
IDE Driver and RTLFS file system for RTLinux

Alejandro Lucero, Vicente Esteve, Ismael Ripoll and Alfons Crespo
Universidad Politecnica de Valencia
Camino de Vera s/n, Valencia, Spain

{alucero, vesteve, iripoll, acrespo}@disca.upv.es

Abstract

RTLinux does not support direct access to any kind of permanent massive storage system, and in
particular IDE hard disks. When a RTLinux thread has to store data on the hard disk, it has to use the
Linux services. The usual way of doing the transfer is by means of RTFifos: a rtl-task sends the data to
Linux through an RTfifo, and then, a Linux process writes this data on the hard disk.

This indirect method is slow, unpredictable and inneficient, since it is executed by Linux (background).
Moreover, in some applications, like continuous media applications, it is required a certain degree of
predictability. Therefore, for multimedia applications is more convenient that rtl-tasks have access to the
hard drive, allowing higher determinism. To achieve this goal is necessary: 1) To port the IDE driver to
RTLinux, 2) implement a real-time filesystem, and 3) implement a real-time disk scheduler.

The goal is to provide with a full ”block layer” to RTLinux making the design scalable to allow future
storage devices drivers implementations and offering a known interface to work with.

1 Introduction

FIGURE 1: RTLinux storage path

RTLinux[Yodaiken] is a real time microkernel
which implements the basic structure that allows
RT tasks to execute with temporal requirements.
RTLinux strength is its minimal size together with
the Linux combination, since its philosophy is to
leave to Linux every task without temporal require-
ments, as graphical interface, database accesses, re-
mote comunications, data logging, etc. However, in
some enviroments this architecture is not useful, for
example when data logging must guarantee to store
all the data produced by RT tasks. If we assume
the storage system achieves the performance needed,
data logging should be efficient, but the problem

here is storage system is a resource shared between
RTLinux and Linux. Although the theoretical disk
performance would allow data logging to work, Linux
interference avoids the determinsm needed.

In the last years a lot of research about real time
in storage systems has been done. In Shriver[Shriver]
are presented the most important advances, giving
information about the current problems and how
can be resolved following analytical methods to un-
derstand storage systems behaviour. However, this
work has a more modest aim: to advance forward
the determinsm when RT tasks use the IDE disk.
Full determinsm is a goal hard(impossible?) to get,
at least with systems using IDE controlllers into
PCI buses together with ethernet cards, VGA and
USB controllers, etc. Indeed, magnetic disks suf-
fer some drawbacks that make it hard to know their
behaviour, as thermal recalibrations or bad blocks
ocurrences. Moreover, internal disk caches increase
complexity. By other hand, permanent storage is a
facility too powerful to forget, and there are no al-
ternative technologies for replacing them in the next
decade [Thompson]. We think this work can be a
first step to obtain hard real time with magnetic
disks, and this can be the base for future research.

In this first implementation of the RT IDE driver
and the RTLFS file system, we need a disk for RT
tasks distinct from the Linux ones, and placed in dis-

1



tinct IDE controller. Obviously, this is the ideal sit-
uation, but although this enviroment can be suitable
in some systems as specific media servers, we should
be able to work with a single disk shared by Linux
and RTLinux. In these days arrive news about the
possibility of introduce hard disks in mobile phones,
since these devices are increasing their capabilities
(and their memory requirements growing in parallel)
and it does not seem a practical solution to design
the phone with two hard disks. An interesting goal
is to be closer to determinism when RT tasks ac-
cess IDE disks, even if they share the same disk with
Linux.

The first step forward higher determinsm is the
implementation of a IDE driver for RT tasks, which
is explained in section 2. Once we have virtualized
the disk HW with the IDE driver, RT tasks can read
and write data using it directly, but if we want to
make things easier, we need a file system to avoid us
to know where to read or to write data. The imple-
mentation of a file system with some requeriments to
facilitate determinism with high performance is ex-
plained in section 3. The design and implementation
of a block layer allowing to work with several parti-
tions and disks concurrently is explained in section 4.
And finally, in section 5 we present the conclusions
and the future work.

