
Embedded Real Time Linux Kernel Design using

Game Theory and Control Logic

Dipnarayan Guha and Jun Kyun Choi
Broadband Network Laboratory, Information and Communications University

103-6, Munji-Dong, Yuseong-Gu, Daejeon 305-714, Republic of Korea

{dip,jkchoi}@icu.ac.kr

Mashfique Hassan
Electronic Systems, Northrop Grumman Corporation

P.O. Box 1897, MS-1400, Baltimore, MD 21203, United States of America

mh228@cornell.edu

Abstract

This work-in-progress report describes a distributed hybrid architecture that imparts autonomous
intelligence capabilities of ”perception-decision-action” to an ALV (Autonomous Landing Vehicle) control
unit. The system is shown to degenerate to a remote thread execution mechanism of a real-time operating
Linux system where the kernel instantiation is control strategy dependent.

1 Introduction

1.1 Problem Description and Project
Discussion

The problem on co-operative control of distributed
Autonomous Vehicles in adversarial environments
was first addressed in the consortium 2001 MURI on
May 14, 2001, which included UCLA, Caltech, Cor-
nell and MIT. Three major conceptual thrusts in the
design were taken up by this study group, namely:

I. The concept of Robust Hybrid Automaton
(RHA)

II. Model-based Programming of autonomous ex-
plorers

III. Game theoretic concepts

The problems for autonomous vehicle motion
control were described in the light of these concepts
and a continuous type tracking solution was pro-
posed.

1.2 Problem Formulation

The basic problems for Autonomous Landing Vehi-
cles or automated robots have always been the fol-

lowing:

I. Generate and execute a (sub)optimal mo-
tion plan,satisfying given boundary conditions,
flight envelope and obstacle avoidance con-
straints,in a dynamic and uncertain environ-
ment.

II. Concept of Nonlinear Control - steering of
underactuated, non-holonomic systems, Stabi-
lization/tracking for nonlinear systems, Flight
envelope protection

A number of solutions based on Robotics and Ar-
tificial Intelligence were suggested. Path planning,
i.e. primarily obstacle avoidance, for non-holonomic
dynamic systems was the most challenging design to
be made. Questions about the automated response
of the control logic unit became a very important
issue. The major issues were the sheer number of
the sensor data and control tracking real-time dur-
ing the entire flight trajectory. The latter was an
important hard constraint in the domain of Software
Engineering.

Hierarchical decomposition:
There was thus a need to introduce a hierarchi-

cal structure to achieve computational tractability,

1



e.g. (Stengel, 93 [1]). Three logical abstractions
can be thought of in the control system architecture,
namely:

I. Strategic layer: Task scheduling, goal planning.
This corresponds to the highest level in our ar-
chitecture, which is the application layer.

II. Tactical layer: Guidance, navigation. This cor-
responds to the middleware level in our archi-
tecture.

III. Reflexive layer: Tracking, control navigation.
This corresponds to the dynamic partitioning
of the kernel and the middleware in our archi-
tecture.

The control system architecture that needs to be
logically functional as general hierarchical systems
and is derived from arbitrary decompositions can be
extremely hard to analyze and verify. One of our
goals in this design project was to examine this hi-
erarchical structure when it comes to determining
stability and signal processing. It was a robust an-
alytic problem which required precise verification of
the performance guarantees by construction. The hi-
erarchical system thus designed is always consistent.

1.3 System Quantization

This section deals with some of the quantization as-
pects of the control system architecture. Here are
some of the important ones listed. There can be an
arbitrary number of system quantization vectors.

I. Quantization of feasible trajectories into tra-
jectory primitives: a) Formalization of the con-
cepts of maneuver and b) Consistent abstrac-
tion of the system dynamics

II. Hierarchical decomposition of the control
tasks: a) Maneuver sequencing (guidance, tra-
jectory planning) and b) Maneuver execution
(control, trajectory tracking)

III. Control Synthesis: a) Building a maneuver li-
brary (with feedback control), b) Behavioral
Programming - solve a mixed integer program
on a ”small” space and c) Hybrid control sys-
tem with performance and safety guarantees by
design

We can model the ALV’s trajectory using logi-
cal Maneuver Automatons, which have the following
properties:

1. Two classes of trajectory primitives (trim tra-
jectories + maneuvers) Construct a Maneuver
library, with a finite number of primitives.

