
Linux for High Performance and

Real-Time Computing on SMP Systems∗

Dominique Ragot and Yulen Sadourny

Thales, Colombes, France

{dominique.ragot,yulen.sadourny}@fr.thalesgroup.com

Denis Foueillassar and Philippe Couvee

Bull, Grenoble, France

{denis.foueillassar,philippe.couvee}@bull.net

Léonard Sibille

CEA List, Fontenay aux Roses, France

leonard.sibille@cea.fr

Jean-Luc Dekeyser, Philippe Marquet, Eric Piel and Julien Soula

LIFL, University of Lille, France

{jean-luc.dekeyser,philippe.marquet,eric.piel,julien.soula}@lifl.fr

Hugo Kohmann

Dolphin Interconnect, Oslo, Norway

hugo@dolphinics.no

Alexis Berlemont

Openwide, Paris, France

alexis.berlemont@openwide.fr

Abstract

Applications that require a combination of high-performance computing capabilities and real-time
behavior, although pervasive (simulation, medicine, training, multimedia communications), often rely
on specific hardware and software components that make them high performance but expensive, and
quite difficult to develop, validate and moreover upgrade. The increasing performance of COTS and the
volume of software developed for these applications lead to the consideration of incremental development
schemes in addition to sole performance. In the ITEA Hyades project, industrial companies, research
centres and academic departments, propose a complete set of software technologies aimed at adding
real-time capabilities to multi-processor systems, with a strong commitment to standards. In this paper
we present the application requirements with respect to real-time, the architectural model proposed, as
well as the reasons for using the Linux operating system. Then, we introduce software components that
have been selected to provide real-time needs, among which are Adeos and ARTiS, and their expected
contribution to global performance. Finally we provide performance measurements for these elements.

∗This work has been done in the scope of the Hyades project, ITEA 01010

1



1 Introduction

The integration of digital systems in many aspects
of life is now a reality of every day. In many fields of
activity: office, leisure, health, security, transporta-
tion, we are indeed communicating with computers,
without having to know how this communication is
managed. Terminals, computers and networks have
simply to bring together the required services to the
end-users in a seamless fashion. This integration re-
quires infrastructure components that must deliver
both functionality and performance. For a major-
ity of systems, performance relates to throughput,
but for a growing number of domains (video and au-
dio contents delivery, virtual reality, manufacturing
process control, sensor fusion) performance relates
to timely execution. Such applications have usually
required non-standard and costly hardware and soft-
ware solutions. Their specificity had been for years
the justification for the use of specific technology
at all levels: specialized DSP processors, specialized
operating systems lacking the support of standard
APIs and requiring custom applications, and also
specialised cluster interconnects.

Moreover the diffusion and utilization of paral-
lel distributed systems based on COTS (components
off the shelf) technology has widely increased in last
years. Today, using COTS, it is possible to build
up powerful clusters not only for number crunching
but also for highly parallel commercial applications.
Many computer manufacturers have adopted this ap-
proach, and now high performance computing sys-
tems are available at a price very low with respect to
one decade ago.

Real-time capabilities for these systems have not
reached a comparable level of maturity due to limited
market size. In order to evaluate what level of perfor-
mance could be reached, a multidisciplinary team [1]
has designed and developed real-time extensions for
parallel systems whose requirements, contents, and
results are exposed in the following chapters.

2 Applications requirements

For complex applications, real-time constraints are
expressed at several levels of interaction. When there
is close man-system interactions (e.g in virtual re-
ality applications), the constraints are expressed in
relation to perception. On the other hand, for data
acquisition systems, the receiver/emitter must not
cause data to be lost due to lack of temporal control
over some asynchronous events.

Because they are complex, these applications
also make large usage of components that are not in
dealing at all with real-time issues. For instance all

back end processing such as classification, database
access, global configuration and monitoring, typi-
cally rely on several legacy or third-party middle-
ware and tools components. The underlying software
architecture has to provide capabilities to integrate
these components in a seamless fashion.

In order to assess the versatility of the proposed
architecture for this class of applications, we have
chosen the following two cases:

2.1 Virtual Reality

One application of the real-time kernel is the simu-
lation of industrial parts in virtual reality. Industri-
alists currently use real-life mock-ups for assembly
testing. This process takes a large amount of time
and money. Virtual reality makes such testing eas-
ier and cheaper. Once converted into appropriate 3D
computer models, industrial parts are integrated into
a simulation framework which computes dynamics
and collisions between parts. In addition, the simu-
lation is connected to a force-feedback device which
enables the user to feel collision forces, as shown on
figure 1.

This device, however, must be fed with force data
at a very high rate (1kHz, typically). Failure to re-
spect this rate results in jitter, and eventually makes
the simulation crash. Today, the simulated 3D mod-
els can only consist of a few thousand polygons, be-
cause of this rate constraint. A SMP machine enables
developers to isolate and make parallel the dynamics
and collision processes, which should give dramati-
cally better performance. The real-time patch will
ensure the real-time constraint is enforced. All this
should result in more detailed models, and better
testing accuracy.

