato ad un eventuale task che è in attesa sulla 
mailbox. Il messaggio non è salvato nella mailbox in questo caso. Questo comportamento di VRTXsa fa in modo che al 
tempo t4 il client abbia in realtà già ricevuto il messaggio che stava aspettando. 
Dunque si avrà che: 
 

Tempo IPC:   (t4 - t1)   =    (1 slice + δ1 + δ2)   =   ca. 10000000 ns 

[0] stress 

[1] server 

[2] client 

slice slice slice 

msg 

t1 

pend 

t3 t2 

post 
delay 

t4 

get 

�����������	�
�����	�			�			���� �����������	�
�����	�			�			���� �����������	�
�����	�			�			����

δ� δ
 

������������������������

������������������������

������������������������

 



1.0
36

79
5

6.1
31

3.6
49 5.8

12
9.9

51
15

.34
3

8.9
44

49
.67

6

2.7
34

96
6

6.6
03

13
.88

2

8.9
67

46
.92

9

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Confronti medie senza stress

RTAI RTLinux VRTXsa

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

 
 

1.0
39

68
3

7.9
25

3.8
02 5.8

25
9.8

64
15

.10
3

9.0
01

51
.82

7

2.7
27

1.1
79

7.9
23

13
.71

6

9.0
01

1.0
21

.15
7

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Confronti medie con stress in user space

RTAI RTLinux VRTXsa

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

 



1.1
04

69
6

15
.04

5

4.5
85 6.2

04
9.7

80
16

.02
3

9.9
13

60
.87

1

2.8
52

1.0
47

8.4
26

13
.25

8

9.9
13

41
2.2

22

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Confronti medie con stress in kernel space

RTAI RTLinux VRTXsa

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

 
We realized these graph to confront all the average values reported by every operating system in different 
tests. It’s evident the difference between VRTXsa, generally the slowest system, and linux based systems. 
RTLinux seems to be generally the quickest system. 
 
The same values have been posed in relationship with stress to see immediately if there is influence of 
stress on the performances of a system. What is clear is that RTAI and RTLinux aren’t affected by the stress 
increment, while VRTXsa is affected in an evident way and proportionally to the kind of stress, especially in 
ipc tests. 
 



1.0
36

1.0
39

1.1
04 3.6

49
3.8

02
4.5

85

15
.34

3

15
.10

3
16

.02
3

2.7
34

2.7
27

2.8
52

13
.88

2

13
.71

6

13
.25

8

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

Confronti medie RTAI al variare dello stress

nessun carico stress in User Space stress in Kernel Space

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

79
5

68
3

69
6

5.8
12

5.8
25

6.2
04 8.9

44
9.0

01 9.9
13

96
6

1.1
79

1.0
47

8.9
67

9.0
01 9.9

13

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

Confronti medie RTLinux al variare dello stress

nessun carico stress in User Space stress in Kernel Space

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

 
 
 



6.1
31 7.9

25
15

.04
5

9.9
51

9.8
64

9.7
80

49
.67

6
51

.82
7

60
.87

1

6.6
03 7.9

23
8.4

26

46
.92

9

1.0
21

.15
7

41
2.2

22

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

Confronti medie VRTXsa al variare dello stress

nessun carico stress in User Space stress in Kernel Space

latenza fifo         efficienza fifo           IPC fifo          latenza mailboxes    IPC mailboxes

 



 

2.2.2 Predictability 
We needed to create an index in order to 
measure the predictability of the system. 
We considered the average value of the 
executions of every test and increased it of a 
value called tolerance threshold. SPI (System’s 
Predictability Index) is the percentage of 
executions which are below the threshold. 
 
 
general IPS value is the average of all IPS of 
every test with every stress condition. We used 
this data to paint the General IPS comparison 
graph. Following graphs are about the average 
IPS in relation with stress condition and about 
IPS of every single test for every operating 
system. 
 

93
,11

93
,05

90
,85 91

,79
91

,99

91
,22 98

,75
97

,02
98

,25

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Confronto IPS medio al variare dello stress

RTAI NS RTAI US RTAI KS
RTLinux NS RTLinux US RTLinux KS
VRTXsa NS VRTXsa US VRTXsa KS

 
This graph confirm the higher predictability of VRTXsa. This parameter moreover is constant if stress is 
increased. RTAI seems to be slightly more predictable than RTLinux. Both linux systems have a low 
decrease of predictability if stress is increased. 
 

