
RTAI Based Real-Time Control of Robotic Wheelchair

Chong Hui Kim, Seong Jin Kim and Byung Kook Kim

Department of Electrical Engineering & Computer Science

Korea Advanced Institute of Science and Technology

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

{chkim, sjkim}@rtcl.kaist.ac.kr, bkkim@ee.kaist.ac.kr

Abstract

In order to provide autonomous mobility, a robotic wheelchair requires various tasks such as sensing,

localization, obstacle detection, and motor control, which is a very complex control system. In this paper,

we present a real-time control system design for robotic wheelchairs based on RTAI. We developed a

multiprocessor-based robotic wheelchair platform for the disabled . Based on discussions on real-time

requirements of robotic wheelchairs, we designed an efficient software architecture for autonomous real-

time control of robotic wheelchairs. The performance is revealed by experimental results carried out at

the Intelligent Sweet Home in KAIST.

1 Introduction

As an aging society is coming and the disabled pop-
ulation is on the increase, social demands for bet-
ter life have been increasing. Recent advances in re-
search areas such as robotics, artificial intelligence,
and sensor technology lead them to expect that the
desires of overcoming their handicap will become
true in the near future. The aim of rehabilitation
engineering is to improve the functions of them [1]
and assist them to make a living without assistance
of another person as far as possible [2].

Powered wheelchair is a necessary locomotive
system to provide mobility aid for the people with
motor disabilities. However, it is still difficult to
drive a conventional powered wheelchair for the
severely-handicapped people who have spinal cord
injury at the cervical, quadriplegia, tremors, and
so forth. Hence they have desired development of
robotic/intelligent wheelchair to provide indepen-
dent mobility [3].

As a robotic wheelchair carries a person and op-
erates close to human, its malfunction can lead to
unwanted results or vital accidents. Hence it should
be considered as a real-time system [4].

Robotic wheelchair is a very complex control sys-
tem. In order to provide mobility, robotic wheelchair
requires various functions such as localization, navi-
gation, and obstacle avoidance as well as several sen-
sors such as encoder, sonar, vision, and laser range

finder (LRF) to cope with various changes of exter-
nal world. Robotic wheelchair consists of many tasks
related to sensors and functions, which must be per-
formed with prespecified deadlines. Since each task
has diverse sample rates, computational loads, and
time constraints, it is difficult to ensure achievement
in-time execution of all tasks. This problem can be
solved with the help of a real-time operating system.

In this paper, we present a real-time control sys-
tem design for robotic wheelchairs by retrofitting a
commercial powered wheelchair. In order to pro-
vide real-time capability, we adopted a Linux real-
time extension called Real-Time Application Inter-
face (RTAI).

The ultimate goal of robotic wheelchair is to take
the user automatically and safely to the destination.
In order to achieve this goal, many robotic wheelchair
projects have been emerged in recent years. As rep-
resentative research projects, there are NavChair [5],
SIAMO [6], SENARIO [7], RobChair [8], MAid [9],
FRIEND [10], Rolland [11], VAHM [12], and KARES
[13].

Many research groups [6, 10, 13] developed a
robotic wheelchair under Windows operating system.
Windows is not designed for a real-time system, but
widely used since it provides easy development envi-
ronment, abundant device drivers and multitasking.
However, it requires a lot of resources to maintain a
graphic display so that it cannot guarantee whether
task is completed satisfying the time constraints.

1



Moreover, writing device drivers is not straightfor-
ward and cumbersome.

Some groups [9, 11] use commercially avail-
able real-time operating systems such as QNX and
LynxOS. While these systems have good real-time
features, they are too expensive, have less device
drivers, and lack expandability.

There are few groups to develop a robotic
wheelchair using Linux. There are many advantages
in using Linux because it is a free software with
open architecture and provides comprehensive devel-
opment environment including debugger and graph-
ical user interface. In addition, device driver is easy
to write and its multitasking is better than windows
multitasking. Linux was not designed to be a real-
time system, but real-time extension is available such
as RTAI. Hence Linux with RTAI can be a good so-
lution for the real-time control of robotic wheelchair,
which is a complex real-time system.

The remainder of this paper is organized as fol-
lows. In Sections 2, we describe our developed
robotic wheelchair. Section 3 deals with software ar-
chitecture for real-time control of developed robotic
wheelchair. In Section 4, some experimental results
are shown. Section 5 is for concluding remarks.

2 System Description

2.1 Hardware Architecture with Mul-

tiprocessor

Our robotic wheelchair is based on a commercial
powered wheelchair Chairman manufactured by Per-
mobil, which is powered by two 12V batteries.