FIGURE 1: Linking a haptic device to a
3D simulation

2.2 Video proxy

The video proxy is an application located somewhere
in the network between the server and the end-user.

2



It is typically placed at the edge of a network, where
the available bandwidth or the security requirements
change (see figure 2). The purpose of a video proxy
is mainly to adapt the video streams going through
it, depending on the users’ characteristics at the end
of the delivery chain.

FIGURE 2: Proxy in video distribution

Description and Functionality The processing
of a video stream during its transmission requires
specialised modules, due to the high data rates in-
volved. A video proxy allows to perform user au-
thentication as well as filtering and logging on any
traffic that traverses the proxy server. But its main
and most heavy task consists of pure video-related
processing, specifically at the edge of heterogeneous
networks:

• Transcoding of video content, i.e. dynamic
adaptation to ensure a certain quality-of-
service. Some content formats are designed to
optimise scalability, such as Motion JPEG 2000
or the upcoming MPEG-SVC, thus allowing to
transcode streams without going through the
entire encoding chain.

• Scalable encryption to ensure the confidential-
ity of critical data. This kind of encryption
selects the byte chunks to cipher and allows to
keep the structure of the video content intact.
One of the main advantages of these techniques
is to allow the transcoding of ciphered streams.

A generic video proxy can implement some traffic
control, but does not contain any firewalling capabil-
ity. In this way, it can be deployed behind a tradi-
tional firewall platform. Therefore, a typical use on
a private network area can be the following: a main

firewall accepting inbound traffic, determines which
application is being targeted, and then hands off the
traffic to an appropriate proxy server, e.g. videos to
the video proxy. This way, such a dedicated proxy
can be used to decrease the work load on the firewall
and to perform more specialised processing that oth-
erwise may be difficult or even impossible to perform
on the firewall itself.

Application constraints Today, the two main
limitations for video proxy modules are the low flex-
ibility of content formats, although some standards
are emerging, and the computing power of networks
nodes, which have high performance for basic pro-
cesses such as routing but are not optimised for more
complex computation like transcoding.

The critical parameters for the machine when
the proxy runs are the CPU-load and the achieved
quality of service for the clients behind. The appli-
cation performs a continuous, on-stream processing
and must do the work in real-time, so that the video
quality, resolution and frame-rate remain constant
on the end-users’ players.

3 The proposed architecture

Multiprocessor systems are well suited to provide the
required processing power for such applications as
well as a choice of operating systems and middle-
ware tools, at least when excluding real-time issues.
Including real-time capabilities directly usable by ap-
plication designers dramatically reduces this choice
and offers a limited set of solutions:

1. pure RTOS-based solutions are usually quite
limited in terms of middleware and tools sup-
ported, and only a very few of them have sup-
port for multiprocessor systems. The applica-
tion developer has usually no choice but to par-
tition the number of processors available in two
sets: one with RT capabilities running a RTOS,
and the other running a GPOS with all appli-
cations. Communications within and between
sets are done using MPI-like primitives. Be-
sides having to statically define resources for
RT and non-RT parts of the application, this
solution requires that all communication soft-
ware be developed in a way that is highly de-
pendent on the underlying machine architec-
ture.

2. mixed RTOS and GPOS solutions are interest-
ing since they can overcome some of the prob-
lems raised above. In this approach, every pro-
cessor in the system is able to operate in both

3



RT and non RT modes, eliminating the con-
straint of a-priori partitioning. However, com-
munications still have to be implemented using
ad-hoc mechanisms. Furthermore the applica-
tion code on every processor has to be rewritten
in order to cope with RTOS-GPOS communi-
cation facilities and the specific, non-standard
RTOS API.

3.1 Software and hardware require-

ments

The “ideal” solution would be the least in-
vasive possible from the application de-
signer’s/developer’s viewpoint. All the facili-
ties that are commonly used to write RT programs
have to be present and easily derived from the GPOS
starting point. From this perspective, none of the
solutions presented above are fully satisfactory. One
would expect to program RTOS services within a
GPOS infrastructure. To make this feasible, we need
the following capabilities:

• A communication infrastructure that is as sim-
ple as possible and whose performance is com-
patible with RT issues. In this respect Sym-
metrical Multi-Processing is very appealing
since the application developer does not have
to care about passing data between processors.
The underlying communication primitives are
integrated in the kernel so minimal overhead
can be obtained, which is very important for
controlling latency. However, SMP has impor-
tant limitations such as scalability. In such a
case we need to have a way of improving scal-
ability at the expense of communication prim-
itives insertion while retaining low-latency ca-
pabilities.

• A GPOS compliant with POSIX standard, and
extensible to Real-Time POSIX profiles. This
allows easy porting non-RT applications as well
as the integration of components with RT re-
quirements.

• A high-end processor capable of delivering a
good balance of CPU power and I/O through-
put.

Meeting all these requirements has resulted in an
architecture model that accommodates a good bal-
ance between ease of programming and scalability.
The two-level communication infrastructure implied
by this tradeoff has resulted in a two-level machine
composition.

3.2 Machine architecture

Our reference machine is made of several SMP com-
puting nodes linked together by SCI interconnects.
The SMP node is a Bull Novascale system using 4 In-
tel Itanium2 CPUs and running the Mandrake Linux
operating system.