92,34 91,67 98,01

0,00

20,00

40,00

60,00

80,00

100,00

Confronto IPS generale

RTAI RTLinux VRTXsa



87,4
92,8 92,0

99,3
94,0

99,6

90,0
85,3

98,7

85,3

99,6 99,5 98,2 97,0
99,5

0

10

20

30

40

50

60

70

80

90

100

Confronto IPS medio al variare del test  -  Senza Stress

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 

87,4
92,3 91,7

99,5
94,3

99,8

90,8

85,3

98,7

85,3

99,6 99,2 98,7 97,5

90,2

0

10

20

30

40

50

60

70

80

90

100

Confronto IPS medio al variare del test  -  Stress in User Space

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 

RTAI                                         RTLinux                                      VRTXsa 

RTAI                                         RTLinux                                      VRTXsa 



90,4 92,0

84,7

97,5

89,7

99,6

92,0

82,8

98,8

82,8

99,6 99,3 98,2 98,2 96,0

0

10

20

30

40

50

60

70

80

90

100

Confronto IPS medio al variare del test  -  Stress in kernel Space

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 
With these graphs, one for every stress condition, we’re able to determine for every test which is the most 
predictable system. They confirm that VRTXsa is the most predictable one and that it is the less affected by 
stress increasing although there is a big IPC decrease in mailbox test if stress is increased. 
Also linux systems generally are not very affected by stress increment, but they report a bigger IPS decrease 
in both ipc tests especially increasing the stress from user space to kernel space. 

RTAI                                         RTLinux                                      VRTXsa 



2.2.3 Variation 
A very important parameter is the variation 
between the slowest and quickest execution times. 
So, for every test, we considered the extremis of 
the interval of returned values. 
General Variation is the average of all variations of 
every test under every stress condition. We used 
this data to realize the graph of general variation 
comparison. 
Following graphs are about average variation in 
function of stress conditions and about variation of 
every test for every operating system. 
 
 
 
It’s possible to see, considering even only the general variation comparison graph, how worst is VRTXsa. 
This is because this operating system, although generally has a less perturbed graph, reports some very 
high peaks which increment the variation. 

18
39

2

18
28

7

16
95

4

19
04

6

16
33

5

12
84

5 42
23

66

27
51

43
7

33
00

46
7

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Confronto Varianza media al variare dello stress

RTAI NS RTAI US RTAI KS
RTLinux NS RTLinux US RTLinux KS
VRTXsa NS VRTXsa US VRTXsa KS

 
In this graph we related average variation with stress increment. It’s clear that Linux systems aren’t affected 
by stress increment instead of VRTXsa. 
It seems that linux based systems report a lower variation if stress is incremented. Actually what happens is 
that a quick system without stress is able to get very quick executions and some slower executions. If stress 
is increased a RTOS won’t overstep the limit of the slowest executions: the result is that fastest executions 
will be slowed down while  slowest executions will generally be constant, and the variation between slowest 
and quickest execution will be lower. The following schema will explain better the idea: 
 

KS NS 

 
 

Figure 10 – Variation difference between different stress loaded test 

17
87

8

16
07

6 21
58

09
0

0

500000

1000000

1500000

2000000

2500000

Confronto Varianza generale

RTAI RTLinux VRTXsa



Generally VRTXsa has less perturbed graphs, and tends to a lower variation. But it reports some peaks in 
some executions. Since these peaks are proportional to the stress increment the result is that variation grew 
up very quickly. 
 

7.
45

4

13
.5

96

29
.1

32

14
.9

10

26
.8

69

53
.0

31

7.
07

0

15
.0

71

4.
46

5

15
.5

96

65
9.

71
0

1.
98

8

78
5.

98
2

17
1.

37
3

49
2.

77
7

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

Confronto Varianza media al variare del test  -  Senza Stress

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 

RTAI                                         RTLinux                                      VRTXsa 



7.
45

5

13
.2

73

28
.7

67

15
.1

52

26
.7

88

6.
12

1

6.
30

3

14
.6

47

39
.9

60

14
.6

47

1.
43

2.
73

5

34
.1

87

1.
32

7.
72

3

52
0.