2. Generate trajectories by sequencing such prim-
itives.

3. All generated trajectories are solutions of the
system’s differential equations.

4. All generated trajectories satisfy the flight en-
velope constraints

1.4 Model-based Autonomous Design

Based on the description of the Maneuver automa-
ton, the following questions were investigated in the
prior research work:

1. How do we program explorers that reason
quickly and extensively from commonsense
models?

2. How do we coordinate heterogeneous teams of
agents to perform complex exploration?

3. How do we couple reasoning, adaptivity and
learning to create robust agents?

4. How do we incorporate model-based autonomy
into computing devices?

Programmers generate breadth of functions from
common sense models in the light of mission goals.
This is called Models based Reactive Programming,
where Programmer guides state evolution at strate-
gic levels.

There was another way of approach through
Commonsense Modeling, where the Programmer
specifies commonsense, compositional models of ALV
behavior.

The prior research work came up with a model-
based execution kernel that reasoned through sys-
tem interactions on the fly and performed signifi-
cant search and deduction within the reactive control
loop. This led to model-based co-operative program-
ming, the salient points of whose programs were:

1. Specification of team behaviors as concurrent
programs.

2. Specification of options using decision theoretic
choice.

3. Specification of the timing constraints between
activities

Here is a pseudo-code of model-based co-
operative programming:

2



c,

if c next A

unless C next A

A, B

Always A

Choose reward

A in time[t, t’]

Naturally, a model-based execution always
achieves correctness and economy. It pre-plans
threads of execution that are optimal and tempo-
rally consistent, responds at reactive timescales and
performs planning as graph search. This approach is
described in the prior work [2]

2 Research Challenges and the

Evolution of the Adapted So-
lution Path

A very important aspect in our design was to make
the control unit independent of physical parameters
and constraints. We wanted two things simultane-
ously for the ALV: controlling via a base station
externally, and an autopilot unit-on-chip for robust
control. We wanted to have one single design for both
the functionalities. Hence, component reuse and
modularity was one of the key implementation goals
in the system. There was also an ease in signal pro-
cessing and involved less cost in the design without
degradation of performance parameters. Also,the de-
sign provides for a continuous chain in adaptive sig-
nal processing for a huge number of data points from
the sensors. The system is guaranteed to provide a
stable and controlled flight path of the ALV for ev-
ery instant of time and has no possibility of drifting
away from the optimal control values.

2.1 Challenges of the Research

The challenges to the design were the following:

1. Eliminate parameter dependency on control.

2. Maintain constant optimality of control objec-
tive function by playing combinatorial games
with the environment.

3. Design a single, modular, generic, reusable ar-
chitecture for base-station controlled and au-
topilot controlled logic unit. This is done
to reduce costs in the design and help elimi-
nate multiple component distribution for mul-
tiple functionalities. There is a provision for
integrating the control logic unit as a SoC
(Systems-on-a-Chip). Verification of system

design by automated test vectors for hardware-
software co-design that cuts cost-to-market cy-
cles.

4. Designing a real-time signal processing unit
that could process an arbitrary number of in-
put data points with minimum latency and
overhead delays at a very high rate of paral-
lelism. The challenge was to essentially reduce
system calls to the Linux kernel for continu-
ously varying input data

2.2 Salient features and accomplish-
ments

1. We designed a robust control logic unit where
the control objective function maintains a con-
stant optimality by playing algebraic combina-
torial games with the environment.

2. We designed a real-time control logic architec-
ture that processes a large number of input
data with minimum computational overhead.

3. We designed a scheme that allows real-time
linking of computing hardware logic based on
the control strategy chosen for stabilization.

4. The design provides minimal system calls to
the Linux kernel due to the software architec-
ture.

5. The embedded control logic units are described
in terms of a novel mathematical structure
called the ASMD (Abstract State Machine
Dataflow),which fits in very nicely to the re-
quirements of the design.

6. Introduction of object-oriented generative pro-
gramming to model the embedded control
blocks, development of ECO(Embedded Con-
trol Object)instantiates, description of fun-
damental embedded control logic using ECO
states in the form of abstract state machines.
This is mapped to the combinatorial game that
the controller plays.