2 RTL IDE Driver

The functionality of the RT IDE driver is not dif-
ferent from Linux ones, since the common goal is to
hide the hardware complexity to the user. The first
task in the porting is to evaluate the real necessity
of using a distinct driver than Linux. This decision
was taken based on the complexity of the Linux IDE
driver update.

2.1 Implementation Issues

The main problem is Linux IDE driver is very re-
lated with the Linux Buffer Cache, a global struc-
ture that allows Linux to achieve a high throughput.
As we will see in the next section, for our necessities
we don’t need this Buffer Cache, and indeed, if we
would need it we could not share this global resource
with Linux, since it would lead to priority inversion.
As we can use the Linux IDE driver directly, it is
necessary to make some modifications to the driver
sources. However, we have considered these changes
have more drawbacks that advantages, mainly due
to the complexity to understand the driver function-
ality once the changes are introduced and the effort
needed to maintain the changes between Linux ver-
sions. Moreover, an important drawback of using the

Linux driver with updates is it slows down the de-
velopment due to the instability of the system, since
we are making changes in a critical component for
Linux normal behaviour. These reasons convinced
us to develop a distinct IDE driver for RT tasks.

Once we have taken the decision of a new RT IDE
driver instead of the Linux one, other decisions about
driver functionality are necessary. First of all is the
question of supporting DMA functionality. The use
of DMA(Direct Memory access) in real time systems
could lead to unexpected behaviours where deadlines
are missed, since capable Master DMA devices own
the memory bus when they are working, blocking the
cpu access to the memory during this period. How-
ever, DMA is a feature too rich to be ignored so, the
use of DMA versus programmed I/O will be a user
option and not an implementation decision. How-
ever, when the same disk is used by Linux and RT
tasks, the DMA should not be available for Linux,
to avoid non real time processes to damage real time
ones. Another point is a feature inside DMA: the
capacity to use scattered memory blocks in the same
operation. This feature is very useful for file sys-
tems in general purpose operating systems(GPOS),
and related again with the Linux Buffer Cache. Al-
though this is a powerful functionality for GPOS, it
has not so importance in our design, since memory
is managed more restrictively (at initialization time)
within the RTLinux approach. When developers ask
for memory at inicialization time, they will use the
get free pages Linux kernel function that returns a
pointer to a contiguous memory block. Then, this
advanced DMA capability is not needed and in con-
secuence, not implemented.

The way RT IDE driver is used has a direct im-
pact in performance with DMA functionality. We
have commented previously the Linux Buffer Cache
goal, and explained why this structure is not nece-
sary for real time tasks. However, using an interme-
diate buffer as Linux Buffer instead of directly the
user buffer has the advantage that the data passed
to disk is always aligned (a DMA requeriment is that
memory pointer must be word aligned). For exam-
ple: if one RT task with a 1MB data buffer decides
to write 5 bytes of data, the memory pointer used
by the RT IDE driver will point to the begin of the
user data buffer. As the data buffer is created with
the get free pages Linux function, the first byte of
the buffer is word aligned. If later, the same RT task
writes another 10 bytes, the user data pointer will
point to the sixth byte of the user data buffer, which
is not word aligned, leading to a bad DMA function-
ality. To avoid this to happen the RT IDE driver
checks the alignement of the data pointer making a
copy to a internal driver buffer when needed. Obvi-

2



ously this is a performance penalty and it should be
avoided when possible.

One important point is how the RT IDE driver
is initialized. At Linux boot time some structures
are initialized as ide driver t and ide hwif t, which
are related to IDE disks and IDE controllers. Our
RT IDE driver uses these structures, together with
other related with PCI interface and DMA tables.
One posibility would be that RT IDE driver could
initialize its own structures, avoiding the Linux de-
pendency and then it would be ready to be used in
the RTLinux Stand-Alone [Esteve].

2.2 Summary

We have implemented a IDE driver for RT tasks with
the possibility to use DMA functionality, with some
limitations related with the Linux IDE driver, but
which don’t affect RT necessities. Once we have this
driver, RT tasks can use the disk directly instead of
through the indirect path with fifos. The driver im-
plements the POSIX functions: open, read, write,
close and llseek.