Figure 1 shows our retrofitted robotic wheelchair
platform. Its controller is divided into three compo-
nents: PC, joystick module, and power module. The
PC provides high-speed processing for control and
data acquisition from sensors [14]. It is mounted on
the back of the wheelchair and powered by Linux
with RTAI for real-time processing. The joystick
module receives user’s intention via joystick and con-
verts them to a corresponding control commands.
The power module converts the control command to
power signal for driving wheelchair and monitor the
current status of robotic wheelchair. These two mod-
ules contain a H8 microprocessor and are linked to
the PC via a RS232 serial port.

In order to provide autonomous mobility, our
robotic wheelchair is equipped with sensors such as
LRF and two incremental encoders to localize its own
position and to detect obstacles. Incremental en-
coders are used to obtain odometric data which pro-
vide relative position and orientation of wheelchair.

FIGURE 1: Robotic Wheelchair Platform

An LRF (SICK LMS 200) is mounted on a cus-
tom designed aluminum props at a height of 176cm
and scan plane titled at an angle of 25 degrees to the
ground as shown in Figure 1 so that the wheelchair
can perceive the environment and detect objects be-
low the height of the LRF. The LRF provides a se-
lectable angular resolution of 0.25◦, 0.5◦, or 1◦. In
our system, it scans the 180◦ coverage at 0.5◦ angular
resolution in every complete scan period TL (about
26ms). Since a data packet for complete scan is 733
bytes long, it is linked to the PC via RS422 serial
port for high speed data transmission at 500K baud
rate.

There is also bumper switches which consist of
four microswitches. It is attached to the footplate
of robotic wheelchair and used to detect and avoid
collision.

Since many heavily handicapped people employ-
ing a wheelchair suffer from controlling a powered
wheelchair with universal joystick, LCD with touch
screen is attached to the neighborhood of the right
armrest as a visual interactive human-machine inter-
face.

2.2 Real-Time Requirements of

Robotic Wheelchair

Since robotic wheelchair carries a person and inter-
acts with environment through sensors, considera-
tion of safety is very important and inevitable. For

2



example, if the sensor information for detecting ob-
stacle or control task is missed, the rider can be faced
with dangerous situation such as a collision with a
static or moving object. It means that safety de-
pends not only upon functional correctness but also
upon temporal exactness in which each task is ex-
ecuted. In our robotic wheelchair tasks related to
sensors and actuators have real-time constraints and
are created as real-time tasks by the real-time kernel.

FIGURE 2: Hardware Architecture of De-

veloped Robotic Wheelchair’s Control System

Figure 2 shows the hardware architecture of our
robotic wheelchair’s control system. In this system,
joystick module periodically issues a command and
requires a status feedback every TJ (about 10ms).
During this operation, motor control task imple-
mented in PC must determine the control signal from
sensor data and user’s intention through joystick,
and prepare the control packet for the power module
every TJ . There is a data dependency because mo-
tor control task uses the command packet from the
joystick module.

For an efficient real-time processing, two dif-
ferent kinds of real-time tasks are required: pe-
riodic task performed at a given rate, and aperi-
odic/sporadic task performed as a consequence of
particular event [15]. The motor control task is usu-
ally implemented as a periodic task. In our robotic
wheelchair, joystick module acts as a master con-
troller and the motor control task should be period-
ically executed every TJ . If the motor control task
is executed with different period, in-time response
can be missed. Since we use a commercial joystick
module, TJ is not known. Although we can precisely
measure the period TJ , there is a small measurement

error. Hence it is difficult to create the motor control
task as a periodic task with the exact period of TJ .

In order to resolve data dependency and periodic
task creation problem, we create the motor control
task as an aperiodic task synchronized with status
packet from the power module. Initially, the mo-
tor control task is created in a suspended state. If
the status packet is incoming, the execution of motor
control task is resumed by rt task resume called in
serial interrupt service routine (ISR). After complet-
ing execution, it is suspended by rt task suspend

as shown in Figure 3.

FIGURE 3: Execution scheme of motor

control task

Since LRF transmits continuously scan data ev-
ery complete scan period TL, localization and ob-
ject detection should be completed within time con-
straints TL.

3 Software Design for Robotic

Wheelchair

3.1 Hierarchical Control Architecture

FIGURE 4: Hierarchical control architec-

ture of our system

3



Figure 4 shows the hierarchical control architec-
ture of our system. Hierarchical control is divided
into three layers with respect to characteristic of
tasks.

The bottom layer consists of low-level motor con-
trol and position feedback from encoders which are
executed at every TJ and have light computation
load. The middle layer consists of tasks related to
some tactical components such as environment sens-
ing, localization, and object detection. These tasks
are executed at every TL and require heavier compu-
tational loads than tasks of bottom layer. The top
layer consists of goal selection, path and trajectory
planner which are executed aperiodically by partic-
ular request of user or other task.