7. The Linux kernel structure and the invoked
hardware logic are automated during real-time
performance. Thus, an entire chain of func-
tions is linked from the topmost high-level ap-
plication layer to the kernel layer and back.
A game (mathematics) is used to stabilize the
flight (control), optimize the control objective
function at all times (adaptive signal process-
ing), and is mapped onto the working of a
thread of the Real-Time Linux system (model

3



the ECO objects as ASMs, define the individ-
ual software architecture layers, and implement
the kernel structure)

8. Dynamically partition the Linux kernel co-
operatively for robust control and implement-
ing the game function for control strategy to
make the flight stable.

9. Hardware-Software co-design using the dy-
namic partitions of the kernel and the associ-
ated hardware logic.

10. Thoroughly automated test vector implemen-
tation for the verification of the Hardware-
Software co-design.

11. Comparison with a commercial Real-Time ker-
nel and showing that our designed architecture
is superior with respect to performance met-
rics.

3 Games and Real-Time Em-
bedded Linux Kernel Design

Games are modeled as mathematical objects. The
control process is modeled as an algebraic com-
binatorial game. Decision theoretic considerations
show that rational agents are strongly constrained
in their behavior that they assign the probabilities
to the occurrences of such outcomes with determin-
istic mathematical bounds. One of the main goals
of this complexity theory is to present lower bounds
on various resources needed to solve the computa-
tional problem. From a control system viewpoint,
the most demanding problem is to prove nonlinear
lower bounds on the complexity of designing such a
non-cooperative game system. The task is to prove a
statement without yielding anything beyond its va-
lidity (zero knowledge proofs)

It is possible to implement the control method-
ology knowing the details of the system up to a dis-
crete time ahead. A description of the future system
with gradually increasing uncertainty in time, linking
of the present controller with a mathematical model
for such uncertainty produces a more realistic control
system. This leads to the distributed intelligent con-
trol system architecture that ports the mathemati-
cal transform logic via agent modeling to the control
strategy based Linux kernel instantiation.

A control law is constructed for a linear time
varying system by solving a two player zero sum dif-
ferential game on a moving horizon, the game being
that which is used to construct a Hinf controller on
a finite horizon. Conditions are given under which
this controller results in a stable system and satisfies

an infinite horizon Hinf norm bound. A risk sensi-
tive formulation is used to provide a state estimator
in the observation feedback case. A receding hori-
zon controller is formulated with each finite horizon
optimization based upon a Hinf optimization. The
control model is so chosen that the practical advan-
tages of receding horizon control is combined with
the robustness advantages of Hinf control. This con-
troller is stable and satisfies an infinite horizon norm
bound. This is ultimately mapped real-time using
the concept of ASMs and designed on the embedded
Linux kernel.

4 Approach to modeling em-

bedded timed Linux systems
using Abstract State Ma-

chine concepts

Modeling formalisms for real-world phenomena typ-
ically have some artifacts, i.e. some models have
properties which do not correspond to real-world
phenomena. For real-time system models, the most
discussed artifact is the possibility of Zeno behavior.
Another is unbounded activity. These are related to
the games that our control logic plays with the envi-
ronment. A Zeno behavior of a quantitatively timed
or hybrid system model is a behavior in which an in-
finite number of discrete steps take place in a finite
interval of time. The problem with Zeno behaviors
is that they are considered to be too unrealistic or
difficult to implement. Thus, while the abstraction
that discrete events take no time and that between
two discrete events no time is spent is admitted as
a sensible simplification of the physical process, the
assumption that an infinite number of such discrete
events can take place in a finite amount of memory
is not admitted as sensible. For our case of process-
ing infinitely large data vectors from the ALV sen-
sors, the processing block uses piecewise linear and
sinusoidal functions to translate the strategy game
to the computing unit. Hence, we must be careful
about the Zeno behavior while modeling real-time
control logic systems using Abstract State Machines
(ASMs). The most important conditions are:

1. abstraction that discrete steps take no time is
sufficient,

2. the assumption that time is linear and dense is
sufficient, and

3. the flow of time alone cannot introduce non-
determinism is both necessary and sufficient.