3 RTLFS file system

Once RTLinux has its own IDE driver, the next step
is to facilitate the management of free disk space and
some way to know where data was written: these are
tasks for a file system.

The design of a file system is not a simple thing,
and it is driven by some specific goals together with
the implicit ones commented before. For example,
a file system used in a GPOS have a distinct goal
than a parallel or a distributed one, used in scienfitic
fields. Some important keys as internal and external
fragmentation, which are common issues in operat-
ing systems, and arises in memory and disk space
management. Some characteristics of file systems
are related with disk space maximization, reliability,
fast recovery, higher performance and others. But
meanwhile file system goal in a GPOS is to achieve
the best throughput, a real time OS must guarantee
deadlines of real time tasks will not missed, so this
implies that in the design of a file system to be used
in a real time system, some of these characteristics,
although important, are not the main goal (as disk
space maximization and internal-external fragmen-
tation).

Another important point in the file system de-
sign is what kind of access pattern will have the tasks
supported, and then to make the design properly to
adapt those kind of tasks. We have based our design
in video streams support, wich have a well known

pattern. Other usual RT tasks as data adquisition
can gain benefit of this design.

3.1 Preliminary Study

As previously commented, the main goal of this com-
ponent is to provide a file system to store media data.
This point, along with the specific characteristics of
a real time system leads the design. In this section
we explain what are the main characteristics the file
system should exhibit, and in a later section it is
presented the specification of the design in detail.
The discussion is not only about the file system, but
about the full block layer which includes global sys-
tem structures.

Next are outlined the main characteristics of an
embedded operating system (RTLinux) and the ap-
plications requirements:

CONCURRENCY RTLinux is not a general pur-
pose operating system as Linux, where is usual
to have lot of tasks working at the same time.
The expected RTLinux workload will be just a
few threads, possibly one or two. Obviously,
mechanisms to share the file system between
several tasks is a must, but it is important to
fix the number of concurrent tasks supported
since it is necessary several structures per task
and per open file.

SIMPLICITY The key in RTLinux is simplicity:
it is not necessary to build a full real-time oper-
ating system with all kind of functionalities as a
general purpose operating system. In this way,
the RTLinux core is easier to maintain. If we
don’t want to break this approach, the file sys-
tem design must be simple, avoiding complex
implementations and features that are rarely
used. We are not thinking in designing a file
system for all kind of requirements, only to sup-
port media streams, which have a known access
pattern.

SPACE ALLOCATION How the data is allo-
cated in disk is one of the main functions of
file systems. There are two points :

1. how data is allocated on the disk

2. how metadata is managed

Metadata is information about the file system:
super block has global information of the file
system; inodes are related with files and have
information as size of the file or pointers to data
blocks; free blocks list or bitmaps are used to
manage free space, etc. File systems decisions
about metadata (which data structures to use,
and where to allocate them on the disk) are

3



important for file system performance. For ex-
ample to try allocate the inodes of a file as
close as possible of their data blocks. Other
decision is if metadata must be written sync or
asynchronously which has a direct impact on
reliability. We need a file system that can be
returned to a consistent state after a crash and
to avoid metadata writes overhead can degrade
performance of the file system.

The allocation policy is different depending on
the feature that we want to optimise. For ex-
ample, in general purpose operating systems,
file systems are designed considering that most
files are small, typically is a few kbytes, and
that the lifetime of each file could vary from a
few seconds to several months or years. The
file size is important to avoid excessive frag-
mentation which leads to a poor usage of the
disk, so general file systems use a minimal al-
location unit of 1-4 Kbytes (1-8 sectors). The
smaller the allocation unit is, the bigger is the
metadata required to manage it, because there
are more blocks (units) to handle. This implies
more resources wasted and higher cost when
searching through (or a complex structures to
minimise the search cost).

In systems designed to collect data, the require-
ments are different since data will be stored for
a long time (data will be processed afterwards)
and will no be modified in a short space of time.
Obviously, taking into account this character-
istic, the approach to design the file system is
different. As we focus to support the storage
of media streams (large files) we can remove
the complexity introduced by buffer caches and
large blocks maps. Concepts as internal or ex-
ternal fragmentation are important for general
purpose systems, but are not so critical in these
kind of applications.