3.2.1 SMP nodes

The Bull NovaScale r© family includes modular,
standard-based servers designed to run the most de-
manding business-critical and scientific applications.
Bull NovaScale series are designed for transactional
and decisional applications, as well as for consolida-
tion and scientific/technical computing.

The Bull NovaScale family includes five series in
order to meet a variety of customer requirements.

Bull NovaScale r© servers provide the following
advantages:

• High scalability with scale-up and scale-out
configurations: SMP (Symmetrical Multi-
Processing ) systems up to 32 processors and
clusters.

• High performance with large memory capacity,
the EPIC (Explicitly Parallel Instruction Com-
puting) technology, high bandwidth, floating-
point processing.

• Mainframe-class Reliability / Availability /
Service features with hardware redundancy,
hot-swap, hot-plug capabilities, ECC and par-
ity check and an integrated management con-
sole.

• Great flexibility with multi-operating systems
support.

• Investment protection with upward hardware
and software compatibility throughout the
Intel r© Itanium r© Processor Family and Inde-
pendent Software Vendors endorsement.

At the heart of high-end NovaScale servers, the
FAME Scalability Switch (FSS), developed by Bull,
federates the processors and optimizes memory and
I/Os. The FSS, Intel r© Itanium r© 2 processors and
the Intel r© E8870 chipset, combined with the QBB
(Quad Brick Block) provide an exceptional perfor-
mance linearity and scalability to high-end NovaS-
cale servers.

Bull NovaScale r© servers set a world record in
performance: Bull NovaScale r© 5080 with 8 Intel r©
Itanium r©2 processors Performance: 175,366.24
tpmC.

It is worth noting the flexibility of this architec-
ture model, which can be tailored to provide ease of

4



programming either using larger SMP nodes (up to
32 CPUs per node) or scalability by increasing the
number of nodes. In the latter, performance for real-
time applications can be improved by increasing the
connectivity of the SCI links from 1D to 2D and even
3D topologies.

3.2.2 Clustering

The clustering is made with SCI technology from
Dolphin which is known to provide low latency for
data transmission. The software stack available to
developers is layered, as shown in figure 3, and its
principal components are:

FIGURE 3: SCI stack building blocks

SCI Socket The SCI SOCKET software [2] pro-
vides a fast and transparent way for applications us-
ing Berkeley sockets - TCP/UDP/IP to use SCI as
the transport medium. The major benefits are plug
and play, high bandwidth and much lower latency
than network technologies like Gigabit Ethernet, In-
finiband and Myrinet. The SCI SOCKET uses SCI
remote memory access to implement a fast and reli-
able connection. It enables standard sockets to uti-
lize SCI as a transport without modifications. All
drivers and software is Open Source, available under
LGPL/GPL.

SISCI Userlevel API The SISCI SDK is a C sys-
tem call interface to ease customer integration to
Dolphins cluster interconnect. The SISCI software
supports clusters of hundreds of nodes. Typical ap-
plications for SISCI includes:

• Bus bridging PCI-PMC-cPCI

• Remote access to IO Systems

• Reflective memory like clusters

• High Availability servers / Fast fail over

• Fat pipes / low latency messaging

• Bridging between heterogeneous systems (x86-
PPC-SPARC-AMD64)

• Bridging between operating systems
(Linux-Solaris-VxWorks-Lynx-Windows-
NT/2000/2003/XP )

• MPICH

SISCI provides the customer with an API library
to harness the power of a cluster of commodity per-
sonal computers or workstations. SISCI operates us-
ing system calls on SCI-descriptors and local and re-
mote memory SCI-segments. With SISCI it is easily
possible for your application running locally to op-
erate on remote memory-segments in user space. By
using SISCI, a customer application can bypass the
limitations of traditional network solutions, avoiding
time consuming operating system calls, and network
protocol software overhead.

The relationship of the software and the hard-
ware is shown in the following table 1:

Environment Layers

Application: Customer application code
User space: SISCI API C library
Kernel: SISCI driver,

IRM driver
I/O bus: PCI bus
Hardware: Dolphin adapter cards

with interconnect

TABLE 1: SCI layered software

Key product features:

• Enables transparent access to remote memory
for ultra low latency access (shared memory).

• Provides memory-to-memory DMA transfers
for low overhead data copying.

• Provides read/write block operations.

• Local and remote interrupt handling.

• Supports multiple adapters per host for in-
creased fault tolerance or speed.

• Supports hot-pluggable links for high availabil-
ity operation

• Error checking functions available to applica-
tion for ensuring guaranteed data delivery or
client notification.

5



• Programmers need not worry about normal
parallel pitfalls such as race conditions and syn-
chronization.

• Supports heterogeneous clusters consisting of
multiple operating systems and hardware plat-
forms.

SCI MPICH SCI-MPICH is an open source
project adding native SCI support to the MP-
MPICH software. The work is done by the Uni-
versity of Aachen, Germany. The main project
web is found at http://www.lfbs.rwth-aachen.

de/users/joachim/SCI-MPICH.

