
Integration of Real-Time Services in User-Space Linux ∗

Gilles Chanteperdrix and Alexis Berlemont
Openwide

Paris, France

{chanteperdrix,berlemont}@openwide.fr

Dominique Ragot and Philippe Kajfasz
Thales

Colombes, France

{dominique.ragot,philippe.kajfasz}@fr.thalesgroup.com

Abstract

Among solutions to allow sub-millisecond determinism for real-time Linux applications, the co-kernel
approach is found in many products and is probably to most widely known - and used - technique. In
the past few years, this approach evolved, at least in the RTAI project, towards a better integration of
the co-kernel deterministic services to Linux:

- the co-kernel interfaces were brought to user-space, allowing real-time applications to run under
memory protection;

- any thread was allowed to use alternatively the two interfaces, suppressing the need for splitting the
application into a Linux-based and real-time parts and for communication facilities between these
two parts.

In this paper, we describe a versatile software architecture which, in our view, is the next step towards
the seamless integration of real-time to the Linux user-space. Based on the Adeos technology, it improves:

- the determinism of a real-time task calling Linux services, by preventing events of lower priority
from causing any disturbance;

- the integration of the two application programming interfaces, by redirecting Linux system calls to
their real-time counterpart.

We present the mechanisms used to achieve these goals and that are included in a deterministic
intensive computing (DIC) domain: interrupt dispatch control, thread management, services integration,
system call handling mechanism. The integration of these real-time services in the POSIX API is also
discussed. Finally, performance results for different architectures are presented.

1 Introduction

Real-time multiprocessor systems have been used for
a long time in a number of domains ranging from
medical imaging to aeronautics and telecommunica-
tions. The most widespread approach is to use MPP
systems with distributed memory and high-speed
links between processors. The software consists in a
RTOS for each processor with inter-processor com-
munication libraries highly dependent on communi-

cation infrastructure. These architectures are highly
efficient and offer the best deterministic capabilities.
However, with the increasing part of software in these
applications, it is very difficult to reuse designs opti-
mized for one architecture to another, making soft-
ware migration costs very high in order to benefit
from hardware improvements.

On the other hand, SMP systems, well-suited
for enterprise application, have not been used for
real-time applications. From a software develop-

∗This work has been done in the scope of the Hyades project, ITEA 01010

1



ment methodology perspective, these systems offer
a dramatic improvement over MPP systems at the
expense of overall performance. For real-time sys-
tems, our motivation is to determine how the SMP
architecture may be managed by a GPOS in order
to provide real-time capabilities. We have chosen
to extend the popular Linux operation system with
specific real-time features under the constraints that
they must have already been proved in other contexts
and that they could be adapted to SMP without re-
quiring a fork from the Linux codebase.

2 HYADES Requirements
analysis

2.1 Real-time task profiles

The HYADES project [1] aims at supporting two ma-
jor real-time task profiles:

P1 Time-critical data acquisition tasks. Guar-
anteed low interrupt and dispatch latencies
(i.e. as forming the preemption latency) are
required for these high-priority tasks which
are expected to communicate with specialized
hardware in a timely manner. Since the timeli-
ness is critical, it has been admitted that such
tasks may not be under the permanent control
of the Linux kernel when operating, so that
scheduling decisions could always be made re-
gardless of the regular Linux kernel state. This
exemption however calls for a specialized API
for programming such tasks, independent from
the regular Linux API. Additionally, ad hoc
communication paths between those time crit-
ical tasks and the rest of the Linux system
would be created for fast and efficient data ex-
change.

P2 Deterministic Intensive Computing (DIC) tasks.
Whilst less prioritary than acquisition tasks,
these activities still require bounded latencies,
reliable execution determinism, and a strict
priority management, so that their allotted
runtime quanta are never significantly pertur-
bated by non real-time activities from any ex-
isting processor. Such tasks must run as reg-
ular Linux processes according to the FIFO
scheduling policy, so that the regular Linux
programming model is kept.

2.2 Structural issues

The real-time sub-system envisioned for the
HYADES project has a special characteristic: it must

coexists on the same hardware with the general pur-
pose Linux kernel and applications. This fact raises a
number of structural issues which go well beyond the
basic needs for a real-time operating system; gener-
ally speaking, Linux kernel internal design promotes
fairness and throughput, at the expense of deter-
minism. Techniques used to cope efficiently between
fairness and short latency mainly tend to implement
an acceptable trade-off, according to results obtained
from experimentation.

In the merely unfair approach like a real-time
system should implement, the fairness attempt is a
major issue with respect to determinism. The net
effect is that nobody can predict that every code
path from the vanilla 2.6 Linux kernel will be pre-
emptible soon enough for serving interrupts and/or
rescheduling tasks. This might be acceptable for
jitter-tolerant real-time activities, but still, time-
critical ones (like stream-based acquisition systems)
could certainly not cope with such a risk. If Mon-
tavista’s preemptible kernel extension - which went
mainstream since 2.6 - partly solves the kernel gran-
ularity issue by limiting the non-preemptible sec-
tions to those protected by SMP spinlocks, no formal
guarantee exists that some unidentified code path
could not create unacceptable jitter for time critical
tasks. The consequences of such uncertainty could
be made even worse whenever a ”foreign” code (i.e.
un-audited by the HYADES project) is integrated
into the Linux kernel, as the usual maintenance of
the codebase goes.

Short bounded preemption latency and high ex-
ecution determinism in kernel 2.6 cannot be guaran-
teed in a way HYADES real-time tasks can operate
safely. Fine grained Linux kernel preemptibility now
available with 2.6 does not help prioritizing the inter-
rupt load from a real-time point of view. This means
that low-priority interrupt post-processing handlers
(i.e. bottom-halves) could still preempt high-priority
time critical Linux tasks under this model, thus in-
troducing unbounded latencies.