05
4

10
.4

42
.4

88

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

Confronto Varianza media al variare del test  -  Stress in User Space

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 

8.
24

3

13
.8

79

25
.0

51

14
.8

49

22
.7

47

5.
33

3

7.
01

0

20
.2

83

11
.3

14

20
.2

83

3.
72

6.
66

8

18
.2

96

1.
73

6.
00

0

53
7.

50
6

10
.4

83
.8

67

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

Confronto Varianza media al variare del test  -  Stress in kernel Space

Latenza FIFO Efficienza FIFO IPC FIFO Latenza Mailboxes IPC Mailboxes

 
With these graphs is possible to evaluate variation of every operating system for every test. 

RTAI                                         RTLinux                                      VRTXsa 

RTAI                                         RTLinux                                      VRTXsa 



It is also possible to verify variation changing for every single test in relation with stress increment. 
These graphs confirm that VRTXsa is the system with the highest variation and the most affected by stress 
increment. We have also to note that the first graph and the following two have a different scale. 
Linux systems generally are not  affected by stress increment but show a more sensible variation increment. 
 



2.2.4 Context Switch Time 
Context Switch Time (CST) is a value that measures time spent by an operating system to complete the 
transition of the currently executing task from executing state to ready state and inverse transition of another 
task ready to be executed. 
This operation should take a constant time on a RTOS. 
Is value has not been directly measured, but is derived from reprocessing of data already collected using fifo 
and fifoCS tests. 
If we detract values obtained from fifo.c from measurement returned from fifoCS.c we’ll get an indicative 
measurement of CST. 

11694 11301 11438

3132 3176 3709

39725
41963

51091

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Confronto CST medio al variare dello stress

RTAI NS RTAI US RTAI KS
RTLinux NS RTLinux US RTLinux KS
VRTXsa NS VRTXsa US VRTXsa KS

 
In this graph is clear that CST times are nearly constant in linux systems but they increase clearly in VRTXsa 
when stress is increased. 
The next graph instead reports in percentage the impact of CST and of overhead IPC intratask on the value 
returned from fifoCS.c. 
We don’t have to read from the following graph that RTAI is a system that takes less time to execute the 
context switch if under stress. We can understand instead that IPC intratask overhead graves proportionally 
more on the total time than the CST in the case of kernel space stress. 
It’s mode interesting to consider that, proportionally on the time reported by fifoCS.c, VRTXsa takes more 
time to execute context switch than linux based systems. Actually RTLinux seems to be the system which in 
proportion takes less time to switch the context: the time spent by RTLinux to switch from a task to another 
one is about the 35% of the time reported by fifoCS.c without differences depending from stress. The 65% of 
the time is spent to execute the IPC intratask. This data confirms what already seen in the efficiency 
comparison graphs where RTLinux was slower than RTAI undepending by the stress. 
VRTXsa takes the 80% of the time to switch the context and finally RTAI takes about the 75% of time 
reported by fifoCS.c. 
Differences related to stress increments are unimportant except for the case of RTAI in kernel space: in this 
test IPC intratask overhead graves more. 
 

RTAI                                         RTLinux                                  VRTXsa 



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Confronto rapporto CST/IPC al variare dello stress

CST RTAI NS CST RTAI US CST RTAI KS
CST RTlinux NS CST RTLinux US CST RTLinux KS
CST VRTXsa NS CST VRTXsa US CST VRTXsa KS

RTAI                                         RTLinux                                         VRTXsa 



2.3 Final Comparisons 
Efficiency, Variation and Predictability are the three main parameters we detected to  evaluate performances 
of a RTOS. Therefore we prepared some summary graphs just to put together these values. 
Variation is on x axis, efficiency on y axis (as execution average time). Each operating system is represented 
by a sphere which radius is its predictability. 
The optimum operating system is then the one that minimizes variation and execution times and maximizes 
the predictability. It will be represented by a sphere of maximum radius (100) situated just in the origin of 
axes. 
 

Confronto di Sintesi per latenza FIFO senza Stress

-2.000

3.000

8.000

13.000

18.000

-400.000 100.000 600.000 1.100.000 1.600.000 2.100.000 2.600.000 3.100.000 3.600.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 

Confronto di Sintesi per latenza FIFO con stress in User Space

-2.000

3.000

8.000

13.000

18.000

-400.000 100.000 600.000 1.100.000 1.600.000 2.100.000 2.600.000 3.100.000 3.600.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 
 



Confronto di Sintesi per latenza FIFO con stress in Kernel Space

-2.000

3.000

8.000

13.000

18.000

-400.000 600.000 1.600.000 2.600.000 3.600.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 
It’s evident in these first three graphs the VRTXsa worsening if stress is increased, while performances of the 
other systems are nearly constant. 
About predictability all the systems are comparable. 
 