Performance measurement objectives In
terms of performance measurement the Hyades
project has the objective to make an evaluation
of the different telecommunication stack possibilities
and to conclude on the best solution according to
architecture choice.

Solutions without source code adaptation like
multithreaded for SMP machine, MPI compliant for
cluster will be evaluated first.

Latencies and throughput will be measured ac-
cording to packet size variations.

As such, this machine architecture provides a
hardware frame for RT features, but does not of-
fer the software facilities to 1) obtain RT behavior
at the application level, and 2) accurately measure
timings assessing proper RT system behavior.

4 RT behavior at application

level

Although the recent Linux 2.6 kernel is widely known
to be “preemptible”, this capability remains insuffi-
cient when dealing with real-time. What is sufficient
to play streaming audio and video on a client PC
would prove unreliable under constrained timing re-
quirements. As an example, the timer interrupt la-
tency jitter ranges from 5 µs to more than 10 ms on
a basic desktop PC.

On the chosen architecture, one could first try
to bring RT functionality only within a SMP node.
The main interest of this approach is to isolate what
is used by the application programmer from what is
really implemented in the kernel. Since the Linux op-
erating system favors throughput and fairness, and
since real-time is essentially a matter of latency and
unfairness, we need to extend the kernel to provide
the missing features. As a design choice, we chose
not to re-engineer the whole kernel - that would be
rather unrealistic anyway, given the amount of work

required - but to develop add-ons that would be ac-
tive beside normal (original) kernel mechanisms un-
der certain conditions.

The aspects whose behavior can be adapted to
meet our goals are:

Interrupt virtualization The most stringent re-
quirement is noticeable at the lowest level; in-
terrupts are being handled by Linux in a “best
effort” scheme with no notion of criticity what-
soever. An add-on to the interrupt manage-
ment is needed to provide interrupt prioriti-
zation. Since the 2.6 linux kernel makes sys-
tematic use of interrupt management functions
in replacement of the hardwired cli/sti as-
sembly instructions, it is possible to insert an
underlying interrupt virtualization layer. To
fit this purpose, the Adeos nanokernel [3] has
been ported to the IA-64 processor architecture
in SMP configuration. It provides the under-
lying support for interrupt management and
for building a software barrier shielding the en-
tire Linux kernel from non real-time interrupts
when real-time activities are running.

Per processor scheduling By taking advantage
of the multiprocessor architecture, it is possible
to dedicate some CPUs to RT tasks by man-
aging processor affinity. However, these CPUs
are mostly idle. A new technique, ARTiS has
been developed in order to allow preemptible
sections of application to be executed on these
RT CPUs, thus allowing a more well-balanced
system while keeping RT behavior intact.

These properties defined, new capabilities spe-
cific to RT could be implemented in the kernel. They
are detailed in the following paragraphs.

4.1 DIC: fast path for RT processing

Deterministic Intensive Computing is implemented
as an Adeos domain and has the following capabili-
ties:

• promote regular Linux tasks to high-priority
DIC tasks.

• activate the interrupt shield to protect running
DIC tasks from unwanted Linux preemption.

• trigger the immediate rescheduling of DIC
tasks upon reception of a real-time event.

• provide support for very high resolution timers
to the DIC tasks.

6



The consequence of the above is that the DIC
domain must have a higher priority than Linux in
the Adeos pipeline.

As such, the DIC domain derives from the
RTAI/fusion technology [4] with enhancements spe-
cific to multi-processor machines such as: port to
Intel Itanium2 processor and SMP support.

The application-level API for DIC is an extension
of the usual Linux pthreads interface. Tasks created
by the pthread_create() POSIX call are attached
to the DIC domain pthread_init_rt(). High-
precision timers are activated (resp. stopped) by
the pthread_start_timer_rt() (resp. pthread_

stop_timer_rt() ) functions. Other functions such
as pthread_time_rt() return the internal time as
maintained by the DIC time source in nanoseconds.
It is also possible to suspend thread execution for a
specific amount of time and to schedule threads at a
periodic rate.

Once attached to DIC, threads keep the ability
to issue regular Linux system calls at the expense of
losing their real-time properties until returning from
the call. However, the interrupt shield protects them
from unwanted asynchronous preemption from other
non-DIC tasks.

In addition, some native Linux system calls are
dynamically substituted by DIC counterparts when
called from a DIC thread. This is the case for the
nanosleep(), getitimer() and setitimer() sys-
tem calls. Such substitution is performed at kernel
level in order to keep the Linux ABI unchanged.

4.2 ARTiS: RT asymmetric scheduler

Among the numerous proposals of RTOS, one ap-
proach exploits the SMP architectures and relies on
the shielded processors or asymmetric multipro-
cessing principle. On a multiprocessor machine,
the processors are specialized being either real-time
or non real-time: Real-time processors will execute
real-time tasks while non-real-time processors will
execute non-real-time tasks. Concurrent Computer
Corporation RedHawk Linux variant [8, 7] and SGI
REACT/pro, a real-time add-on for IRIX [10] follow
this principle. However, since only real-time tasks
are allowed to run on shielded CPUs, if these tasks
do not consume all the available power then some
CPU resources will be wasted. The ARTiS proposal
enhances this basic concept of asymmetric real-time
processing by allowing resource sharing between real-
time and non-real-time tasks.