2.3 SMP issues

Like any SMP kernel architecture, Linux is not im-
mune from high contention for shared resources. An
application executing kernel services may be delayed
while attempting to enter a critical section which
is currently executed by another activity on a dif-
ferent processor. Under some circumstances, these
delays caused by activities not even related to the
real-time processing could unacceptably impede the
performance of time-critical tasks. A significant ex-
ample of this problem can be taken from the Vir-
tual File System (VFS) implementation, particularly
in the kernel support for the ioctl()service pro-

2



vided by most Linux drivers. The generic kernel code
sys_ioctl)) holds a system-wide spinlock while exe-
cuting the driver-provided ioctl()call upon request
from a user-space task. The spinlock is held with
interrupts enabled, which subsequently allows inter-
rupts to preempt the ioctl()code. Since pending
interrupt bottom-halves would run on the interrupt
return path, the preempted code might be delayed
for several hundreds of microseconds, and sometimes
even induce millisecond-range delays, before the pre-
empted task can resume after the bottom-halves have
been executed (e.g. high networking pressure do pro-
duce such effects). Obviously, this behaviour would
have the additional side-effect of delaying from the
same amount of time any real-time task executing on
a different processor trying to issue an ioctl()call.
Unfortunately, ioctl()and other I/O support rou-
tines are the standard way for user-space tasks to
communicate with I/O drivers in the Linux program-
ming model, so this would be a significant problem
for real-time tasks aimed at time-critical data acqui-
sition. Whilst exacerbated, this example should not
be considered as one of a kind. Even if the ioctl()
lock could be locally dismissed under certain circum-
stances, there are various known locations in the ker-
nel code where priority inversions could occur this
way on other locks. Some lengthy non-preemptible
locations are probably still unknown, not to speak
of those which could appear as the mainline mainte-
nance of the 2.6 codebase evolves. The induced jitter
could probably remain acceptable with DIC tasks,
but certainly not with data acquisition ones.

3 Adding real-time features to

Linux

As a result of the above analysis, a plain vanilla
Linux 2.6 kernel could not meet the requirements
expressed by the HYADES project. However, differ-
ent technical paths have already been experimented
by third-parties to improve Linux’s determinism, but
at the time these lines are written, all of them are
based on the older 2.4 architecture. This said, most
if not all of these attempts are still compatible with
(or even present in) the new 2.6 architecture, so
analysing their pros and cons in this respect is still
relevant.

3.1 Native kernel preemptability

The figure above illustrates how non-preemptible
sections could cause priority inversions by prevent-
ing a high priority task from being scheduled for a
long time. So, it is critical to reduce the amount
of time spent in non preemptible sections by giving

frequent opportunities for the kernel to reschedule
its tasks. There are many ways to insert efficient
scheduling points, kpreempt proposes a systemic so-
lution, also know as “involuntary preemption”: each
time a thread unlocks a spinlock a scheduling proce-
dure is launched. It is a simple and clever way to dis-
seminate scheduling points in kernel code considering
the number of spinlock handlings executed in Linux.
The kpreempt solution has been natively added the
kernel 2.6, thus compared to the 2.4 architecture, we
obtain a finer granularity for the rescheduling proce-
dure call.

FIGURE 1: Priority inversion

Recently, a second approach to providing a finer
granularity to the Linux kernel has been developed
by RedHat’s engineer and main Linux contributor
Ingo Molnar known as the “voluntary preemption”
scheme. Only available as development-level patches
for the x86 platform as of now, this scheme adds ex-
plicit rescheduling points in the 2.6 kernel at places
which have been otherwise designated as being po-
tentially sleeping points of the code for debugging
purposes. New patches are routinely issued to fix in-
stabilities which have been introduced, or add new
explicit preemption points to solve latency spots
which have found experimentally. The voluntary pre-
emption patches are mainly tested by the Linux au-
dio development community right now. The main
problem this solution faces comes from the never
ending variety of code which could add lengthy non-
preemptible sections of code, such as network drivers,
not to speak of the network protocol stack itself.

3.2 Processor shielding

Concurrent Computer Corporation [6] has devel-
oped a Linux-based real-time system leveraging SMP
hardware to reach sub-milliseconds guaranteed re-
sponse time. This company has initially developed
this technology during the past ten years on pro-
prietary UNIX SVR4 systems, before porting it to
Linux around 1999 and improving it since then. The
shielded processor concept dedicates selected proces-
sors in a symmetric multi-processing system for real-
time components of an application.

3



In their Linux variant called RedHawk, high-
priority tasks and high-priority interrupts are bound
to a set of dedicated processors, which are thus said
”shielded” from negative interaction caused by non
real-time activities occuring on other processors.

But sub-millisecond guarantee using the CPU
shielding technique also implies locking out most
of the interrupts on the shielded processor (i.e. to
prevent bottom-halves from perturbating the tim-
ing), including the standard periodic timer. Unfor-
tunately, doing so requires to specialize interrupts on
a per-processor basis, so that real-time applications
can still receive a selected set of interrupt sources in
order to operate properly. Even if interrupt routing
can be done dynamically at the programmable inter-
rupt controller level to fulfill these needs when the
application starts, the overall scheme remains mostly
static by dedicating a pre-defined set of CPUs to the
real-time duties, since interrupt programming can-
not be a real-time operation. This induces two major
flaws: first, CPUs dedicated to real-time are mostly
under-utilized; and secondly, since a non real-time
CPU cannot be converted to a real-time one on-the-
fly as the current need for awakening a real-time ap-
plication may require, the scalability of such scheme
is rather problematic. Additionally, the CPU shield-
ing technique does not address the following SMP-
specific priority inversion problem caused by mutual
exclusion constructs, when a non real-time activity
running on a CPU blocks a real-time task running on
another CPU for an unbounded amount of time, be-
cause it has been preempted by some IRQ handler(s)
while holding a contended lock.

