
RTLinux on Memory Constraint Systems

David Selvakumar and Chester Rebeiro
Center For Development Of Advanced Computing

No.1, Old Madras Road, Byapanahalli, Bangalore 560038, INDIA

{david,rebeiro}@cdacindia.com

Chester Rebeiro
Center For Development Of Advanced Computing

No.1, Old Madras Road, Byapanahalli, Bangalore 560038, INDIA

rebeiro@cdacindia.com

Abstract

Real Time Linux is rapidly finding application in several embedded systems because it is scalable,
customizable and has a good development environment. However, problems arise on systems with low
memory, and on systems that require to be booted fast. Linux is not optimized to boot fast, and requires
at least 4MBytes of RAM.

This paper presents an embedded application: a Remote Terminal Unit (RTU), used in a Supervisory
Control and Data Acquisition System (SCADA) to monitor and control critical process control plants.
The RTU is based on Intels’ 80486 microprocessor and has 2 MBytes of SRAM and 2MBytes of Flash
memory. Besides this, the application requires the system to be booted in under one second.

FSMLabs’ [11] RTLinux was tuned to run on this system. This paper discusses two aspects of the
tuning. First, the embedding of RTLinux on this low memory system. Second, the modifications made
to reduce the boot time of the system.

1 Introduction

The design of RTLinux is based on the dual kernel
principle, in which a small Real-Time kernel (RTK-
ernel) coexists with a general purpose operating sys-
tem such as Linux [1]. The RTKernel provides a
stable, predictable low-latency environment for real
time tasks, while all non critical applications are
run under the Linux kernel. The RTKernel relies
on the Linux kernel for booting, system initializa-
tion, memory management, user interface etc. After
the system has been booted by the Linux kernel, the
RTLinux modules are inserted into the kernel. Run-
ning RTLinux on a system, will first require Linux
to be run on the system.

The Linux kernel is available under the General
Public License. The development of Linux is tar-
geted to the workstation and server market, and not
to custom made embedded devices. However, Linux
is scalable, well documented and customizable [2]
and can be scaled down for an embedded applica-
tion.

Many embedded system devices are character-
ized by the limited amount of memory available and
the absence of a disk based secondary storage mem-
ory. Generally, a small flash memory is used as sec-
ondary storage. These systems do not require the
wide range of powerful features supported by Linux.
Linux can be stripped to the bare minimum, to make
it suitable for the embedded target.

Several mission critical systems, such as in mil-
itary or process control, require the application to
begin execution as fast as possible. These systems
have to be booted quickly. Linux is not optimized
for a fast boot, and takes 5 to 6 seconds to boot.
This time is unacceptable for such critical systems
and has to be reduced.

Several efforts have been made to scale Linux for
an embedded application. MiniRTL [3] is a 2.2 ker-
nel based real time Linux that fits into a floppy disk.
uClinux [10] is an embeddable version of Linux for
systems without a memory management unit. There
have been efforts to reduce the boot time of Linux.
Quickboot from FSMLabs [11] has reduced the boot

1



time to under 500 milliseconds on a PowerPC405GP
embedded processor board.

This paper presents our efforts in tuning
RTLinux (and Linux) to suit our embedded system
application: a Remote Terminal Unit (RTU). FSM-
Labs’ RTLinuxpro 1.2 and 2.4.16 Linux kernel with
the RTLinux patch was used for the purpose.

The paper is structured as follows: section 2 de-
scribes the RTU hardware and the system architec-
ture. Section 3 presents techniques to design a min-
imum Linux system. Section 4 discusses techniques
to reduce the boot time of the system. Section 5 has
the conclusion.

2 System Architecture

FIGURE 1: SCADA Architecture

Industrial process plants such as power and steel
plants,use Supervisory Control And Data Acquisi-
tion (SCADA) to monitor and control their pro-
cesses. RTUs form the bottom layer of the SCADA
architecture (Fig: 1). The RTUs monitor and con-
trol the process through four Input/Output (I/O)
cards: Analog Input, Digital Input, Analog Out-
put and Digital Output. They maintain a consistent
database of the process parameters.

Clients to the RTU database are Supervisory
Stations, which process, analyze and display RTU
data providing an overall view of plant status. Com-
munication between the RTU and the Supervisory
Station follow the IEC-870-5 (101) [9] serial protocol
standard to ensure data integrity. A maximum of
four Supervisory Stations can communicate with an
RTU.

The RTU contains one processor board along
with a maximum of 14 I/O slots. The processor
board is based on Intel 80486 microprocessor at
66MHz having a 2 MByte flash memory and 2 MByte

SRAM. The communication between processor and
the memory devices is with a 32 bit bus at 33MHz.
There are four standard UARTs present for com-
munication. There are three Programmable Interval
Timers, one used by the scheduler, the other used by
the watch dog, and the third used by the application.