ARTiS promotes a programming model based
on a user-space programming of the real-time tasks:
The programmer uses the usual POSIX and/or Linux
API to define his applications. These tasks are real-
time in the sense that they are identified as high

priority and are not perturbed by any non real-time
activities. For these tasks, ARTiS targets a maxi-
mum response time below 300µs.

The core of the ARTiS solution is based on a
strong distinction between real-time and non-real-
time processors, and also, on migrating tasks which
attempt to disable the preemption on a real-time pro-
cessor. To provide this system ARTiS proposes:

• The partition of the processors into two sets;

• Two classes of RT processes;

• A specific migration mechanism;

• An efficient load-balancing policy;

• Asymmetric communication mechanisms.

The processors are partitioned into two sets
A NRT CPU set (Non-Real-Time) and an RT CPU
set (Real-Time). Each one has a specific scheduling
policy. The purpose is to insure the best interrupt
latency for particular processes running in the RT
CPU set.

Two classes of RT processes are identified
These are standard RT Linux processes, they just
differ in their mapping:

• Each RT CPU has just one bound RT Linux
task, called RT0 (a real-time task of highest
priority). Each of these tasks has the guaran-
tee that its RT CPU will stay entirely avail-
able to it. Only these user tasks are allowed to
become non-preemptible on their correspond-
ing RT CPU. This property ensures a low-
est latency possible latency for all RT0 tasks.
The RT0 tasks are the hard real-time tasks of
ARTiS. Execution of more than one RT0 task
on one RT CPU is possible but in this case it
is up to the developer to verify the feasibility
of such a scheduling.

• Each RT CPU can run other RT Linux tasks
but only in a preemptible state. These tasks
are called RT1+ (real-time tasks of priority 1
and below). They can use CPU resources effi-
ciently if RT0 does not consume all the CPU
time. To keep a low latency for RT0, the
RT1+ processes are automatically migrated to
a NRT CPU by the ARTiS scheduler when they
are about to become non-preemptible (when
they call preempt_disable() or local_irq_

disable()). The RT1+ tasks are the soft real-
time tasks of ARTiS. They have no firm guar-
antees, but their requirements are taken into
account by a best effort policy. They are also

7



the main support of the intensive processing
parts of the targeted applications.

• The other, non-real-time, tasks are named
“Linux tasks” in the ARTiS terminology. They
are not related to any real-time requirements.
They can coexist with real-time tasks and are
eligible for selection by the scheduler as long as
the real-time tasks do not require the CPU. As
for the RT1+, the Linux tasks will automati-
cally migrate away from an RT CPU if they try
to enter into a non-preemptible code section on
such a CPU.

• The NRT CPUs mainly run Linux tasks. They
also run RT1+ tasks when these are in a
non-preemptible state. To insure the load-
balancing of the system, all these tasks can mi-
grate to an RT CPU but only in a preemptible
state. When an RT1+ task runs on a NRT
CPU, it keeps its high priority above the Linux
tasks.

A specific migration mechanism It aims at in-
suring the low latency of the RT0 tasks. All the
RT1+ and Linux tasks running on an RT CPU are
automatically migrated toward a NRT CPU when
they try to disable the preemption. One of the
main changes which is required from the original
Linux load-balancing mechanism is the removal of
inter-CPU locks. To effectively migrate the tasks, a
NRT CPU and an RT CPU have to communicate via
queues. We have implemented a lock-free FIFO with
one reader and one writer to avoid any active wait
of the ARTiS scheduler based on [11].

An efficient load-balancing policy A dedicated
load-balancing policy allows the full power of the
SMP machine to be exploited. Usually a load-
balancing mechanism aims to move the running tasks
across CPUs in order to insure that no CPU is idle
while tasks are waiting to be scheduled. Our case is
more complicated because of the specificities of the
ARTiS tasks. By definition, the RT0 tasks will never
migrate. The RT1+ tasks should migrate back to RT
CPUs quicker than Linux tasks: The RT CPUs offer
latency warranties that the NRT CPUs do not. To
minimize the latency on RT CPUs and to provide
the best performance for the global system, particu-
lar asymmetric load-balancing algorithms have been
defined [9].

Asymmetric communication mechanisms On
SMP machines, tasks exchange data by read/write
mechanisms on the shared memory. To insure co-
herence, critical sections are needed. Those critical

sections are protected from simultaneous concurrent
access by lock/unlock mechanisms. This communi-
cation scheme is not suited to our particular case: an
exchange of data between an RT0 task and an RT1+
task will involve the migration of the RT1+ task be-
fore this latter takes on the lock, to avoid entering
into a non-preemptible state on an RT CPU. There-
fore, an asymmetric communication pattern should
use lock free FIFO in a one-reader/one-writer con-
text.