3.3 Threaded interrupt model and
sleep mutex-based locking

TimeSys [10] has developed a Linux kernel variant
implementing a new interrupt model and shared re-
source locking scheme to reduce the overall latencies.
Basically, this approach boils down to having inter-
rupt service routines managed as schedulable objects
(i.e. kernel threads), and SMP spinlocks replaced
by ”sleep mutex” objects supporting priority inheri-
tance.

This approach has at least two strong advantages
over the native preemptible kernel. First, interrupt
handlers have a scheduling priority just like any regu-
lar Linux process. This allows to assign critical tasks
higher priorities than the interrupt handlers’s them-
selves, instead of assigning these handlers an arbi-
trary high priority level, thus causing unwanted pri-
ority inversions. Second, the sleep mutex-based lock-
ing scheme dramatically improves the thread con-
currency, since contention on entry of critical sec-

tions are handled on a per-lock level, instead of lock-
ing out the rescheduling procedure on a per-CPU
level, like the vanilla 2.6 support for kernel preemp-
tion does. As often illustrated in the TimeSys lit-
terature, vanilla kernel preemption management is
like using a single traffic-light to control the traffic
of an entire city since disabling preemption during
any given critical section totally locks out reschedul-
ing opportunities for other threads. On the other
hand, sleep mutexes only stop threads which would
otherwise enter the critical section they specifically
protect. Coupled with priority inheritance manage-
ment, sleep mutexes prevent priority inversions, at
the expense of a careful use to prevent deadlocks.

However, Timesys’s approach has one major
drawback: it only addresses the preemptibility and
concurrency issues on uniprocessor systems by care-
fully modifying the interrupt sub-system and the ker-
nel locking scheme in ways that remain compatible
with Linux’s overall kernel design. Going beyond
these changes to address SMP determinism issues
would require dramatic modifications to the kernel,
likely leading to a fork from the original codebase.
Albeit a Linux variant should still be able to track
the mainline updates, radical changes such as design
updates would not allow it anymore. Since the 2.6
branch is quite young, it seems wiser to keep a direct
feed available from the mainline kernel tree so that
Linux community’s fixes are available to the Hyades
project at a reasonable integration cost, especially
for the non-mainstream ia64 architecture.

3.4 Concurrent real-time kernel

The most well-known approach for adding hard real-
time capabilities to Linux consists of embedding a
dedicated scheduler aimed at managing time-critical
tasks into the kernel. The RTLinux [7] and RTAI
[8] projects are the major representatives of this co-
kernel approach.

3.4.1 RTLinux

The implementation is two-fold: first, control of the
Linux interrupt sub-system is taken over by the co-
kernel using a technique known as the ”software
PIC”. Basically, this technique allows the co-kernel
to virtualize Linux’s access to the processor-based
interrupt mask, so that the co-kernel is always able
to receive external interrupts, regardless of the per-
ceived status of such mask on the Linux side. Sec-
ondly, a simplistic FIFO scheduler dispatches the
real-time application tasks embodied in dynamically
loadable kernel modules. Under this scheme, the
Linux kernel in its entirety becomes the lowest pri-

4



ority pseudo-task, and gets scheduled when no real-
time task is ready to run.

Since the Linux kernel code is fully interrupt-
ible by interrupts directed at the co-kernel, the pre-
emption latency is close to the hardware limits. La-
tency figures lower than a handful of microseconds
are commonly obtained with commodity x86 hard-
ware. Ports of co-kernel to ARM, PPC, Etrax or
MIPS cores already exists, thus demonstrating the
adaptability of such approach to various hardware
platforms. SMP x86 systems are also supported.

Real-time tasks are implemented using a specific
API since the regular Linux kernel services cannot
be invoked on behalf of their context. Since the nor-
mal Linux I/O infrastructure cannot be reused to de-
velop drivers, the latter must be reimplemented us-
ing non-standardized ad hoc support, for each data
source which needs to be accessed under real-time
constraints.

Using such systems also requires a careful de-
sign for applications, in order to separate the real-
time duty from the non real-time activities. The for-
mer will be embodied into kernel modules, the lat-
ter will live in user-space as regular Linux processes.
It is therefore required to implement non real-time
communication paths between both worlds, so that
they can exchange information as needed. For in-
stance, in a data acquisition application, the acqui-
sition loop will go to the kernel, and the archiver
and display processes will be implemented as regu-
lar Linux processes, receiving data end sending com-
mands from/to the kernel side by means of shared
memory or FIFO channels. Obviously, this particu-
lar dual-sided approach has a significant impact on
the overall design of the final application.

3.4.2 RTAI

RTAI started from the same approach as RTLinux,
but uses a different interrupt virtualization tech-
nique, based on the Adeos layer. On top of Adeos,
a hardware abstraction level further insulates the
generic RTOS code from the machine-dependent
core.

In order to reduce the impact of real-time con-
straints on the usual application design, the RTAI
project has developed a technology called ”LXRT”
allowing the real-time tasks to run in user-space, un-
der the usual memory protection scheme available to
regular Linux processes. The hard real time envi-
ronment execution can not be the Linux domain so
LXRT enables a mechanism of task migration. A
common task can be stolen from the Linux scheduler
and inserted in the RTAI LXRT scheduler. After
managing memory isssues, the current task is able to
run in the hard real time context provided by RTAI.

Nonetheless, this process can only use RTAI syscalls:
asking for Linux fonctionnalities automatically sends
the task back to the Linux context.