4



Using these assumptions, it is plausible to de-
scribe the discrete steps of an algorithm with ASM
rules,in terms of ASMD (Abstract State Machine
Dataflow) making use of some condition on the cur-
rent time for timing the activation of the rule. In
this case we used the approach without problems for
modeling a real time embedded Linux kernel which is
instantiated with respect to control strategies. This
concept leads to the definition of the control logic
software architecture and the use of Embedded Con-
trol Objects (ECOs) that form the core of the pro-
cessing system.

Since real-time algorithms are finally imple-
mented in discretized time, it is possible to find
weakly or even strongly well-behaved artifact rules
describing the system dynamics. At a higher ab-
straction level, one might not want to have to deal
with problems resulting from discretization, hence
the success of this model in implementation. The
concept makes controlling data intensive procedures
fit in nicely to an embedded Linux kernel and the
invoked hardware logic.

The Linux kernel design structure is expressed in
terms of ASMD.

5 Software Engineering as-
pects of the embedded Linux
kernel design

The research into the design and testing of a
Linux system kernel for real-time control applica-
tions shows the concept of dynamically partitioning
the kernel based on the strategy objective function
for control and stability. The designed kernel is re-
configurable, multithreaded and preemptive and in-
volves a data-driven scheduling strategy for Abstract
State Machine Dataflow (ASMD) configurations. It
uses the underlying hardware for high-speed context
switching between the kernel and the applications.
The features of the kernel can be configured accord-
ing to performance requirements without a change in
the applications. We performed a performance met-
ric analysis with respect to the Texas Instruments
DSP/BIOS architecture, a commercial real-time ker-
nel software that is added on to any DSP chipset for
real-time applications. Some of the results are given
at the end of this paper.

The protocol design from the high-level applica-
tion layer to the kernel layer makes the control engine
integrated and modular in structure. The ASMD
architecture supports component oriented reusabil-
ity and parallelism in software design. ASMD appli-
cations consist of concurrent processes that interact
with each other only by asynchronous messages sent

through the data channels. Computation in such a
design is data-driven, separate threads opportunisti-
cally process incoming data as it becomes available.
This is a novel of the design is that the Linux kernel
is called only when there is a significant deviation
of the objective function from its stable value. The
design of the circular buffer in the sub-interface layer
has this unique functionality of making a comparison
with the stored in objective function instantiate with
incoming data, and only when there is a significant
deviation does it call the processing kernel.

To recall the basic definition of an ASM, it is
a set of states that can be reached on transition at
different input vectors. The alignment of each state
with a specific transition state determines the objec-
tive function value at a given time. The ASMD sys-
tem is composed of concurrently executing processes
that communicate with data channels. The concept
can be thought of as nodes representing processes
and arcs representing data channels. Each ASMD
process executes opportunistically, operating on in-
coming data as it becomes available. Because the
processes share no state, know nothing about the
other processes in the system, and communicate only
through asynchronous data transmissions along data
channels, there is a high degree of independence be-
tween them.

Data-driven nature of ASMD applications poses
different scheduling requirements than traditional
concurrent programming techniques. If ASMD pro-
cesses are awakened by every incoming data mes-
sage, they may spend much of their time manag-
ing the state of their data channels and waiting for
all the necessary data needed to proceed. Finally
the fact that processes only communicate via data
channels implies that there are frequent (but usu-
ally small) interactions between processes along these
channels. Ensuring mutually exclusive access to crit-
ical state within a data channel provides another po-
tential for increased overhead in dataflow applica-
tions. The ASMD architecture takes the advantage
of dual-register sets of the underlying hardware ar-
chitecture to reduce context-switching overhead. It
also provides support for dynamic priorities, ’firing
rules’ for specifying the data channel conditions nec-
essary for process wakeup, and typed data channels
for efficient and reliable interprocess communication.
The reconfigurable options of the Linux kernel facil-
itate selective removal of unneeded features to im-
prove performance without requiring any change to
the application code. For example,the user can re-
move dynamic scheduling or preemptive features to
meet the high-performance requirements of a partic-
ular application.

This report shows a comparison of our designed

5



architecture with DSP/BIOS of Texas Instruments
for different control algorithms. The results indicate
an improvement of around 10 percent for our design
over the TI architecture performances.