Modification of the Linux kernel The ARTiS
model is being implemented as a modification of the
2.6 Linux kernel and a version is already available at
the ARTiS web-page [6]. Results of measurements
of the response time latencies on this current imple-
mentation are available in the section 6.1, “ARTiS
Performance Evaluation”.

5 Tracing events in the system

5.1 High Resolution Timers for IA-64

One important point with regard to real-time sys-
tems is the provision of accurate time information to
the developer as well as ability to trigger events at
precise times. In the POSIX norm this action is pos-
sible via timers. In a real-time context a typical use
of timers is the execution of a periodic code with high
frequency: the real-time application sets a timer to a
specified frequency and then it receives a signal pe-
riodically. Timers can also be used as watchdogs for
real-time routines: a timer is set up at the beginning
of the routine and later, if the given time limit has
been reached, a special code is called and changes
the operation to degraded mode.

The current Linux kernel on IA-64 already sup-
plies time information with precision in the order
of 1 µsec, which is enough for the application we
are targeting. However, the current implementation
does not provide timers with resolution better than
1 msec which can lead to delays up to 3 msec com-
pared to the requested time. This is due to the fact
that timers can only be checked at a clock tick, which
happens only 1024 times per second on IA-64. The
amount of time between two ticks is called a jiffy.

The “High Resolution Timers” project aims at
solving this issue. It is currently maintained by
MontaVista [5] for x86 processors. The adaptation
for the IA-64 architecture is done inside the Hyades
project [12]. The first part of the project, which
consisted of implementing a POSIX compliant ver-
sion of the timers inside the kernel, has already been
inserted into the official kernel. The other part of
the project is to modify the timers’ implementation

8



so that precision can be 10 to 1000 times better than
now.

The implementation starts by introducing the
subdivision of jiffies using sub-jiffies. The sub-jiffy
unit is dependant on the hardware clock in use, nev-
ertheless there is a known constant number of sub-
jiffies in each jiffy. Thanks to this sub-division, it is
possible to save with precise information the time at
which a timer expires. The other and main idea of
the project was to use the advanced features avail-
able in new clock sources to dynamically program
the next tick. Instead of having a perfectly periodic
clock, the kernel re-calculates after each tick the ex-
act next time an interruption has to be triggered
according to the next timer about to expire. Two
cases are possible:

• one timer will expire between the actual tick
and the next jiffy, then the clock is modified to
generate an interrupt earlier, at the exact time
of the timer.

• the next timer is after the next jiffy, then the
next interrupt is at the next jiffy.

On IA-64, the clock source is a processor reg-
ister. It allows the time to be read with accuracy
up to the cycle, but this also implies that on multi-
processor systems the registers have to be synchro-
nized. Therefore, on multi-processor computers only
500 cycle precision can be guaranteed. With all the
additional overheads, the resolution is approximately
10ms. This is about 100 times better than the origi-
nal implementation and it is sufficient for the appli-
cations on which the Hyades project focuses. This
second part of the “High Resolution Timers” project
is still currently in development, both for the x86
part and for the IA-64 port.

5.2 LTT for IA-64

The Linux Trace Toolkit, more commonly known as
LTT, is a fully-featured tracing system for the Linux
kernel. It includes both the kernel components re-
quired for tracing and the user-level tools required
to view the traces.

The following are some of LTT’s main features:

• Linux kernel tracing capabilities with 48
unique trace points.

• Variable-length events minimizing overall trace
size.

• Micro-second event time-stamps.

• Minimal performance overhead (< 2.5%).

• Completely configurable trace option during
kernel build.

• Multi-platform support: i386, PowerPC,
S/390, SuperH, ARM, and MIPS.

• Fully-featured graphical user interface with
event graph, system and per-process analysis,
and raw event descriptions.

• Single copy of traces between kernel-space and
permanent storage.

• User-selectable and dynamically configurable
event trace mask.

• Dynamic creation and logging of custom events
both in kernel and in user space.

• Support for custom formatting of custom
events.

• General hooking interface available within ker-
nel trace facility.

Many of these features hide many sub-features
which contribute to the completeness of the toolset
provided.

6 Results

6.1 ARTiS Performance Evaluation

While implementing the ARTiS kernel, we conducted
some experiments in order to evaluate the benefits of
the approach in terms of interrupt latency. The mea-
surement program is available on the ARTiS web-
page [6]. We distinguished two types of latency, one
associated with the kernel and the other one associ-
ated with user tasks.

Measurement method The experiment con-
sisted of measuring the elapsed time between the
hardware generation of an interrupt and the exe-
cution of the code concerning this interrupt. The
measurement task sets up the hardware so it gener-
ates the interrupt at a precisely known time, then
it gets unscheduled and waits for the interrupt in-
formation to occur. Once the information is sent,
the task is woken up, the current time is saved and
the next measurement starts. This scheme is typi-
cal from real-time applications: waiting for a hard-
ware event to happen, processing data according to
the new parameters, sending new information and
returning to waiting mode. For one interrupt there
are four associated times, corresponding to different
locations in the executed code (Figure 4):

• t′
0
, the interrupt programming,

9



• t0, the interrupt emission, it is chosen at the
time the interrupt is launched,

• t1, the entrance in the interrupt handler spe-
cific to this interrupt,

• t2, the entrance in the user-space RT task.

others tasks

monitoring task

kernel

interuption

hardware

t’0

t0

t2

t1

time

FIGURE 4: Chronogram of the tasks in-
volved in the measurement code.