This means that real-time tasks can almost be
developed using the regular Linux programming
model. However, these tasks cannot re-enter the
Linux kernel while operating in hard real-time mode,
losing their real-time property when invoking a regu-
lar Linux system call, until they finally exit the Linux
kernel code.

A recent evolution of the RTAI technology, fu-
sion, leverages the achievements of the LXRT scheme
by re-implementing a compatible technology over a
new nanokernel technology, which is also extended
by a deeper integration between the regular Linux
and hard real-time execution models.

3.4.3 Shortcomings of the strict co-kernel

approach

Whilst sufficient to run simple to moderately com-
plex acquisition and/or control systems, mere co-
kernel solutions in kernel space have failed so far
delivering a viable environment for running com-
plex applications with real-time requirements span-
ning all over their implementation. Most of the time,
the co-kernel approach requires that some trade-offs
between determinism and feasibility are made for
the time critical part to live in isolation into the
Linux kernel space. This leads to constraints be-
ing arbitrarily relaxed for parts of the application
that could only fit into the Linux process space (e.g.
because of the availablity of some required operat-
ing system services), and usually suboptimal data
communication paths must be set between the real-
time kernel space handling the time critical work,
and the regular Linux process mates running with-
out strict real-time guarantees. This approach leads
to highly constrained design choices aimed at set-
ting the proper border line between critical and non-
critical processings, so that one could then separate
them ”organically”, with the additional burden of
using two different programming models for their re-
spective implementation (i.e. kernel programming
for time-critical tasks and regular Linux process pro-
gramming for soft-realtime and non-realtime tasks).
Obviously, such intrusive re-engineering process is
not something which could be undergone easily and
at low cost with large pre-existing real-time appli-
cation codebases such as the ones envisioned for the
HYADES project.

5



4 Development methodology

The HYADES project is conducted using a three-fold
approach with respect to development and testing:

- Development of the core functional parts (DIC)
initially took place on SMP/x86 systems. Val-
idation, testing and preliminary performances
measurements have been conducted on x86 sys-
tems, so that further work on SMP/IPF plat-
forms starts with a reasonably stable codebase.

- IPF-specific software needed to port the work
previously achieved on SMP/x86 platforms
have been initially written on HP’s SKI ia64
instruction-set simulator. The preliminary
validation phase of each component has also
been conducted in this simulated environ-
ment, so that many ia64-specific bugs have
been trapped and fixed more easily than on
real hardware, thanks to the ability to re-
produce them systematically. Adeos/ia64 and
other architecture-dependent components of
the HYADES system are among the software
which has been initially developped using a
simulation approach.

- According to our internal project milestones,
simulation-validated components have been
periodically tested on real SMP/IPF hard-
ware, while the were progressively refined on
SMP/x86. Recently, the HYADES project has
eventually entered its global validation phase
where the whole system is being tested, fixed
and tuned on SMP/IPF.

5 HYADES execution model

In order to achieve a high degree of determinism
while keeping the Linux programming model avail-
able to the real-time tasks in user-space, it has been
decided to implement a hybrid approach, segregating
the real-time constraints according to the require-
ments with respect to scheduling latency and execu-
tion determinism, thus defining distinct performance
modes. Each performance mode provides its own
set of services, but the transition of any real-time
task between each mode is a transparent and time-
bounded operation. At any point in time, real-time
tasks in a HYADES system operate in one of the two
following performance modes:

5.1 Micro-second, PRIMARY level
performance mode

In this mode, a real-time task is guaranteed a very
low scheduling latency, and it cannot be delayed by

the regular operations of the Linux kernel in any
case. Here, the worst-case scheduling jitter is typi-
cally bounded to a few tenths of micro-seconds, while
still running in the memory management context of
a user-space Linux process.

A real-time task executing in the primary per-
formance mode has access to a set of extended
HYADES-specific system calls which implementa-
tion can efficiently operate in such context. In or-
der to ease the application programming, selected
regular Linux services can even be impersonated by
HYADES system calls, providing a high performance
replacement of the former, while still keeping the
standard POSIX call interface at the application
level.

Any call to a regular Linux system call from this
mode begets a transition to the secondary perfor-
mance mode, so that the Linux kernel is properly
re-entered to execute the requested service.

5.2 sub milli-second, SECONDARY
level performance mode

In this mode, a real-time task is guaranteed a
bounded scheduling latency only limited by the gran-
ularity of the Linux kernel internals, and it cannot
be preempted by any regular kernel activity includ-
ing Linux interrupt handlers, batched RCU work or
other non-HYADES tasks. This performance mode
is obtained by the combination of the preemptible
Linux kernel features, which HYADES extends by
additional protections against priority inversions.

A real-time task executing in the secondary per-
formance mode has access to the full set of regular
Linux services. This said, only the services having
a complexity compatible with the real-time require-
ments of the applications should be used. For this
reason, the preemptible kernel configuration option
should be enabled for the Linux kernel embedding
the HYADES RTOS, and the newest NPTL thread
interface should be used, since it is far more efficient
performance-wise than the older LinuxThreads im-
plementation.

Any call to a extended HYADES system call
from this mode begets a transition to the primary
performance mode, which does not incur any delay.

5.3 Rationale

This two-fold execution model is motivated by the
following issues:

The Linux kernel essentially follows a GPOS de-
sign, and as such, many portions of its implemen-
tation favour throughput over preemptibility. The

6



implementation of the I/O, network, virtual mem-
ory management and interrupt sub-systems to name
a few illustrate this clear choice, where interrupt pro-
cessing and context switches could be delayed by an
unbounded amount of time in order to bring the cur-
rent operation to completion first, regardless of any
priority considerations. Because the latter option is
strictly incompatible with the real-time duty of the
HYADES RTOS, simply relying on a modification of
the Linux scheduling algorithm falls short of bring-
ing the deterministic behaviour we need; the issue of
obtaining the proper kernel granularity with respect
to the real-time requirements of the HYADES ap-
plications must be addressed instead. The primary
performance mode (i.e. micro-second level) has been
designed to fullfil the most stringent requirements of
real-time tasks usually performing closed loop pro-
cessing using a minimalistic set of system services.