Shutdown of the RTU for a long duration could
hamper the monitored process. Therefore a reset
from the watch dog should cause a quick reboot of
the system.

3 Reducing Memory Require-

ments

Conventional Linux kernel, system utilities and asso-
ciated libraries require large system RAM [3] . Many
embedded applications are constraint by the amount
of memory available on board. Running Linux on
such systems will require customizations and opti-
mizations as discussed below.

3.1 Reducing Linux kernel size

The first step to reducing the size of the Linux kernel
is to remove all unrequired subsystems. Only the re-
quired modules must be compiled. The modules can
be selected by the kernel configuration utility make
xconfig or make menuconfig.

The kernel size can be further reduced by fine
grained modifications to the source code. For exam-
ple, threads in the kernel which are not used need
not be started. Size of global arrays can be reduced
to what is required for the system. The number of
devices (tty, mtd for example) can be restricted to
the required.

Functionalities within the kernel that are not
used by the application can be eliminated. For ex-
ample, removing the socket system call support from
the kernel reduces the size by around 30 KBytes.

Such fine tuning of the kernel is not easy. Care
has to be taken to find all dependencies before modi-
fying the code. Even though a lot of effort was spent
on fine tuning the kernel source, the amount of re-
duction in kernel size was marginal. Therefore, such
tweaking of the kernel is not advised.

3.2 Efficient utilization of memory

On 32 bit Intel Architecture (IA32) systems, the ker-
nel leaves the first 1 MBytes memory unutilized [4].
This is to support BIOS based systems that use this
memory area to store configuration data, the Video
BIOS, etc.

The kernel boot starts at location 0x100000. To
boot Linux on the RTU, we need to make use of the

2



entire limited memory (2 MBytes) available. The
kernel has to be tuned to utilize the memory below 1
MBytes. The kernel start location must be changed
from 0x100000 to a lower location (0x20000 for ex-
ample) in memory.

• The kernels’ setup code
(arch/i386/boot/setup.S) moves the processor
from real mode to protected mode. The setup
code is hardcoded to jump to 0x100000, the
kernel start location. This has to be changed
to a more suitable location (0x20000 in our
example).

• The page table initialization is done in
(arch/i386/kernel/head.S). The provisional
page tables are contained in the tables pg0
and pg1. pg0 and pg1 are present at offsets
0x102000 and 0x103000 in physical memory
respectively. These tables map the linear
address 0x0 through 0x7FFFFF and the linear
address 0xC0000000 through 0xC07FFFFF to
physical address 0x0 through 0x007FFFFF.
The page directory is present in
swapper pg dir. It contains information about
the location of the page tables. If we change
the kernel start location to 0x20000, the
entries in the swapper pg dir should also be
changed appropriately.

• The linker in the kernel makefile produces a
non relocatable kernel image starting at the
virtual address 0xC0100000. The linker
descriptor script (arch/i386/vmlinux.lds) has
to be modified with the new start location of
the Linux kernel (0xC0020000).

3.3 Selecting Filesystems

The Virtual File System (VFS) of Linux allows sev-
eral types of file systems to coexist on the system.
For Flash Memory, the most popular storage device
for embedded systems, Linux supports the following
file systems.

• cramfs : is a compressed read only file
system. It takes minimum storage space on
the flash and allows random page access by
compressing each page separately.

• jffs : is a Journalling Flash File System [7]
developed by Axis Communications [16]. It is
a log-structured file system, with the nodes
containing data and metadata stored
sequentially and progressing linearly through
the storage space available. It allows
read-write access.

• jffs2 : is the second version of jffs, which
supports compression, automatic leveling and
a hard power-down safe filesystem.

For the RTU we require a file system that has a
small image, does not bloat the kernel size and boots
quickly. We made a comparison (Table 1) of these
criteria for the three file systems with a 2 MByte
flash (AMD 29F040 interleaved by 4).

Description cramfs jffs jffs2

Kernel size 20KB 31KB 81KB

increased by

File system 152KB 349KB 170KB

image size

Boot time 0.530 9.11 3.07

(seconds)

TABLE 1: Flash system comparison

Cramfs offers the best file system image size and
has the least code size. (The kernel size in the Table
1 corresponds to the increase in size of the uncom-
pressed kernel) It also has the fastest boot time. The
boot times for jffs and jffs2 are high because they
scan the entire 2 MByte flash during initialization.
For file systems that require only read access, cramfs
is the obvious choice. However, for systems requir-
ing both read and write flash access, a combination
of cramfs and jffs2 will yield best results [6]. This
requires the partitioning of the flash. All directories
requiring read only permissions, such as /lib, /, /usr
etc. can be placed in the cramfs partition. All di-
rectories requiring read/write access can be placed
in the jffs2 partition. The jffs2 partition should be
made as small as possible to reduce boot times. The
compromise one has to make here is the increased
size of kernel image. The flash partitioning would
require support from the MTD (Memory Technology
Devices) driver. This adds 8 KBytes. Besides this,
the kernel has to support two file systems, resulting
in an increase of 109 KBytes in the kernel size.