We conducted the experiments on a 4-way Ita-
nium II 1.3GHz machine. It ran on an instrumented
Linux kernel version 2.6.4. The itc (a processor reg-
ister counting the cycles) is the timer on which all the
measurements are based and the interrupt was gen-
erated with cycle accurate precision by the PMU (a
debugging unit available in each processor [13]).

Even with a high loading of the computer, bad
cases leading to long latencies are very unusual.
Thus, a large number of measures are necessary. In
our case, each test is composed of 300 million mea-
sures, making each test about 8 hours long.

Interrupt latency types From the three mea-
surement locations, two values of interest can be cal-
culated. Their interest comes from the ability to as-
sociate them to common programming methods and
also from the significant differences along the tested
configurations. Those two kinds of latencies can be
described as follow:

• The kernel latency, t1 − t0, is the elapsed
time between the interrupt generation and the
entrance into the interrupt handler function
(pfm_interrupt_handler() in our case). This
is the latency that a driver would have if it was
written as a kernel module following the usual
design method.

• The user latency, t2 − t0, is the elapsed time
between the interrupt generation and the exe-
cution of the associated code in the user-space
real-time task. This is the latency an real-time
application would have if it was written entirely
in the user-space. In order to have the low-
est latency, the application was notified via a
blocking system call (a read()).

The real-time tasks designed to run in user-
space are programmed using the usual and standard
POSIX interface. This is one of the main advantage
that ARTiS provides. Therefore, within the ARTiS
context, user latency is the most important latency
to study and analyze.

The current ARTiS configuration Although
ARTiS is not yet complete, the current version al-
ready implements the detection of real-time endan-
gering functions and can migrate the task from RT
CPU to NRT CPU. The dedicated load-balancing
mechanism is not yet present. However, the orig-
inal load-balancing has been modified so as not to
run on RT CPUs, in order to avoid inter-locking be-
tween CPUs. Migration from a NRT CPU to an RT
CPU is still present so that RT CPUs can be used
during their idle time. In respect to the latency mea-
surements this configuration should give results very
similar to the final version of ARTiS.

Measurement conditions The measurements
have been conducted under different conditions. We
have identified two unrelated parameters which effect
the interrupt latencies:

• The load. The machine can be either idle
(without any load) or highly loaded (all the
programs described below are executed concur-
rently).

• The kernel preemption. When activated,
this new feature of the 2.6 Linux kernel al-
lows tasks to be rescheduled even if kernel code
is being executed. This configuration of the
Linux kernel corresponds to the so-called “pre-
emptible Linux kernel”.

Of the four possible configurations we will not
present the combination of a preemptible kernel and
an idle load because it is very similar to the normal
kernel without load. However, we will present the
measurements on an ARTiS kernel with load.

In the experiments, the system load consisted of
busying the processors with user computation and
triggering a number of different interruptions in or-
der to maximize the activation of the inter-locking
and the preemption mechanisms. To achieve this
goal, four types of program corresponding to four
loading methods were used:

• Computing load: A task that executes an
endless loop without any system call is pinned
on each processor, simulating a computational
task.

• Input/output load: The iodisk program
reads and writes continuously on the disk.

10



Kernel User
Configurations 99.999% Maximum 99.999% Maximum

standard Linux idle 78µs 94µs 82µs 220µs
standard Linux loaded 77µs 101µs 2.829ms 42ms
Linux with kernel preemption loaded 76µs 101µs 457µs 47ms
ARTiS loaded 71µs 101µs 91µs 120µs

TABLE 2: Kernel/User latencies of the different configurations.

• Network load: The ionet program floods
the network interface by executing ICMP

echo/reply.

• Locking load: The ioctl program calls the
ioctl() function that embeds a big kernel lock.

Observed latencies Table 2 summarizes the mea-
surements for the different tested configurations.
Two values are associated with each latency type
(kernel and user). “Maximum” corresponds to the
highest latency noticed throughout the 8 hours. The
other column displays the maximum latency of the
99.999% best measures. For this experiment, this is
equivalent to not counting the 3000 worse case laten-
cies.

Although the study of an idle configuration does
not bring very much information by itself, it gives
some comparison points when measured against the
results of the loaded systems. The kernel latencies
are nearly unaffected by the load. However, the user
latencies are several orders higher. This is the typ-
ical problem with Linux, simply because it was not
designed with real-time usage in mind.

The kernel preemption does not change the la-
tencies at the kernel level. This was expected as
the modifications focus only on scheduling faster user
tasks, nothing is changed to react faster on the ker-
nel side. However, with regard to user-space laten-
cies, a significant improvement can be noticed in the
number of observed high latencies: 99.999% of the
latencies are under 457µs instead of 2.829ms. Un-
fortunately, the maximum value of these user-space
latencies is very similar, in the order of 40ms. This
enhancement permits soft real-time with better re-
sults than the standard kernel but in no way does it
allow for hard real-time, for which even one latency
over the threshold is unacceptable.