Research Contributions to embedded Linux Ker-
nel Design:

1. Dynamic co-operative partitioning of the Linux
kernel based on control strategy.

2. A message-driven scheduling algorithm that
eliminates busy waiting of ASMD threads.

3. A high-speed context switching strategy that
takes advantage of processors with dual regis-
ter sets.

4. An interprocess synchronization technique that
provides a performance increase for ASMD ap-
plications without the overhead of semaphores.

5. Minimal interrupt handling.

6. Kernel configuration options that allow the
user to selectively remove unnecessary kernel
features, reducing overhead by more than 80
percent.

6 More about the Embedded

Real Time Linux Kernel

6.1 Kernel Requirements

The following list summarizes the main differences
between ASMD based Linux Kernel design and other
applications:

1. Number of Components: In a traditional em-
bedded application,the system is divided into
components that are in turn encapsulated into
separate processes or threads. The issue of
modularity and reusability becomes more im-
portant in an ASMD application because each
node is viewed as a reusable module designed
to perform a specific function. Therefore, an
ASMD application tends to have more compo-
nents than applications developed using other
techniques.

2. Inter-Component Communication: The larger
number of components or nodes in ASMD
applications increases the frequency of inter-
component communication. Each node com-
municates with its neighbors through directed
data-channels and presence of data in incom-
ing data channels triggers the receiving com-
ponent.

3. Scheduling Requirements: The data-driven
nature of ASMD applications poses different
scheduling requirements than more traditional
concurrent programming techniques. If ASMD
processes are awakened by every incoming data
message, they may spend much of their time
managing the state of their data channels and
waiting for all the necessary data needed to
proceed.

These differences between ASMD and traditional
applications lead to different set of requirements for
the Linux kernels designed for ASMD applications.
In addition to these requirements, there are also some
domain-specific requirements that should be met by
any kernel.

6.2 Kernel Requirements imposed by
the ASMD design

The main requirements imposed on the underlying
kernel by ASMD applications are:

1. High Performance: The components of ASMD
are used to replace the equivalent hardware
components in the sensor controllers.In these
cases, the execution speed of the control soft-
ware is an important factor because software
is generally slower than hardware. Hence the
designed kernel should have minimal overhead
and high execution speed.

2. Faster Context Switching: ASMD applications
tend to have a larger number of processes
or threads than applications developed using
other techniques. While a larger number of in-
dependent, reusable, components make appli-
cation design easier, it can lead to an increase
in the amount of context switching overhead.
The kernel should make an attempt to reduce
this overhead by increasing the speed of con-
text switches as well as limiting the number of
context switches.

3. Efficient Inter-Component Communication:
The fact that processes only communicate
via data channels implies that there are fre-
quent interactions between processes along
these channels. Ensuring mutually exclusive
access to critical state within a data channel
provides another potential for increased over-
head in ASMD applications. The kernel should
provide support for efficient inter-component
communication with minimum overhead.

6



4. ASMD Scheduling: Unlike traditional pro-
cesses that are scheduled based on their prior-
ities alone, ASMD processes are scheduled on
the basis of both the priorities and data in the
incoming data channels. Moreover, the ASMD
processes should not be awakened by every in-
coming message. The kernel should provide an
efficient mechanism to specify when an ASMD
process is ready to execute.

5. Component Execution with Dynamic Priori-
ties: An ASMD process can wake up due to
data in different sets of incoming channels. De-
pending on the set, it can take specific actions.
The kernel should facilitate this in addition to
adjusting the process priorities according to the
actions they are taking.

This is a high-performance embedded Linux ker-
nel that specifically addresses the requirements dis-
cussed in the previous sections. It implements a
scheduling and context switching strategy optimized
for ASMD applications based on the control strategy
chosen to stabilize the flight of the ALV. Further, it
takes advantage of the invoked computing hardware
logic to drastically reduce context-switching over-
head. It also provides support for dynamic priorities,
firing rules for specifying the data channel conditions
necessary for process wakeup, and typed data chan-
nels for efficient and reliable inter-process communi-
cation.

The embedded Linux kernel design is imple-
mented in C, with a few key elements in assembly
(context switching), dual register set support and
interrupt handling). ASMD processes, or Embedded
Control Objects (ECOs),are implemented as C func-
tions. It uses a dynamically initialized array of ECO
descriptors, together with a dynamically initialized
array of data channel descriptors, to initialize the
application at startup.