A critical point is how to search into the file
system structures. This search must be op-
timized, avoiding complex data structures as
AVL’s used in current file systems as XFS
[Trautman]. In some situations, as opening a
file, the delay searching through the tables can
be allowed (in our target), but the delay search-
ing for free space is necessary to optimise.

We have discussed the design considering the
disk access pattern, but it is critical to know
how disks work to improve the performance.
The minimal allocation unit used by general
file system has sense in the global view, but
this can leads to a excessive disk head move-
ment since physical blocks can not be consec-

utive for a file. We need to minimize the disk
head latency as much as possible since it is crit-
ical to achieve good performance.

BUFFER CACHE Disk latency is a bottleneck
since CPU’s speed began to grow as Moore’s
law predicts, and meanwhile disk were, and still
are, restricted to a minor growth rate mainly
due to the mechanical components inside. Op-
erating systems use a tecnique to avoid this
problem called Buffer Cache. This is a general
memory buffer to allocate disk blocks tempo-
rally in main RAM memory that tries to avoid
unnecessary disk requests.

Buffer Cache algorithms tries to exploit known
disk access patterns as the short lifetime of
some files (sometimes just seconds) and local
and temporal references. These access patterns
are valid for general purpose systems and ap-
plications. Some of the main characteristics of
buffer caches are:

1. Read ahead, based in local references:
when a disk block is requested for read,
then the next contiguous blocks of that
file are read and stored in the buffer cache
too.

2. Flexibility for disk policy: as write opera-
tions are delayed, the final disk scheduler
can rearrange them to minimise disk head
movements.

3. Extra copy from user buffer to system
buffer

4. Inconsistent state if a crash happens: data
(and metadata) of the buffer cache still
not written into the disk is lost when a
crash happens, therefore there are more
chances to lose more data.

5. Low size block to allow an easy manage-
ment of the buffer: if these blocks are
large a lot of resources are wasted when
a few bytes are requested.

Points 3 and 4 are drawbacks and 5 is in conflict
with the decision taken in the previous point
about space allocation (large extents). Indeed,
since other characteristics of general purpose
operating systems as short life time of files or
local and temporal references are not applica-
ble for our purposes, it is not necessary in our
design a buffer cache, therefore we can avoid
the implementation (However, as we will see in
our implementation we need a 512 bytes cache
per file for performance).

4



RELIABILITY As reliability we mean to obtain
a consistent state of the file systems after a
crash. Usually, file systems changes are made
in structures allocated in memory which are
eventually written to disk. If a crash happens
before these changes are written to disk the file
system state is not consistent.

Reliability is very related with the design of
the file system. Log (or journal) structured file
systems [Ousterhout] were designed to provide
a fast way to recover data when a crash hap-
pens, which is a drawback with ext2 Linux file
system [Card], the first Linux file system im-
plementation. But, with the log structured file
system approach, reliability is achieved adding
performance and resources penalty, along with
a high complexity.

As one of the characteristics cited previously
was simplicity, the reliability must not add
excessive complexity to the design. And, of
course, reliability should not achieved by loos-
ing performance (only a minimal overhead is
tolerable).

USABILITY Although the indirect path (thru
Linux processes) followed until now by RT
tasks to read or write to/from disk was very
”tricky”, it has as strong point the possibility
to work later with the data using Linux tools.
Then, the file system used in RTLinux should
also be used in Linux to work comfortably with
the broad possibilities offered.

USER BUFFER ALLOCATION RT tasks will
use the file system with the standard read and
write POSIX functions. These functions needs
a buffer parameter, which is a pointer to a
memory zone that will be used by the file sys-
tem.

In the Linux approach, user buffer data is
copied into the kernel buffers using buffers
heads objects. This is a technique to improve
performance, and works fine with general file
systems due to the locality and temporal ref-
erences concepts, storing data temporally in
these buffer. Our expected workload will not
exhibit temporal reference disk access, there-
fore buffers head are not necessary, avoiding
to waste resources and the double data trans-
fer, one from user buffer to kernel buffer and
other from kernel buffer to disk. So, data buffer
pointed by the read or write function is used
directly by the device. This is possible because

as we will see in the next point read and write
functions blocks the caller task, so does not ex-
ist the danger of task reusing the buffer before
the end of the request.