3.4 Shrinking user space programs

A desktop or server Unix system supports several
utility programs and uses powerful libraries. Such
powerful libraries and range of utility programs are
not required for the embedded applications.

3



3.4.1 System Utilities

A subset of the utilities present on a standard Unix
system can be used to build the file system for an em-
bedded system. Utilities selected should depend on
the embedded application. For example: networking
utilities such as telnet or ping need not be added to a
system which does not support networking. Utilities
such as df, du, cat etc. would be useful on systems
such as the RTU, which handle a lot of data.

Several packages are available that support the
common Unix utilities and are tuned for an embed-
ded system. They generally are stripped versions of
the original utilities, and may not contain all options
of the original utility.Some of the available tools are
listed below.

• Busybox : [13] combines tiny versions of
many common Unix utilities into a single
executable. Using a single executable has the
advantage of having only one parser and a
common set of base functions. The drawback
is that at execution time the entire
application (containing several sub programs)
has to be loaded to RAM.

• Embedded Utilities : [14] provide
statically linked versions of several Unix
utilities. They use dietlibc[12] to provide
utilities optimized for size and speed.

3.4.2 Libraries

The standard glibc library is a large and powerful
C library. The applications run on an embedded
system generally do not require such powerful li-
brary support. Several alternate libraries are present
with reduced functionality and size. These are more
suited for the embedded application. uClibc [15] and
dietlibc are examples of such libraries. The Table
2 shows the reduction in the executable size for a
simple ’Hello World’ application on a desktop with
different libraries.

Description static shared

glibc(v2.2.4) 1.4MB 13KB

uClibc 12KB 2KB

dietlibc 2KB -

TABLE 2: Performance of C Libraries (for
a ’Hello World’ program)

4 Reducing Boot Time

With the minimum configuration, Linux takes
around six seconds to boot the RTU and start the

application. Insertion of the RTLinux modules into
the system using the ’insmod’ utility takes an addi-
tional four seconds. This boot up time is too long
for our application. Luckily there are ways to reduce
the boot up time for the system. These are discussed
below.

4.1 Using an uncompressed Linux
kernel

Normally Linux kernel is built as a compressed image
(bzImage or zImage). This image is uncompressed
during booting. The uncompression procedure con-
sumes a lot of time. A faster method would be to
store an uncompressed Linux kernel in flash. This
would bypass the requirement to uncompress the ker-
nel while booting.

The uncompressed kernel is copied to RAM dur-
ing the initial boot phase. The size of the un-
compressed image is around three times that of the
compressed image. This results in three times the
amount of memory required in flash to store the ker-
nel, and three times the amount of copying from flash
to RAM during bootup.

Another method of booting the kernel is execute-
in-place (XIP)[5], where an uncompressed kernel is
stored in flash and executed from flash. Only the ker-
nel data segments need to be copied to RAM. This
eliminates the uncompression as well as the copying.
The only overhead of XIP is the slower access time
of flash memory, resulting in slower execution of pro-
grams.

4.2 Reduce RTLinux initialization
time

The basic functionality of RTLinux is initialized in
a system by inserting five modules into the ker-
nel: rtl.o, rtl time.o, rtl posixio.o, rtl fifo.o and
rtl sched.o. The Busybox ’insmod’ program, was
compiled with dietlibc to provide a small, fast ap-
plication to insert the rtl modules. It however takes
around four seconds (Table :3) to insert all five mod-
ules.

One way to reduce this time is to link all the
five modules together to form a single rtl module
(rtl master.o). Inserting this module with the same
’insmod’ utility reduces the initialization time to 1.84
seconds.

The initialization time can be further reduced
linking the rtl master.o module along with the ker-
nel during the kernel compilation, and completely
eliminating the ’insmod’ program. This reduces the
RTLinux initialization to around 30 milliseconds.
Linking the rtl modules along with the kernel can

4



be easily done (though tedious) by modifying the
makefiles of Linux kernel and RTLinux. All the
RTLinux modules must be compiled without the -
DMODULE compilation flag. The init attribute
should be added to all create module functions in the
rtl modules to ensure that it gets invoked during the
module initialization.

When a module is inserted into the kernel us-
ing ’insmod’, all non static functions in the mod-
ule have entries in the kernel symbol table. How-
ever, when the module is linked with the kernel,
only functions which are exported with the macro
EXPORT SYMBOL get added to the kernel sym-
bol table. All rtl API functions have to be exported
this way, and the files should be compiled with the
-DEXPORT SYMTAB flag.