Our design provides options to users to selec-
tively include real-time features in the embedded
Linux kernel. The optimal fixed priority algorithm
[3] is shown to be the dynamic rate monotonic pri-
ority assignment (DRMA) in which a task with a
shorter period is given higher priority than a task
with a longer period. In case of deadline driven
scheduling algorithm, the deadlines are monitored at
each clock tick to assign the highest priority to the
task with nearest deadline. Our designed kernel pro-
vides support for using the fixed priority real-time
scheduling algorithms. Along with the DFG (Data
Flow Graph between two ECO’s, that’s mapped bi-
jectively to the ASMD processes) definition, the user
is given the option to specify a statically scheduling
algorithm through a function handle. If the function

handle is assigned null, the default scheduling pro-
vided by the kernel is used. It provides an implemen-
tation of the priority DRMA that can be optionally
used by the application designer to assign priorities
according to the rate monotonic approach. DRMA
uses the information in the DFG to calculate the pri-
orities and exits without starting the application if
a feasible schedule cannot be found. In addition to
this, the design provides a simple API to applications
for monitoring their real-time deadlines.

7 Dynamic Linux kernel par-
titioning and reconfigurable

hardware

This section describes a hard realtime Linux environ-
ment RTL that can be effectively used to design the
kernel of the embedded control unit. We integrate
the functionality of the MATLAB/ Simulink / Real-
Time-Workshop (RTW)suite and RTL. The resulting
software can be run on or off the shelf in standard
personal computers, without requiring overly com-
plex and expensive hardware architectures often as-
sociated with specialized real time systems, without
any performance loss.

FIGURE 1: Co-operative dynamic
hardware-software partitioning of embed-
ded kernel: Autopilot Control Logic

Furthermore,by exploiting the new development
environment, a Linux kernel module that allows
building hard real time applications in user space,
we can initialize the kernel real-time using the control
strategy that is used for optimizing the combinatorial
game function. Here lies the bridging effect of ECO
data structures. This exactly maps the operational
logic to the embedded system, thus creating a bi-
jective map of the executable control transform and
the invoked hardware logic, thereby reducing system
calls to the kernel. Another aspect is to write the
wrapper initializations from the middleware abstrac-
tion to the kernel, and to port the operator transform

7



code to the target hardware used by the embedded
Linux system. This is one of many interesting re-
searches in this area.

The following two diagrams show the logic design
flow for the dynamic Linux kernel partitioning.

FIGURE 2: Dynamic partitioning of em-
bedded Linux Kernel- Real time compilation
of Control Logic Code: Deterministic Control
Logic: Base Station Controlled

8 Reconfigurable Computing
Hardware Mapping from the

Transform Iterator Library
in the Linux Kernel

The ECO data structure processing application ben-
efits from an architecture consisting of multiple regis-
ter files, each conforming to the following properties:
1. Each register file will have to support a number of
multiple read/write ports that is at least equal to the
number of states in the Input Data Type (IDT) se-
quence. Typical numbers range from 4096 to 65536.
2. The memory access pattern of the register file
highly structured. Data is alternatively written in
the forward and backward directions. The same ap-
plies to the read pattern. There will be 128 read
accesses for every written data. 3. In-place storage
and single cycle read/write, where data is read dur-
ing the first half of a cycle, followed by a write during
the second half.

The structured access pattern makes it redun-
dant to implement an address decoder that is com-
monly found in register file and general purpose em-
bedded memory designs. Our architecture that im-
plements the address decode utilizes this functional-
ity.

A novel Combinatorial Real-Time Algorithm
(CRTA)is proposed for this purpose, that follows

from the Logic Flow diagrams of Figure 1 and Figure
2.

The CRTA algorithm indicates that the size of
memory is of the order of O(N x D x B), where N=
Number of states in the IDT, D= Depth of the trace
forward/backward path, B= Number of bits in the
fixed-point algorithm.

The states of the IDT can be drawn from any
arbitrary number of permutations of the input data
sequence. Typical values of N range from 1024 to
4096. Values of D are between 512 and 1024. Bit
resolution B is set at 4 or less.