Augmenting the preemptibility by adding invol-
untary or voluntary preemption points in the ker-
nel in order to reduce the average time between two
rescheduling points is a fundamental improvement
of the Linux 2.6 series over the older 2.2 and vanilla
2.4 series. This said, it is usually admitted by the
main Linux developers that some non-preemptible
execution paths must remain in the standard kernel,
either because introducing some form of conditional
rescheduling there would go against the throughput
of the global system, or because this might even
cause unstability. Additionally, and maybe most im-
portantly, these optimisations are to be considered in
the average case only, which is not sufficient to grant
the worst case guarantee real-time performance re-
quires. The secondary performance mode (i.e. sub
milli-second) has been designed to leverage the con-
tinuous improvement of the Linux kernel granularity
and the richness of its native API, while removing
the known causes of execution jitter in a way which
is not currently addressed by the mainline develop-
ment branch.

Because HYADES is targeted to medium to large
IPF SMP systems, issues are raised by the increased
contention of resources between CPUs. Among
them, priority inversions due to contentions on com-
mon resources between real-time and non real-time
activities running on different CPUs must be ad-
dressed, because they are known to be the major
source of loss of determinism. Additionally, the spe-
cialisation of CPUs among the real-time and non
real-time duties must not prevent the HYADES sys-
tem from being scalable. In other words, any CPU
which is busy with non real-time duties in the sys-
tem should be able to switch to real-time activities
as the real-time workload requires it, in a minimal
and always bounded amount of time. To this end,

the primary and secondary performance modes can
be mixed and inter-operate in order to cope with the
perturbations induced by the regular GPOS activity
of the Linux kernel on the HYADES real-time tasks.

A pillar of the HYADES RTOS proposal is its
ability to ease the migration of existing real-time ap-
plications over the real-time enabled Linux kernel.
To this end, the preservation of the Linux program-
ming model in user-space while keeping a high de-
gree of determinism justifies the matter of segregat-
ing distinct levels of real-time requirements, so that
the most adapted execution model is always used for
the real-time tasks. The HYADES RTOS ensures
that those levels are seamlessly integrated to the pro-
gramming environment, and consistent with respect
to the application interface.

To sum up the above points: transforming the
Linux kernel in a pure RTOS implementation would
lead to anything but Linux, likely losing the ABI
compatibility or parts of the programming model in
the same move, which would lead to the inability of
recycling the existing Linux applications and kernel
components like drivers. The evolution of the Linux
kernel regarding fine-grain granularity support in the
past years also showed that only fixing latency spots
as soon as they are discovered experimentally in the
vanilla kernel code - provided they could be fixed in
the first place - just lowers the average interrupt and
scheduling latencies, not the worst case figures we
are interested by.

6 Components of the Hyades

real-time/SMP system

Having the Linux GPOS and an efficient RTOS ex-
tension to coexist on the same SMP machine requires
to solve the following issues:

• Worst case interrupt latency must be close to
the hardware limit, so that the real-time events
can be processed in a timely fashion without
encurring unbounded delays, regardless of the
current activity of the GPOS. For this rea-
son, interrupts must be prioritized, so that the
RTOS is granted an absolute priority for han-
dling them before the GPOS kernel. The Adeos
nanokernel is used to provide this feature.

• Due to the differences of the various IPF im-
plementations, the machine-dependent services
used to implement some real-time controls not
provided by Adeos should go to a hardware ab-
straction layer (HAL), hiding the architecture-
specific details under a normalized low-level
programming interface.

7



• Since we aim at keeping the regular user-space
programming model and API for the real-time
applications, a mean must be found to pre-
vent deterministic processing tasks running un-
der Linux control from being preempted by
asynchronous Linux activities such as inter-
rupt handlers, software interrupts (e.g. bot-
tom halves), or RCU callbacks which could in-
duce unbounded execution latencies. This is
especially important for SMP configurations,
since such preemptions could cause priority in-
versions, would a resource contention arise be-
tween an interrupted processor holding a criti-
cal section while running a non-prioritary task,
and another processor running a prioritary task
which requires to enter the same critical sec-
tion. An interrupt shield is required between
Linux and lower-end components.

• Real-time services which cannot be provided by
the regular Linux API must be made available
from an additional system component aimed at
supporting Deterministic Intensive Computing
(DIC) applications. Additionally, some exist-
ing Linux services which could not be used in
time-critical applications - mainly for perfor-
mance reasons and/or lack of determinism -
need to be seamlessly re-implemented by deter-
ministic HYADES counterparts. An illustra-
tion of such service is the standard nanosleep()
feature, whose timing precision depends on the
current value of the periodical system tick.
Since Linux/IPF uses a periodical time source
rated at 1024Hz, the nanosleep() service cannot
be used by HYADES applications demanding
more accurate timings.

• Real-time events such as interrupts directed at
HYADES real-time tasks must trigger the im-
mediate rescheduling of those tasks, regardless
of the current internal state of the Linux ker-
nel. At that point, the real-time tasks have the
opportunity either to run HYADES extended
system calls or internal computations with no
delay, or issue regular Linux system calls. In
the latter case, the real-time tasks are migrated
transparently under the control of the regular
Linux scheduler and run as high-priority tasks,
but still non-preemptible by any regular ker-
nel activity including Linux interrupt handlers,
batched work or other tasks.