4.3 Disabling kernel printk

The RTU uses a serial console as the default con-
sole. All printk boot messages are directed to the
serial console. The serial console is a slow device;
1.74 seconds is consumed in just printing the debug
messages to the console. The Linux kernel has a
command line option ’quiet’, which when enabled
disables the printk messages. The messages are still
buffered, and can be viewed by the ’dmesg’ com-
mand.

Description Boot time Reduced by

(seconds) (seconds)

1 Linux kernel (LK) + 10.139 -
RTLinux insertion 5.98(LK)

2 Linux kernel + 8.3 1.839
rtl master insertion 5.98(LK)

3 Linux kernel with 6.009 2.291
linked rtl master

4 kernel from 3 4.269 1.74
with quiet enabled

5 kernel from 4 without 0.779 3.49
get cmos time()

6 kernel from 5 without 0.570 0.209
delay loop calibration

TABLE 3: Bootup timing

4.4 Disabling Real Time Clock (RTC)
synchronization

The get cmos time() function is called during the
kernel booting to read the current time from the
RTC. The kernel loops until the start of the next
second. This happens when the Update-In-Progress

flag toggles from 1 to 0. This is required to syn-
chronize the Linux time with the RTC. For system
having an RTC this may take as long as one second.
The kernel loops 2000000 if the Update-In-Progress
flag does not toggle. On the RTU, this takes 3.49
seconds. For systems without an RTC, or systems
which do not require to synchronize with the current
time, the call to this function can be disabled.

4.5 Disable delay loop calibration

The function calibrate delay() is called at kernel
startup to calculate the value for the variable
loops per jiffy. This value is used by the kernel
for executing short delays. The calibration of de-
lay takes around 200 milliseconds on the RTU. This
time can be reduced by hardcoding the loops per jiffy
variable. For the RTU it is hardcoded to 19328 (3.86
BogoMIPS).

5 Conclusion

Linux has a good development environment, and
supports a large number of hardware platforms and
devices. It is scalable, easily customizable and has
good documentation. RTLinux provides a determin-
istic platform for hard real time applications. These
attributes make Linux with RTLinux a suitable plat-
form for embedded applications.

In this paper, we demonstrated the scalability of
Linux. Although the OS is designed targeting large
workstations and servers, we were able to scale it
down to a deeply embedded system with minimum
hardware resources and having critical memory con-
straints.

The size of the Linux kernel image is around 510
KBytes. This is still huge, however reducing the size
further is difficult without modification of the kernel
source. There are however several possibilities for re-
ducing the boot time of the system further. Having
an execute-in-place kernel will reduce the boot time.
Having a partial-execute-in-place kernel, where only
part of the kernel is copied to RAM (the part which
is used most frequently), should reduce the boot
time and provide a better runtime performance. A
threaded initialization of drivers can further reduce
the boot time.

Acknowledgments: We express our sincere
gratitude to Mr. N. Mohan Ram, Center Head,
CDAC, Bangalore and Dr. N. Sarat Chandra Babu,
Center Head , CDAC, Hyderabad for their support
and cooperation during the execution of the project.

5



References

[1] V. Yodaiken, M. Barabanov, 1996, Real-Time
Linux.

[2] A. Przywara, R. Kusch, D. Naunin, Real-Time
Operating Systems on Small Embedded Devices
for Industrial Control and Communication.

[3] N. Mc Guire, 2000, MiniRTL - Hard Real Time
Linux for Embedded Systems, 2nd Real Time
Linux Workshop.

[4] A. Rubini, 1997, Booting the kernel, Linux
Journal (Kernel Korner, June 1997).

[5] T.R. Bird, 2004, Methods to Improve Bootup
Time in Linux, Proceedings of the Linux
Symposium, pg79-88.

[6] C. Brake, J. Sutherland, 2001, Flash Filesystems
for Embedded Linux Systems, ELJOnline, July
2001.

[7] D. Woodhouse, 2001, JFFS : The Journalling
Flash File System.

[8] D.P. Boviet, M. Cesati, 2003, Understanding the
Linux Kernel, Second Edition , O’Reilly & Asso-
ciates Inc, ISBN:0-596-00213-0.

[9] IEC 870-5, IEC Technical Committee.

[10] uClinux, (http://www.uclinux.org).

[11] FSMLabs RTLinux, (http://www.fsmlabs.com).

[12] Dietlibc (http://www.fefe.de/dietlibc)

[13] Busybox (http://www.busybox.net)

[14] Embedded Utilities
(http://www.fefe.de/embutils)

[15] uClibc (http://www.uclibc.org)

[16] Axis Communication JFFS
(http://developer.axis.com/software/jffs)

6