Confronto di Sintesi per efficienza FIFO   -   senza Stress

0

2.000

4.000

6.000

8.000

10.000

12.000

-1.000 4.000 9.000 14.000 19.000 24.000 29.000 34.000 39.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 
 



Confronto di Sintesi per efficienza FIFO con stress in User Space

0

2.000

4.000

6.000

8.000

10.000

12.000

-1.000 4.000 9.000 14.000 19.000 24.000 29.000 34.000 39.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 
 

Confronto di Sintesi per efficienza FIFO con stress in Kernel Space

0

2.000

4.000

6.000

8.000

10.000

12.000

-1.000 4.000 9.000 14.000 19.000 24.000 29.000 34.000 39.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 
Also in this case linux based system report constant variation, efficiency and predictability. 
RTLinux is the best system about variation. RTAI instead is the best about efficiency. 
All the systems are comparable about predictability. Again VRTXsa is very far from the origin.  



Confronto di Sintesi per IPC con FIFO   -   senza Stress

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

-200.000 300.000 800.000 1.300.000 1.800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 

Confronto di Sintesi per IPC con FIFO con stress in User Space

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

-200.000 300.000 800.000 1.300.000 1.800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 



Confronto di Sintesi per IPC con FIFO con stress in Kernel Space

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

-200.000 300.000 800.000 1.300.000 1.800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
First of all we have to consider the different scale of these three graphs. VRTXsa is very far from the origin 
and it still moves away increasing the stress. In these, and the following graphs linux systems are always 
situated very close to the origin instead of VRTXsa. About predictability all systems are comparable.  
 

Confronto di Sintesi per latenza mailboxes   -   senza Stress

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

-100.000 0 100.000 200.000 300.000 400.000 500.000 600.000 700.000 800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 
 



Confronto di Sintesi per latenza mailboxes con stress in User Space

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

-100.000 0 100.000 200.000 300.000 400.000 500.000 600.000 700.000 800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 

Confronto di Sintesi per latenza mailboxes con stress in Kernel Space

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

-100.000 0 100.000 200.000 300.000 400.000 500.000 600.000 700.000 800.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 
About efficiency and predictability all the systems are comparable. VRTXsa is a little bit slower but the main 
fact is that it reports a variation worsening if stress is increased. 
Linux systems’ spheres are very close to the origin. 
 
 



Confronto di Sintesi per IPC con mailboxes   -   senza Stress

-200.000

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

-2.000.000 0 2.000.000 4.000.000 6.000.000 8.000.000 10.000.000 12.000.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 

Confronto di Sintesi per IPC con mailboxes con stress in User Space

-200.000

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

-2.000.000 0 2.000.000 4.000.000 6.000.000 8.000.000 10.000.000 12.000.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa
 

 



Confronto di Sintesi per IPC con mailboxes con stress in Kernel Space

-200.000

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

-2.000.000 0 2.000.000 4.000.000 6.000.000 8.000.000 10.000.000 12.000.000

Varianza

M
ed

ia
 te

m
pi

RTAI RTLinux VRTXsa

 
 
The scale of these graphs may let think that the systems are comparable at least without stress. 
Instead about variation and efficiency VRTXsa has worst performances. RTLinux and RTAI are aligned 
about variation and efficiency but RTAI is better about predictability. 
Once again is evident the VRTXsa performance worsening related to the stress increasing. 

3. Conclusions 
It seems generally clear that linux systems are more performing considering efficiency while VRTXsa has the 
less perturbed graph. 
It seem evident that linux systems are the best choice considering the following facts: 

- maximum efficiency values are always lower than VRTXsa minimum values 
- linux based systems peaks are more frequent but more modest than VRTXsa ones 
- VRTXsa in ipc tests has the advantage of managing a quarter the data linux manages (4 bytes 

against 16) 
Considering all these facts and what analysed previously, it seems that linux based systems are the best 
solution and that such systems can be a valid and more efficient alternative to VRTXsa. Therefore would be 
surely advisable a migration from VRTXsa to a linux based real time system. 