Providing a seamless integration of the RTOS
services into the original Linux ABI additionally re-
quires to be able to intercept and redirect system
calls issued by the regular applications. The result-

ing architecture for Hyades is shown in the figure
below:

FIGURE 2: The HYADES Architecture

Since the Adeos nanokernel [5] is a mature Free
Software technology offering all of these core facili-
ties currently to x86, PowerPC and ARM platforms,
it has been decided to port it to the IPF architec-
ture [2]. Additionally, the porting experience gath-
ered by the RTAI project [9] which already uses
Adeos as its base technology should be of direct in-
terest to the HYADES project.

6.1 the Adeos nanokernel

The purpose of Adeos is to provide a flexible environ-
ment for sharing hardware resources among multiple
operating systems, or among multiple instances of a
single OS. To this end, Adeos enables multiple kernel
components called domains to exist simultaneously
on the same hardware. None of these domains nec-
essarily see each other, but all of them see Adeos.
A domain could be a complete OS, but there is no
assumption being made regarding the sophistication
of what’s in a domain. In its current development
stage, Adeos allows to share hardware interrupts and
system-originated events like traps and faults with
the Linux kernel.

Adeos allows to control of the flow of hardware
interrupts deterministically without any interference
of the Linux kernel. Such control includes intercept-
ing, masking and prioritizing thoses interrupts. Ab-
solute preemptibility of any section of the Linux ker-
nel code by interrupts, regardless of the perceived
interrupt mask, is obtained by a common technique
used in co-kernels based on the Optimistic Interrupt
Protection scheme [3]. Adeos provides a facility to
intercept Linux system calls, which in turn would
allow to extend the regular programming API with
dedicated HYADES system calls.

8



Generally speaking, Adeos forces Linux to share
critical system resources with Adeos domains avail-
able as modules or statically linked into the kernel,
according to a given priority scheme (e.g. such code
might need to handle processor interrupts and being
notified of kernel syscalls issued by any application
before the Linux kernel code handles them).

6.1.1 Adeos fundamentals

The fundamental Adeos structure is the chain of
client domains asking for event control. A domain
is a Linux kernel-based software component which
can ask the Adeos layer to be notified of:

• Every incoming hardware interrupt.

• Every system call issued by Linux applications.

• Other system events triggered by the Linux
kernel code.

Adeos ensures that events are dispatched in an
orderly manner to the various client domains, so it is
possible to provide for determinism. This is achieved
by assigning each domain a static priority.

This priority value strictly defines the delivery
order of events to the domains. All active domains
are queued according to their respective priority,
forming the ”pipeline” abstraction used by Adeos to
make the events flow, from the most to the less priori-
tary domain. Incoming events (including interrupts)
are pushed to the head of the pipeline (i.e. to the
most prioritary domain) and progress down to its
tail (i.e. to the less prioritary domain).

In order to defer the interrupts dispatching so
that each domain has its own interrupt log which gets
eventually played in a timely manner, Adeos imple-
ments the ”Optimistic interrupt protection” scheme
as described by [4].

6.1.2 Interrupt propagation

When a domain has finished processing all the pend-
ing interrupt it has received, it calls a special Adeos
service which yields the CPU to the next domain
down the pipeline, so the latter can process in turn
the pending events it has been notified of, and this
cycle continues down to the less prioritary domain
of the pipeline. The stage of the pipeline occupied
by any given domain can be ”stalled”, which means
that the next incoming hardware interrupts will not
be delivered to the domain’s handler(s), and will
be prevented from flowing down to the less priori-
tary domain(s) in the same move. While a stage is
stalled, interrupts accumulate in the stalled domain’s
log, and eventually get played when this stage of the

pipeline is unstalled. Adeos has two basic propaga-
tion modes for interrupts through the pipeline, which
are defined on a per-domain, per-interrupt basis.

In the implicit mode, any incoming interrupt is
automatically marked as pending by Adeos into each
and every receiving domain’s log accepting the inter-
rupt source. In the explicit mode, an interrupt must
be propagated ”manually” if needed by the interrupt
handler to the neighbour domain down the pipeline.

FIGURE 3: Adeos domains

As illustrated above, the interrupts flow down
the pipeline from the highest prioritary domain to
the lowest one. The Linux kernel is itself encom-
passed into an Adeos domain (i.e. the Root do-
main) as part of the initialization chores of an Adeos-
enabled Linux system.

On a SMP system, each processor receives inter-
rupts and generates exceptions. Adeos has to set up
per-cpu stages inside the pipeline and instantiate one
domain thread per cpu in order to process the events
flowing through them.

6.2 The real-time HAL

Even if Adeos already provides an architecture-
independent interface to the low-level resource man-
agement services, HYADES still needs an intermedi-
ate layer exporting strictly real-time oriented basic
services. To this end, some architecture-dependent
code is provided, aside of using the native Adeos ca-
pabilities. The extended programming of the IPF
hardware timer source and its calibration are among
the features provided by such layer.

The real-time HAL is provided as a removable
kernel module which builds most of its services upon
the Adeos nanokernel interface, and partly by provid-
ing an ad hoc implementation of real-time oriented
services targeted to the IPF architecture. The HAL
is a building block for the DIC domain.

6.3 The interrupt shield

Deterministic control of the execution latency which
must remain under acceptable bounds is a key part of
this proposal. Because integrating a RTOS domain
into a GPOS environment definitely creates runtime
perturbations in both, we need to make sure that
real-time activities are not delayed by regular Linux

9



ones. Since we chose to keep the Linux program-
ming model in user-space available for the HYADES
applications, relying on the mere isolation of the
RTOS domain in supervisor/kernel space to secure
this property - a la RTLinux for instance - is not an
option. However, keeping the real-time activities into
the Linux realm opens a broad range of priority con-
flicts raised by non real-time asynchronous activities
which could preempt the real-time tasks. Execution
of interrupt bottom-halves and scheduled batches of
work (e.g. RCU, work queues) can be triggered from
a fair number of places in the Linux kernel, includ-
ing from some critical places such as before return-
ing control to the application after a system call has
completed or an interrupt has been processed.