Taking into account that the RTLinux mem-
ory allocation (OCERA DYNMEM component
[Ocera]) do not handle DMA address ranges
properly 1, the buffer allocation for read and
write functions by a task must be done at ini-
tialisation time.

READ AND WRITE FUNCTIONALITY

Should a read or write call block? As we
want to follow the POSIX standard for read
and write, these functions must block the caller
task. But, if we want to keep tasks inside the
real time we need disk behaviour to be deter-
ministic.

Otherwise, to make sure a task reading contin-
uosly from a device does not lose data samples,
the task division paradigm usual in UNIX must
be followed: one task reads data and other
writes data to disk, sharing a buffer. We as-
sume disk can support the bandwith required.

TRUSTED ENVIRONMENT Operating sys-
tems use file attributes to check access rights,
along with attributes of the process accessing
the file. This is a necessity in untrusted envi-
ronments where the operating system has to
enforce the access policy.

Since the RTLfs file system will be used in
trusted environments, where all the code is
written and controlled by the end user, there is
no point to implement any kind of access pro-
tection. Indeed, files atributes are based on the
idea of users and groups, which is not valid in
RTLinux.

Another important aspect from a security
point of view is how new blocks are passed to
files. Assuming a trusted environment file sys-
tem assigns blocks to files without deleted pre-
vious data (disk data blocks are not zeroed).

Parameters checking are very restricted in un-
trusted environments to avoid the bad use of
the functions by a malicious process. As a
trusted enviroments is assumed the checking
can be more relaxed, mostly related to catch
programming bugs.

1current memory allocator manages a pool of memory which is not ensured to be in accessible address range of the DMA

hardware. Next revisions of DYNMEM should consider this problem

5



3.2 Available Open Source Realtime
FileSystems

As a previous step we have studied others file systems
looking for how they match with the characteristics
defined before, and evaluating the migration cost of
that file systems to RTLinux.

We have found that the original file systems de-
veloped two decades ago fulfil the main points. It
has sense as these first implementations were simple
and executed in trusted environments, with a little
disk capacity, and where disk latency was hidden by
the lower performance of CPU’s. This last point had
motivated the main research of this field and the use
of a general buffer cache. A simple file system im-
plementation have the following characteristics:

• Sectors are grouped in clusters, which can be
as long as disk capacity.

• Linked list using an index method is used to
manage clusters (groups of sectors). In each
entry of the index appear the next cluster (if
exists) owned by the same file or a special char-
acter if unused. The metadata management
full-fills the simplicity required.

The main drawback of this implementation is its
inefficiency when it manages unused or spared clus-
ters: the system must search through the index block
table sequentially, what can lead to high variable
search costs. This is a drawback to avoid in real time
systems. On the other hand, traditional UNIX file
system (in the UNIX first version) have a more com-
plex block allocation structures: a linked list used
for space management which resolves the problem.

The Linux file systems are very related with
Linux structures, and their goals are different from
ours. This along with other complexities usual in file
systems designed for GPOS as file access attributes
or file access times (if simplicity is a goal in the de-
sign we must avoid a lot of non critical features),
influenced in the decision to implement a file system
from scratch.

3.3 Real Time File System (RTLFS)
Specification

Once analysed the characteristics that the file system
should provide, this section presents the proposed
design and the implementation that meets these re-
quirements. Figure 2 shows the global structure of
the file system:

We present the file system components with the
main characteristics:

FIGURE 2: RTLFS Global View

SUPER BLOCK The super block contains infor-
mation describing the layout of the file system.
For example, the number of sectors for inodes
and extents tables are stored here, along with
the extent size (an extent is a large number of
contiguous sectors). In our design, the super
block have two important fields to manage free
space: pointers to free lists of inodes and ex-
tents. This is where our design changes with
regard to how other file systems search through
the linked list.