All tasks are divided into two layer as shown
in Figure 5. Real-time (RT) control layer consists
of tasks with real-time requirements such as mo-
tor control and localization including object detec-
tion. Non-real-time (Non-RT) control layer consists
of tasks with soft or no timing constraints such as
graphical user interface. Tasks between two layers
communicate by means of shared memory and RT-
FIFO as shown in Figure 5.

FIGURE 5: Software Architecture of Our

System

3.2 Real-Time Control Layer

RT control layer consists of two real-time control
tasks: motor control and navigation. These tasks
are implemented as real-time kernel modules.

FIGURE 6: Pseudocode of Motor Control

Task

The pseudocode of motor control task is shown
in Figure 6. Its period is equal to the communica-
tion period of joystick module and power module.
For synchronization, it is created as aperiodic task
and its execution is resumed by serial ISR when sta-
tus packet header is arrived. Although it is created
as aperiodic task, it is periodically executed every
TJ . It permits to move the robotic wheelchair to the
desired position considering user’s intention.

FIGURE 7: Pseudocode of Navigation

Task

Figure 7 shows the pseudocode of navigation
task. Navigation task performs localization and ob-
stacle detection using LRF and encoders. For high
speed processing, LRF is linked to PC via RS422
serial port and transmits continuously sensed data
every TL. To avoid synchronization and data de-
pendency problem with LRF, navigation task is also
created as aperiodic task. Its execution is resumed
by rtai task resume after a complete data trans-
mission of LRF.

Our localization algorithm is based on line fea-
ture and map matching. Since the LRF provides
clear line features for an indoor environment, lines
provide strong and accurate information, but with
far less number than that of points. Therefore, line
based algorithms are more appropriate for the real-
time system compared to algorithms that are point
based.

For object detection, we defined that object is
one not on the given map. Object detection is per-
formed using unused point data in localization from
LRF scan data.

4



3.3 Non-Real-Time Control Layer

Non-RT control layer consists of communication,
planning, and graphical user interface and is exe-
cuted at user space.

Since a robotic wheelchair is highly interactive
system, graphical user interface is an important is-
sue. The graphical user interface is built on Linux
using GTK which is a multi-platform toolkit for cre-
ating graphical user interfaces. Figure 8 shows the
graphical user interface which is composed of mode
selection button, a motion pad, and a display win-
dow.

There are three control modes: FREE, SEMI,
and AUTO. The motion pad is used to direct the
wheelchair. Translation velocity is mapped to ver-
tical axis and rotation velocity is mapped to the
horizontal axis. Since some handicapped people can
not precisely touch the intended point, we assigned a
large pixel area in the center for clear stop command.
It is very easy and intuitive to read the console and
view status.

FIGURE 8: Graphical User Interface

Using a communication module based on
TCP/IP based on wireless network, our robotic
wheelchair can control home appliances such as
lights, curtain, and TV through the home net-
work server. Also the user can control the robotic
wheelchair using his/her voice through the home net-
work server.

4 Experimental Result

We tested our developed robotic wheelchair at In-

telligent Sweet Home in KAIST. Test objective is
to transfer the disabled from a bed to the robotic
wheelchair without assistance of another person. For
accomplishing this objective, the robotic wheelchair
moves autonomously to the predefined docking ready
position and performs docking with the robotic
transfer system. During docking operation, bumpers

of robotic wheelchair detect collision with robotic
transfer system and help safe docking.

Figure 9 shows the robotic wheelchair is mov-
ing toward to the predefined position. During au-
tonomous moving, robotic wheelchair performs lo-
calization, object detection, and motor control task.

FIGURE 9: Autonomous Moving to the

Predefined Position

Figure 10 shows the docking operation. During
this operation, robotic wheelchair detects collision
with robotic transfer system using bumpers for safe
docking. When a bumper is pressed, it is quickly
serviced by a real-time ISR. If right side switch is
pressed, robotic wheelchair moves toward to the left-
front direction. If left side switch is pressed, robotic
wheelchair moves toward to the right-front direc-
tion. If one of two font switches is pressed, robotic
wheelchair stops immediately.

FIGURE 10: Docking Operation

Table 1 shows the required basic tasks to provide
mobility and worst-case execution time of each task.
The processing time of navigation module from data
transfer of LRF raw data to location update includ-
ing obstacle detection is less than 18ms, which are
done in real-time without missing since the full scan
period of LRF is equal to TL (26ms).

5



Module Task Worst Ex. (ms)

Motor Motor Control 0.46

RS422 Data Tx. 16.5

Feature Extraction 0.49

Navigation Map Matching 0.35

Obstacle Detection 0.35

Location Update 0.08

Bumper Bumper Handling 0.05

TABLE 1: Tasks of Robotic Wheelchair

Also the bumper interrupt is processed with
low latency and processing time so that the robotic
wheelchair can quickly react for the collision.