A typical priority inversion which occurs when
a non real-time Linux task is preempted by some
asynchronous Linux activities while it holds an inter-
processor lock contended by a real-time Linux task.
In such a case, the execution determinism of the real-
time task is impacted by the duration of the asyn-
chronous code, which delays the release of the inter-
processor lock, thus blocking the execution of the
real-time task for the same amount of time. Since
inter-processor locks are almost everywhere in the
Linux kernel, the odds to encounter such kind of pri-
ority conflict are high if the real-time tasks are al-
lowed to run regular Linux services. Since we want
the broader set of Linux services to remain available
to the real-time tasks, it is just not relevant to switch
those tasks out of the real-time realm when they en-
ter a contention point: we must allow these tasks
to go through the critical section as fast as possible
without incurring priority inversion due to unwanted
preemption.

To this end, the HYADES RTOS uses the un-
derlying Adeos support to build a software barrier
which shields the entire Linux kernel from non real-
time interrupts when real-time activities are running
under its control.

6.4 The DIC domain

The core of the HYADES real-time system is imple-
mented in an Adeos domain called DIC (i.e. Deter-
ministic Interrupt Computing), embodied in a regu-
lar module inside the Linux kernel. This domain has
four major responsabilities :

Promoting regular Linux tasks to high-priority
HYADES DIC tasks. Providing support for very
high-resolution timers to the DIC tasks, with 50 us
worst-case precision. This support does not rely
on the native high-resolution timer support for 2.6
which lacks determinism and even stability for SMP
systems. Operating the interrupt shield to protect
the running DIC tasks from unwanted preemption.

Ensuring the immediate rescheduling of the DIC
tasks upon receipt of a real-time event.

To this end, the DIC domain has a higher prior-
ity than Linux in the Adeos pipeline, so that external
interrupts and system calls which need to be handled
in real-time mode have absolute priority over regular
Linux activities. Those real-time events are then im-
mediately handled by the DIC domain directly. The
core part of the DIC domain in charge of the most
critical operations is called the controller. It imple-
ments an autonomous scheduling system able to re-
act to the real-time events aside of the regular Linux
machinery. The controller is able to schedule regular
Linux tasks in hard real-time mode, and ensure the
proper synchronization between its own services and
those of the Linux kernel. The DIC controller has
been adapted from the fusion technology available
within the RTAI project. The RTAI/fusion technol-
ogy, originally aimed at porting traditional RTOS
interfaces from the embedded world over the RTAI
system, has been converted as follows:

• Architecture-dependent port to IPF.

• SMP support.

• Adaptation from Linux kernel 2.4 to 2.6.

7 Implementation of the DIC
controller

7.1 Execution modes

Since it is based on RTAI/fusion’s core implementa-
tion, the DIC controller implements the primary and
secondary operation modes as follows:

- The primary (or hardened) mode guarantees
very low latencies by yielding control of the
real-time task to the co-scheduler whose oper-
ations cannot be delayed by any regular Linux
activity, including interrupt masking. In this
mode, the task appears to the kernel as being
aslept in TASK INTERRUPTIBLE state, but
it actually runs within its original MMU con-
text under the control of the co-scheduler. The
task enters this mode after initialization, and
each time it calls a blocking native HYADES
services. It leaves it to enter the secondary
mode only when it issues a regular Linux
syscall. Typical worst-case scheduling latencies
in this mode are currently about 50 µs under
high load on mid range x86 hardware.

- The secondary (or relaxed) mode still guaran-
tees low latencies but with higher worst-case

10



figures though, depending on the underlying
granularity of the Linux kernel which controls
it. In this mode, the real-time shadow thread
is suspended at the co-scheduler level, so that
only Linux is allowed to alter the flow of con-
trol of the mapped task. This mode addition-
ally defers interrupts to be processed by Linux
as long as the real-time task is running. The
latter technique greatly improves predictability
with respect to execution time needed by CPU-
bound tasks running in secondary mode, with-
out impacting the interrupt latency for other
tasks operating in primary mode.

Linux tasks controlled by the DIC controller are
transparently and automatically switched between
the two operating modes during their lifetime, ac-
cording to the level of real-time service they ask for,
either strict HYADES (primary) or shielded Linux
(secondary). Real-time priorities are consistently
kept across those migrations, so that a task issuing
Linux syscalls could still have a higher priority than
the ones managed by the co-scheduler.

7.2 Cooperating schedulers

The HYADES co-scheduler which manages the Linux
tasks when operating in primary mode is imple-
mented as a loadable kernel module. It defines a
thread abstraction called a “real-time shadow” which
is mapped to pre-existing Linux task contexts (i.e.
task struct objects). Real-time shadows are the co-
scheduler’s basic schedulable objects, representing
their respective Linux task counterparts when op-
erating in primary mode. In this respect, shadows
do not have their own stack or set of registers, but
share those of the original Linux task, since both
schedulers operate in a mutually exclusive manner.

Shadow priorities are directly inherited from the
mapped Linux tasks, and dynamically tracked upon
change. Since Linux tasks must belong to the
SCHED FIFO scheduling policy in order to have a
shadow counterpart, the priority range of real-time
HYADES tasks is [1..99]. This way, consistency is
kept across operation modes with respect to priori-
ties, and the HYADES scheduler complies with the
original Linux priority scheme.

The above principles allow both Linux and
HYADES schedulers to cooperate fully, separately
handling any given real-time task context according
to the current operating mode.