INODES TABLE Inodes are structures used to
manage metadata of files: size, mode, permi-
sions, pointers to data blocks, etc. The decision
to have a fixed number of i-nodes and extents
length is to avoid complexity for data blocks
allocation. In this way we can locate extents
easily. The main drawback is the total amount
of i-nodes the file system can have. In the cur-
rent implementation the maximum number of
sectors for inode table is 128, what is the up-
per limit a DMA operation supports. With this
limit the maximum number of files allowed is
1638 (inode size = 40 bytes).

Obviously this is very low number for a general
purpose operating system, but we think that it
is enough for embedded real time systems. It’s
possible that some real time applications need
more files but it does not seem the normal case.

Usually in UNIX implementations directories
are files which data is a list of files owned by
these directories along with a inode pointer per
file. In our design the file name is inside the
inode structure since we are not going to sup-
port directories: only a root dirrectory for the
file system.

EXTENTS TABLE As i-node table, this is a fixed
size structure created when the file system is
formatted, along with the number of sectors
per extent. In the current implementation the
maximum number of sectors for the extent ta-
ble is 128, as inode table. This sets the maxi-
mum number of extents to 16384 (an extent is
a long).

Following a simple approach, this structure is
a linked list using an index and is maintained

6



in memory to improve performance since the
size is manageable thanks to the high number
of sectors per extent. The next figure shows an
example with a reduced extent table:

3 5 7 91 2 4 6 8 10 11 12 13 14 15 16 17 18 19 20

6 11 −14 92 3 5 7 8 10 12 13 14 −1

FILE A: 0−2−3−6−11

−1 −1 −1 −1 −1−1

FILE B: 1−4−5−7−8−9−10−12−13−14

0

A B

FIGURE 3: Linked list used by Extents Ta-
ble

This approach has the advantage of the facil-
ity to found free extents when a file is deleted.
As blocks owned by a file are linked, is easy to
know what is the next free extent just follow-
ing the links. This follows a simple algorithm
to manage free extents, first found first served,
althoug other algotithm could be used adding
more complexity to the design. A Pointer to
the head of the free list extents is stored in the
super block.

EXTENTS RELIABILITY The problem with
reliability is how to maintain the file system
consistent when system crashes (power failure,
critical application bug, etc.), and is very re-
lated with how metadata is written to disk.
File systems designers had taken different ap-
proaches to solve it: BSD file system writes
metadata synchronously to disk, meanwhile
Linux file systems write metadata just in buffer
memory, and later aynchrously to disk.

The metadata problem is due to the disk la-
tency and the fact that metadata blocks may
not be close to where current data is being writ-
ten into disk, therefore it implies a large head
movements to other disk zone. We have this
problem with our design, as inodes and extents
tables are fixed in the first sectors of the parti-
tion.

FIGURE 4: RTLFS Reliability Approach

We solve this using the first sector of the ex-
tents for reliability. The information written in
the first sector is a rtl reliable extent:

The timestamp field is used to know the state
of the extent related with the superblock. At
recovery time, only extents with a timestamp
newer than the superblock timestamp are pro-
cessed for recovery. The previous extent field
helps to rebuild the extents list of a file. And
in the buf field is stored the inode object of
the file together with the super block of the file
system at this moment. With this information
is possible to get a consistent state of the file
system.

PERFORMANCE DECISIONS We have ex-
plained that a general buffer cache is not neces-
sary for our purposes, mainly due to the tem-
poral reference characteristic is not a feature
of the expected workload. However, the use
of a minimal buffer cache has some advantages
that could improve the performance of our file
system.

The explanation is easy to understand with an
example: a process writing 500 bytes of data
every 200 ms. Since the disk sector size is
512 bytes, the request does not fill a sector;
and when the next request arrives, data will
be placed filling the last 12 bytes of that sec-
tor and 488 bytes of the next. This behaviour
implies the first sector must be read from disk
before the second write, because we don’t have
a general buffer cache. Only in this very com-
mon situation the temporal reference is true.

We solve this problem using a 512 bytes cache
by file object that will be used when request
are not sector aligned.