The results given by the real ARTiS implemen-
tation are significantly different with a maximum of
120µs for user latencies. This is much lower than
the limit we have fixed of 300µs. The system can
be considered as a hard real-time system, insuring
real-time applications very low interrupt response.

6.2 Adeos Performance Evaluation

The relevant test for Adeos is the measurement of
the interrupt latency, also named above kernel la-
tency due to the fact that all activity is in the kernel
perimeter. The test consists in a periodic activation
of a hardware interrupt at 1kHz frequency. It has
been run on two different architectures

x86 a bi-processor 2.4GHz Xeon.

IA-64 a quad-processor 1.3GHz IA-64. For UP
measurements, the kernel has been instructed
at boot time to manage only one processor.

The tests were run under the following load con-
ditions:

• a parallelised kernel compilation running in
loop ;

• a network interrupt flood (using the ping -f
command from another machine)

1kHz UP/IA-64
Load Max jitter Avg jitter
idle 40 µs 13 µs
loaded 60 µs 17.5 µs

TABLE 3: interrupt latency on UP/IA-64

1kHz SMP/IA-64 4x
Load Max jitter Avg jitter
idle 60 µs 13.5 µs
loaded 70 µs 17.5 µs

TABLE 4: interrupt latency on SMP/IA-
64

1kHz SMP/x86 2x
Load Max jitter Avg jitter
idle 54 µs 8 µs
loaded 86 µs 17.5 µs

TABLE 5: interrupt latency on SMP/x86

11



Comparing results from tables 3 and 4 show
that degradation from SMP architecture is less on
a loaded system than on an idle system.

Similarly, comparing results from tables 4 and 5
show that performance is not depending so much on
processor capabilities but more on the memory and
cache subsystem. We can infer that this hardware
is of better quality on a high-end server such as the
IA-64 4-ways than on a middle-range one.

Overall, the latency jitter provided by Adeos on
SMP systems is similar the one observed on UP sys-
tems. And in any case (cf. table 2) it represents an
improvement over Linux worst-case latencies.

7 Conclusion and perspectives

The comparison between mono-processor and multi-
processor latencies confirms the initial expectations.
The real-time performance is better in a mono-
processor configuration. But, surprisingly, the differ-
ence with SMP configuration show that degradation
caused by concurrent accesses to memory, system bus
and shared resources is relatively low.

Each of the above techniques has already given
very promising results in improving determinism of
execution for multi-processor systems. By examining
real-time issues under different viewpoints, namely
scheduling and interrupt management, we obtained
significant improvements over the Linux 2.6 “pre-
emptible” kernel. We expect to have confirmation
of these improvements at application level with min-
imal software changes. This work could pave the way
for an extended, more flexible Linux kernel configu-
ration, whose capabilities are set up in order to bet-
ter fit application requirements, thus enhancing the
pervasiveness of Linux in multi-processor systems.

References

[1] ITEA Hyades home page; http://www.

hyades-itea.org.

[2] Friedrich Seifert, Hugo Kohmann SCI Socket,
a Fast Socket Implementation over SCI http:

//www.dolphin.com.

[3] Karim Yaghmour. Adaptative Domain Envi-
ronment for Operating Systems http://www.

opersys.com.

[4] Philippe Gerum RTAI/fusion http://www.

rtai.org.

[5] George Anzinger. High Resolution Timers Home
Page; http://high-res-timers.sourceforge.
net.

[6] Laboratoire d’informatique fondamentale de
Lille, Université des sciences et technologies de
Lille. ARTiS home page. http://www.lifl.fr/
west/artis/.

[7] Stephen Brosky. Symmetric multiprocessing and
real-time in PowerMAX OS. White paper, Con-
current Computer Corporation, Fort Lauderdale,
FL, 2002.

[8] Steve Brosky and Steve Rotolo. Shielded proces-
sors: Guaranteeing sub-millisecond response in
standard Linux. In Workshop on Parallel and
Distributed Real-Time Systems, WPDRTS’03,
Nice, France, April 2003.

[9] Éric Piel, Philippe Marquet, Julien Soula,
and Jean-Luc Dekeyser. Load-balancing for a
real-time system based on asymmetric multi-
processing. In 16th Euromicro Conference on
Real-Time Systems, WIP session, Catania, Italy,
June 2004.

[10] Sillicon Graphics, Inc. REACT: Real-time in
IRIX. Technical report, Sillicon Graphics, Inc.,
Mountain View, CA, 1997.

[11] John D. Valois. Implementing lock-free queues.
In Proceedings of the Seventh International Con-
ference on Parallel and Distributed Computing
Systems, Las Vegas, NV, October 1994.

[12] Éric Piel. Linux Temps-Réel en environnement
HPC - Mise en place de fonctionnalités temps-réel
sur des systèmes multi-processeurs IA-64 sous
Linux Internship report, Bull, Grenoble, France,
February 2003.

[13] David Mosberger and Stéphane Eranian. IA-
64 Linux Kernel: Design and Implementation
Prentice-Hall, 2002.

12