7.3 Use of Adeos domains

The HYADES system is built over the Adeos layer
for prioritizing hardware interrupt processing, and

further implementing the means of cooperation be-
tween the DIC controller and the Linux kernel.

Three Adeos domains are defined in the kernel
environment running a HYADES-enabled system:

- The DIC controller domain is in charge of
processing the interrupt flow and system calls
directed at the activities running in primary
mode. Since it is at the highest position in the
Adeos pipeline, those events cannot be masked
by lower domains, and are thus immediately
processed by the HYADES co-scheduler that
lives in this domain. As a result of receiving a
prioritary interrupt, the co-scheduler may pre-
empt any less prioritary activity of the stan-
dard kernel to resume a hardened Linux task.

- The interrupt shielding domain is next down
the Adeos pipeline, and provides a mean for
deferring the normal interrupt flow directed at
the standard kernel while Linux tasks are run-
ning in secondary mode. See below.

- The root or Linux domain is last in the
pipeline; it is the place in the Adeos scheme
where the standard kernel lives. It receives
interrupts and system calls which have been
propagated by upper domains, after they have
been eventually processed by more prioritary
activities.

7.4 Interrupt shielding

A key requirement with respect to highly determinis-
tic computing is predictability of the execution time
once CPU-bounds task. Since such predictability
could be jeopardized by asynchronous Linux oper-
ations, like interrupt handling (e.g. top-halves and
bottom-halves/softirqs, RCU batches), a mean has
to be found for deferring such activities until the
stringent real-time processing has ended.

To this end, the DIC controller engages a spe-
cialized “shield” blocking the interrupt flow before
it reaches the Linux kernel each time a real-time
task operating in secondary mode is scheduled. This
shield is obtained using a specific Adeos domain
which lives between the DIC domain and the Linux
one. The interrupt flow is locked at this stage when
the shield is engaged, and unstalled when disen-
gaged.

Additionally, the interrupt shielding prevents
priority inversions caused by mutual exclusion con-
structs on SMP configurations, e.g. when a non
real-time activity running on a CPU blocks a real-
time task running on another CPU for an unbounded
amount of time, because it has been preempted by
some IRQ handler(s) while holding a contended lock.

11



7.5 System call impersonation

Via dynamic interception using the proper Adeos
support, i.e. adeos catch event(), some of the reg-
ular Linux system calls can be impersonated by pure
HYADES counterparts, when doing so provides a
real benefit with respect to enforcing determinism.
For instance, the regular nanosleep call is wired to
HYADES’s high-precision timer for sub-HZ accuracy
and very low scheduling latency. The task keeps run-
ning in (or possibly switches to) primary mode when
such substituted services are called.

Impersonation is made at the DIC controller do-
main level, by a special handler filtering all regu-
lar Linux system calls before they are processed by
the standard kernel. This handler further decides if
a substitution with a HYADES-specific implementa-
tion must take place and applies it, or simply propa-
gate the call to the root domain for execution by the
standard kernel.

8 Performance measurements

8.1 Tests used

latency The latency test measures the latency of
the HYADES aperiodic timer set at 10kHz fre-
quency.

cruncher The cruncher test measures the execution
jitter of a computation intensive loop running
with or without the HYADES environment.
Number crunching executes for a duration of
11 ms and then sleeps for 500 µs, in a loop.

The tests were run under the following load con-
ditions :

• a parallelised kernel compilation running in
loop ;

• a network interrupt flood (using the ping -f
command from another machine)

8.2 Results

The tests were run on a quad 2.4 GHz Xeon, the
cruncher thread being run with and without the
HYADES environment.

From figure 4 we can see that the worst-case jit-
ter is below 60 µs, which is good in absolute timings
compared to what Linux provides in user-space un-
der heavy load [11] but barely sufficient compared to
the timer frequency. The bimodal shape of the la-
tency measurements is very noticeable and is not yet
explained. The limits of what an SMP architecture
can do for real-time in user-space are reached.

FIGURE 4: Latency of a 10 kHz HYADES
timer

From figure 5 we can see that the Hyades system
outperforms Linux by roughly an order of magnitude.
As expected, the Hyades system is not subject to per-
turbations occurring from Linux activity, even when
the system is left free to dispatch tasks to any pro-
cessor available on the system. The shield is working
very efficiently, even on a multiprocessor system.

FIGURE 5: Execution jitter

9 Conclusion

It is possible for applications having both real-time
requirements and heavy number crunching compu-
tations to be executed on SMP systems with very
good overall performance with respects to these con-
straints. For systems where determinism is an impor-
tant requirement, although non-critical, this solution
offers a good alternative to high-end solutions using
dedicated RTOS. Software development and mainte-
nance is facilitated by the effective reuse capabilities
for the real-time parts of the applications and by
the tremendous integration facilities provided by the
Linux GPOS over any RTOS. It results from this that
systems developed using this approach could benefit

12



from the mass market of computer servers and pro-
viding to their customer a better efficiency in terms
of performance/price ratio.

References

[1] http://www.hyades-itea.org

[2] D. Mosberger, S. Eranian, 2002, IA-64 Linux
Kernel, Prentice Hall PTR, ISBN 0-13-061014-
3.

[3] Stodolsky, Chen, and Bershad, 1993, Fast Inter-
rupt Priority Management in Operating System
Kernels, Usenix

[4] Stodolsky, Chen, and Bershad,
http://citeseer.nj.nec.com/stodolsky93fast.html

[5] http://www.adeos.org/

[6] http://www.ccur.com/

[7] http://www.fsmlabs.com

[8] http://www.rtai.org

[9] http://www.aero.polimi.it/r̃tai/

[10] http://www.timesys.com/

[11] D.Ragot & al., Linux for High Performance and
Real-Time Computing on SMP Systems, Real-

time linux workshop 2004

13