3.4 TOOLS

mkfs.rtlfs Used from Linux console, it builds a rtlfs
file system on a device.

rtlfs.chk Used from Linux console, it checks and re-
pairs a rtlfs file system.

Linux Module The main advantage of RTLinux is
the possibility to use linux tools. As we want
to maintain this, a file system module has been
developed. Linux can mount a rtlfs file system
when is not mounted by RTLinux, but can do
it in READ mode only.

7



4 RTL Block Layer Architec-
ture

The Block Layer is the structure needed to access
distinct storage devices following a common inter-
face. The user must be unaware of what device and
what file system are being used.

RT TASK
RT TASK

RT TASK

RTLFS XXFS YYFS

IDE DRIVER

 

VFS

/hdc/hdc1 /dev/hdc3 /dev/sda1

IDE SCSIIDE

write
read

write

BLOCK
LAYER

RTL

SCSI DRIVER

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

FIGURE 5: RTLinux Block Layer Archi-
tecture

In the figure we can see the idea behind: tasks
use standar functions as POSIX read and write op-
erations, and it is the block layer which links the
operation with the right device, using the read or
write operations of the appropiate file system.

In the implementation, we have followed the
RTLinux philosophy about standards and we try to
offer a popular (standar) mechanism to work with.
This means the option ”to mount” file systems fol-
lowing the Unix approach, and to use virtual file sys-
tem(VFS) abstraction as found in modern operating
systems.

The new architecture allows to use the device
directly or using a file system (rtlfs file system or
other future file systems). The object-oriented ap-
proach used by Linux in the VFS is used to achieve
this point.

4.1 Implementation issues

The implementation of the Block Layer needs new
structures and some updates to the existing ones.
For example the rtl file object, declared in the
rtl posixio RTLinux module, needs one aditional field
to store the minor number of the device related with
the file. Indeed, to support more than one disk and
controller is necessary to add structures similar to
the Linux ide hwif t and ide hwgroup t.

We have changed the RTLinux open function
implementation, introducing a new layer to check

mounted file systems. The full process is as fol-
lows: if the file name used in the open func-
tion does not follow the /dev/filename rule, then
the check for mounted file systems function is called.
This new function extracts the initial path of the file
name (which must follows the unix path convention
of names between slashes) and then, it searchs into
a structure called rtl mount list where are stored the
mounted file systems. Instead of /dev/filename, the
parameter will be /virtual dir/filename where vir-
tual dir is only a identifier (no structure behind).
A mount point will consist in a virtual directory, a
device (kdev t) and a pointer to the specific file sys-
tem operations. All of this information is stored in
the rtl fs list and rtl mount list arrays.

Exist a registered device with name mem?

Using the f_ops pointer of the registerd device
calls the specific open function

YES

YES
NO return error

NO check_mounted
file_systems

path follows the /dev/ rule?

rtl_posixio.c

open("/dev/mem", O_RDONLY);

rtl_mount_list[]

rtl_fs_list[]

        NULL,
        NULL,

};

static struct rtlfs_operations rtlfs_fops = {
        rtlfs_llseek,
        rtlfs_read,
        rtlfs_write,

        rtlfs_open,
        rtlfs_close

static struct rtl_file_operations rtl_mem_fops = {
        rtl_mem_llseek,
        rtl_mem_read,
        rtl_mem_write,
        NULL,
        rtl_mem_mmap,
        rtl_mem_open,
        rtl_mem_release
};

rtl_devs[]

open("/mnt/my_file", O_RDWR)

mem

rtlfs

rtl_register_rtldev("mem", f_ops)

rtl_mount /dev/hdc1 mnt rtlfs

mnt

FIGURE 6: RTLinux Open function up-
date

In the figure we can see the steps: the
open function checks the path, and as it is not
a path following the rule /dev/filename, it calls
check for mounted file system function. This func-
tion searchs the rtl mount list array until a mount
point is found matching /mnt/. When is found, the
major and minor numbers of the rtl file are set to the
same values the mount point has (later these major
and minor numbers will be used by the RTL IDE
driver to use the right disk and partition), and the
file operations field in the rtl file will point to the file
system operations of the file system structure. The
specific open function of the rtlfs filesystem will be
called now.