5 Concluding Remarks

We developed a sensor-based robotic wheelchair for
the people with motor disabilities. Since robotic
wheelchair requires real-time capability, we adopted
Linux with RTAI. We discussed real-time require-
ments of our robotic wheelchair and software archi-
tecture is realized under RTAI. We carried our ex-
periments in Intelligent Sweet Home at KAIST so
that our developed robotic wheelchair could nav-
igate and dock with robotic transfer system, and
hence can transfer the disabled from bed to robotic
wheelchair safely . During operation, all tasks of
robotic wheelchair are done in real-time without
missing as shown in Table 1.

Further work will focus on docking control with
battery charging station for autonomous battery
charging and human-robot cooperative control.

Acknowledgment

This work is supported by KOSEF through HWRS-
ERC at KAIST.

References

[1] S. Fioretti, T. Leo, and S. Longhi, 2000, A Nav-

igation System for Increasing Autonomy and

the Security of Powered Wheelchairs, IEEE
Transactions on Rehabilitation Engi-
neering, Vol. 8, pp 490-498.

[2] Kwang-Hyun Park and Z. Zenn. Bien, 2003, In-

telligent Sweet Home for Assisting the Elderly

and the Handicapped, Proceedings of the

1st International Conference on Smart
Homes and Health Telematics, pp 151-158.

[3] Chong Hui Kim, Jik Han Jung, and Byung
Kook Kim, 2003, Design of Intelligent

Wheelchair for the Motor Disabled, Pro-
ceedings of the 8th International
Conference on Rehabilitation Robotics,
pp 92-95.

[4] Jane W. S. Liu, 2000, Real-Time Systems, Pren-
tice Hall, ISBN 0130996513.

[5] Simon P. Levine, David A. Bell, Lincoln A.
Jaros, Richard C. Simpson, Yoram Koren, and
Johan Borenstein, 1999, The NavChair As-

sistive Wheelchair Navigation System, IEEE
Transactions on Rehabilitation Engi-
neering, Vol. 7, No. 4, pp 443-451.

[6] Manuel Mazo et al., 2001, An Integral System

for Assisted Mobility, IEEE Robotics & Au-
tomation Magazine, Vol. 8, No. 1, pp 46-56.

[7] N.I. Katevas, N.M. Sgouros, S.G. Tzafestas,
G. Papakonstantinow, P. Beattie, J.M. Bishop,
P. Tsanakas, and D. Koutsouris, 1997, The

autonomous mobile robot SENARIO: a sensor

aided intelligent navigation system for powered

wheelchair, IEEE Robotic & Automation
Magazine, Vol. 4, No. 4, pp 60-70.

[8] G. Pires, R. Araujo, U. Nunes, and A.T. de
Almeida, 1998, RobChair-a powered wheelchair

using a behaviour-based navigation, 5th Inter-
national Workshop on Advanced Motion
Control, pp 536-541.

[9] Erwin Prassler, Jens Scholz, and Paolo Fiorini,
2001, A Robotics Wheelchair for Crowded Public

Environments, IEEE Robotics & Automa-
tion Magazine, Vol. 8, No. 1, pp 38-45.

[10] Christian Martens, Nils Ruchel, Oliver Lang,
Oleg Ivlev, and Axel Gräser, 2001, A

FRIEND for Assisting Handicapped People,
IEEE Robotics & Automation Magazine,
Vol. 8, No. 1, pp 57-65.

[11] Axel Lankenau, and Thomas Röfer, 2001, A

Versitile and Safe Mobility Assistance, IEEE
Robotics & Automation Magazine, Vol. 8,
No. 1, pp 29-37.

[12] G. Bourhis, O. Horn, O. Habert, and A. Pruski,
2001, An Autonomous Vehicle for People with

Motor Disabilities, IEEE Robotics & Au-
tomation Magazine, Vol. 8, No. 1, pp 57-65.

6



[13] W. -K. Song, H. Lee and Z. Bien, 1999, KARES:

Intelligent Wheelchair-Mounted Robotic Arm

System Using Vision and Force Sensor,
Robotics and Autonomous Systems, Vol.
28, No. 1, pp 83-94.

[14] C.J. Lee and C. Mavroidis, 2001, PC-Based

Control of Robotic and Mechatronic Sys-

tems Under MS-Windows NT Workstation,

IEEE/ASME Transactions on Mecha-
tronics, Vol. 6, No. 3, pp 311-321.

[15] Maurizio Piaggio, Antonio Sgorbissa, and Re-
nato Zaccaria, 1999, ETHNOS: a Light Archite-

cure for Real-Time Mobile Robots, Proceed-
ings of the 1999 IEEE/RSJ Internation
Conference on Intelligent Robots and
Systems, pp 1292-1297.

7