Results:
CRTA time execution = 0.5 s for N 1024 and D

512 with B 4

9 Invoked Hardware Logic and

the Embedded Linux Kernel

This brief section discusses about the extension of
Gabor expansions to the embedded Linux system
domain and the design of an efficient filter bank to
provide strategy instantiation computing for the em-
bedded kernel. This has been shown in the Logic
Flow Diagrams in Figures 1 and 2. The isomorphism
between this localized linear operator and the filter
design fundamentals for the invoked hardware logic
are examined in the framework of the ALV autopi-
lot control unit, which is modeled using ASMD con-
cepts. This design degenerates into a mathematical
model of a quincunx filter bank for control strategy
dependent thread instantiation in the kernel. This
invoked hardware logic unit helps in processing the
control objective function for large number of sensor
data units and is currently under the focus of our
research.

10 More performance metrics

10.1 Comparison of our design with a
commercial real time kernel the
Texas Instruments DSP/BIOS

There are a few notable differences in architectures
with the TI DSP/BIOS with respect to real-time per-
formance analysis. Some of them are:

1. The real-time Linux kernel uses buffer level
metaprogramming for message event logs,
where the results are shown with every thread
instance that is initialized. This reduces the
need of dedicated resources for explicit event
logging. The target program only calls the

8



kernel resources implicitly when threads be-
come ready, dispatched and terminated. Also,
metaprogramming allows any specific disserta-
tion to be logged in during failures. This par-
ticularly helps in debugging and keeping track
of a large number of input data.

2. Statistics accumulators are integrated with
the handles of the sub-interface layer pro-
cesses. The target program does not accumu-
late statistics explicitly. This is also a charac-
teristic of the architecture that reduces over-
head. It is implicitly used by the kernel when
scheduling threads for execution or performing
I/O operations. In the DSP/BIOS, the tar-
get program accumulates statistics explicitly
through DSP/BIOS API calls.

3. The host data channels in the kernel are in-
tegrated with the IPC channels between the
ECOs and are mapped onto the circular buffer
logic in case of our designed kernel. Different
from the TI DSP/BIOS kernel where the host
data channels provide the target program with
standard data streams for deterministic testing
of algorithms, our designed Linux kernel pro-
vides this as part of dynamic partitioning of
the kernel at run-time.

4. There is no host command server in our ker-
nel, unlike the TI DSP/BIOS. This is because
of metaprogramming considerations where vis-
ibility of real-time program execution is inte-
grated into message event logging.

10.2 Performance Metrics compari-
son with TI DSP/BIOS

1. Unlike the DSP/BIOS case where a small
RTDX (Real-Time Data Exchange) software li-
brary that runs on the target DSP, it is the
ASM library that is used to monitor the tar-
get processor. This emulates the hard and soft
real-time functionalities and the mode of com-
munications with the host is through software
and not through physical JTAG interfaces. It
is analogous to creating an image of the host
processor in the kernel logic. Of course, this
provision is flexible and can definitely be used
with the scan-based hardware emulator that
DSP/BIOS uses.

2. The ASM library of the middleware does
not run in conjunction with the developers’
Integrated Development Environment on the
host platform. This is again different from
DSP/BIOS. The communications metrics show

an improvement factor of about 5 percent over-
all at process time. The image of the host
supports both continuous and non-continuous
modes of receiving data from a target applica-
tion. This is similar to the DSP/BIOS archi-
tecture except for the fact that the logs are not
stored statically unless the developer wants it
to. Our design provides less flexibility in this
aspect.

3. Hardware abstraction: Our designed kernel
provides APIs to access and configure hard-
ware configurations independent of physical
implementation. In our design, simple logical
maps provide the functional interfaces to the
invoked hardware logic. In case of DSP/BIOS,
the hardware abstraction is static and config-
ured one-time. In our design, the abstrac-
tion may change depending on the alignment
of the underlying filter blocks. It supports
memory management and the designed APIs
provide dynamic allocation and freeing within
the application. The DSP/BIOS uses the logi-
cal memory map within the MEM module, our
kernel does this by the ASM logic and soft state
considerations.