4.2 Using the disk directly

If the rtlfs or other file systems are not necessary,
RT tasks may access the disk directly using the old
method, that is following the /dev/device rule. This
is possible because during initialization the RT IDE
driver has registered the IDE disks detected during
Linux initialization. Some precaution is necessary
here, since disk partitions mounted by Linux should
not be used.

8



One problem appears in how RTLinux registers
devices. The rtl posixio module implements the reg-
istration function using an indexed list by major
number. By other hand, each IDE controller sup-
ports two IDE disks, which must be syncronized since
they share the same hardware resources and the same
irq line, and Linux uses the same major number for
disks in the same controller. We need a the mi-
nor number of the device to differentitate the disk
in the same controller, but we can register devices
in RTLinux with the same major number. By now,
this drawback when IDE disks are used directly, and
only one disk by controller can be used in this way.
This is not a restriction when rtlfs is used instead.

4.3 Tools

rtl register fs: Used to register RT file systems.

rtl mount: Used to link file systems with devices
partitions. This command needs the partition
name, the virtual mount point and the file sys-
tem type. Previously to use it, a rtlfs file sys-
tem should be created in the partition, using
the mkfs.rtlfs tool. By now, this tool is used
from Linux console, using RT fifos to commu-
nicate with the RT Block Layer.

5 Conclusion and future work

The main goal was to advance forward higher de-
terminism when IDE disks are accessed by RT tasks.
We have done some steps needed to achieve this goal,
as a RT IDE driver, a file system with a design aware
of real time necesities, and a block layer, needed to
work with distinct devices and file systems at the
same time. A specific disk scheduler has not been im-
plemented, although a primitive scheduler based in
the tasks priorities is used by now. By other hand, a
current limitation is Linux and RTLinux must work
with distinct IDE disks and controllers.

The simplicity and performance were main keys
in the rtlfs design. Usually, these keys are hard to
obtain together, but we achieved them with the cost
of suboptimized disk space. As we commented be-
fore, the goal of GPOS is to maximize the resources,
meanwhile the goal of a real time operating system
is to do the tasks before deadlines. RTLFS alloca-
tion policy could be improved if we would have a full
knowledgement of disks behaviour. Moreover, to ob-
tain hard real time when disks are used needs this

knowledgement. This is one important goal for fu-
ture work, and we think we may use this information
to design and implement a real time disk scheduler.
However, using this knowledgement to improve the
file system design is a point to discuss, since better
disk behaviour knowledgement can allow better allo-
cation policies but with the cost of higher complexity,
and it can limit the real time goal.

We have studied the disk sharing by Linux and
RTLinux, which is a limitation in the current ver-
sion. We have implemented a first solution trying to
minimize the Linux interference to RT tasks, and we
hope to present this work along with a more sophis-
ticated disk scheduler soon.

We think this is a valuable work to be used for
future research, and even to be used now in some
real time systems with minor modifications, if the
drawbacks exposed can be accepted.

References

[Card] Remy Card, Theodore Ts’o, Stephen
Tweedie, Design and Implementation of the
Second Extended File Sytems

[Esteve] Esteve, Ripoll, Crespo, 2003, Stand-Alone
RTLinux-GPL, Real Time Workshop, 2003

[Ocera] www.ocera.org

[Ousterhout] Ousterhout, Rosemblum, 1992, The
Design and Implementation of a Log-Structured,
ACM Transactions on Computer Systems, Feb
1992

[Shriver] Shriver, 1997, Performance modeling for
realistic storage devices, PhD thesis, Department
of Computer Science, New York University, New
York, NY.

[Thompson] Thompson, Best, 2000, The Future of
Magnetic data storage technology, IBM J. RES.
DEVELOP. VOL 44 NO.3 MAY 2000

[Trautman] Philip Trautman, Scalability and
Performance in Modern Filesystems,
www.sgi.com/software/xfs

[Yodaiken] Yodaiken, Barabanov, 1997, A Real-
Time Linux , in Proceedings of the Linux Ap-
plications Development and Deployment Confer-
ence (USELINUX), Anaheim, CA. The USENIX
Association.

9