4. Memory Management: The architecture of our
designed kernel differs in the sense that there is
no separate module that provides a set of run-
time functions to allocate storage from one or
more segments of memory as in DSP/BIOS.
Most of the work in parallel transform execu-
tions on multiple input data vectors has been
done for single dimensional search problems.
This is because it is possible to define a func-
tion from a given ECO data structure to an
ordered pair of input data vector and the cor-
responding transform. The mapping * serves
to define this function from the system level
code generated by the user. Speaking differ-
ently,the mapping * uniquely assigns the rela-
tion of a given input data to the computation
that the user wants to perform on it. One im-
portant aspect of the approach followed is that
it reduces the accesses in the tree only to a
small closed portion of the tree. It has an-
other advantage of having a fixed upper bound
on the total number of locks held by a process.
There is also a logical cached-in buffer for com-
putational and retrieval access. This results
in an improvement in throughput that is lin-
ear in the number of simple processors. Tim-
ing measurements carried out by implementing
this method verified the performance of this
scheme.

9



5. Chip Support Library: In the DSP/BIOS, the
Chip Support Library (CSL) provides a C-
language interface for configuring and control-
ling on-chip peripherals. It consists of discrete
modules that are built and archived into a li-
brary file. In our designed kernel, this is pro-
vided as a link to the map of the hardware
filter blocks. The hardware logic initialization
is done from this library and it primarily sits
in the middleware stack.

11 System Performance com-
parisons for our kernel and

TI DSP/BIOS

Environment: Testing platform: Intel Pentium 4
CPU 1300 MHz 1.28 GHz 256 MB RAM

The component overhead in instruction cycles
may be taken from the DSP/BIOS performance data
listed in DSP/BIOS Timing Benchmarks on the
TMS320C6000 TM DSP for CCS 2.0 (SPRA662).
Calculate the number of occurrences for each com-
ponent, and then add the total number of cycles. For
example, a single buffer requires the total overhead
of 1351 cycles on a TMS320C6000 TM. The process-
ing period is 4 ms, so the frequency of occurrence is
250 times per second. Therefore, the total number
of cycles in 1 second is 337750 or 0.33775 MIPS. On
a 200 MHz C6000 DSP, this equates to 0.17 percent
CPU load.

Our results show the total number of cycles to be
251735 or 0.251735 MIPS, which equates to a 0.11
percent CPU load

References: 1. DSP/BIOS Timing Benchmarks
on the TMS320C6000 DSP for CCS 2.0 (SPRA662)
[4]

12 Conclusion

The design effectively shows the application of the-
oretical mathematical tools to solve a very difficult
problem in controlling the flight dynamics of an Au-
tonomous Landing Vehicle. The control system is
very generic and fundamental in nature and does
not depend on any physical parameters of the ALV.
The beauty of using Game Theory to real-time con-
trol systems lie in the fact that the entire flow of

control can be modeled as abstract state machine
maps. These maps establish a complete link from
the application level to the embedded Linux kernel
and link the kernel along with the invoked hardware
computing blocks real-time. This linking is only a
function of the control strategy that is chosen. This
architecture is particularly suited for a large number
of sensor data points, and it minimizes system calls
to the kernel based on the objective function limit
threshold, and thus prevents overload in computing
resources.

Acknowledgement

This work was supported in part by the National
Aeronautics and Space Administration (NASA)
through the Cornell Aerospace Systems Technology
and Rocket Operations Group, U.S.A., and the Ko-
rea Science and Engineering Foundation (KOSEF)
through the Ministry of Science and Technology
(MOST) and the Institute of Information Technol-
ogy Assessment (IITA) through the Ministry of In-
formation and Communications (MIC), Republic of
Korea.

References

[1] Stengel, R.F., Nov-Dec 1993, Toward intelligent
flight control, Systems, Man and Cybernet-

ics, IEEE Transactions on, Vol. 23, Issue

6, pp. 1699–1717.

[2] Grimson, W.E.L., June 1989, On the Recognition
of Curved Objects in Two Dimensions, Pattern

Analysis and Machine Intelligence, IEEE

Transactions on, Vol. 11, Issue 6, pp. 632–
643.

[3] Guha, D. and Hassan, M., May 25-28, 2004,
Co-operative Dynamic Partitioning of a Real-
Time Kernel in an Autonomous Landing Vehi-
cle (ALV) Controller, 10th. IEEE Real-Time

and Embedded Technology and Applica-

tions Symposium 2004, Toronto, Canada,
Work-In-Progress Paper.

[4] Texas Instruments TMS320C6000 DSP for CCS
2.0 (SPRA 662)

10


