
Hardware-In-Loop Simulator for Mini Aerial Vehicle

Ashish Gholkar, Amitay Isaacs and Hemendra Arya

Centre for Aerospace Systems Design and Engineering

Department of Aerospace Engineering,

IIT Bombay, Powai, Mumbai - 400076, India

ashish@casde.iitb.ac.in, {amitay,arya}@aero.iitb.ac.in

Abstract

Hardware-In-Loop-Simulator (HILS) is an important step in system design & development. In the
present work a systematic approach has been adopted in creating the HILS for autonomous navigation
of a Mini Aerial Vehicle (MAV). The issues addressed in this paper are 1. real time simulation of flight
dynamics, 2. modeling of sensors, 3. integration of ADC and DAC interfaces under RTLinux, 4. GPS
data simulator. An on-board computer and the actuators are the actual hardware in the simulation
loop. The HILS is generic in nature and it can easily be adapted for any other on-board computer. This
simulator will help in 1. design of navigation, guidance and control law, 2. testing the NGC laws in
real time, 3. design and development of various interfaces e.g. GPS interface, filters etc. 4. identifying
various faults in the system. Using the present HILS, on-board computer can be directly ported to MAV,
without any modification in hardware and software.

1 Introduction

Modeling and simulation is an important step in the
development of complex systems. This helps in sys-
tem development and successfully shortens the de-
sign and development cycle. A good simulation is
one, which can reproduce the actual behavior in vir-
tual environment. This is only possible when a high
fidelity model of the complete system is available.
Many times the high fidelity equivalent is not avail-
able or difficult to model. In such cases where the
system which cannot be adequately characterized by
mathematical models, it is safe to embed it, as it
is, into the simulation e.g. actuator dynamics is
often difficult to model and the embedded micro-
controller with its resident code is hard to take into
account. Simulation consisting of actual components
is known as Hardware-In-Loop Simulation (HILS).
Early users of the HILS were from the aerospace sec-
tor, in which reliability and high performance is de-
manded. Presently this technology is used in every
engineering field and it is also one of the methods to
test the product before the actual launch. Primary
requirement of HILS is real time operation and this
puts lot of demand on the design of testing envi-
ronment. As mentioned all the components have to
perform in real-time including the simulation. Real-
time means the simulation of each component is per-

formed such that input and output signals show the
same time dependent values as in real world dynamic
operation.

The basic principle of HILS is that some sub-
systems are physically embedded within a real-time
simulation model. In HILS the embedded system is
fooled into thinking that it is operating with real-
world inputs and outputs, in real-time. Computer
software with real-time simulation capabilities and
computer hardware with necessary communication
abilities (A/D, D/A converters for communications
with analog signals and digital ports for communi-
cation with digital signals) are necessary to perform
hardware-in-the-loop simulation. In this paper such
a system for autonomous Mini Aerial Vehicle (MAV)
development is presented. The simulation environ-
ment is not as complex as large aircraft but still it
has lot of challenges to offer while setting up such a
facility in an university environment.

2 Simulation System

Mini Aerial Vehicle is quite similar to operation of
a radio control aircraft and most of the hardware
is common. Present simulation environment aims
at enhancing the radio control aircraft capability for
autonomous flying. Such small vehicle can also be

1



used for flight mechanics and control studies. Au-
tonomous MAV is an aerial vehicle, which will fly
through various way-points defined in space. These
points can be beyond the visual range of the pilot
unlike radio control aircrafts. The simulation system
will help the control engineers in designing the nav-
igation, guidance and control laws for autonomous
mission.

FIGURE 1: Autonomous MAV

During an actual autonomous mission an on-
board computer will seek current state of the vehicle
using various sensors and based on the NGC laws it
will issue new commands to actuators to achieve the
desired state. This is depicted in figure 1 above. In
the simulated environment, the block on the right is
virtual and the one on the left is the actual hardware.

Hardware, which can be part of such simula-
tion system, can be radio control transmitter, re-
ceiver, on-board computer, actuators and sensors.
The scheme of such a system is shown in figure 1.
The steps involved in systematic development of such
a simulation system are:

1. Development of full 6 degree-of-freedom (DOF)
non-linear flight dynamics simulation (FDS)
model

2. Verification of the FDS model

3. Development of sensor models and integrating
with FDS

4. Identifying hardware for simulated sensor out-
put

5. Integrating above and real-time simulation

6. Development of Navigation, Guidance and
Control (NGC) algorithm

7. Integrating NGC with FDS, evaluate control
time step by offline simulation

8. Identifying the on-board computer to execute
NGC algorithm in the time step arrived by the
above method

9. Integrating actuators with on-board computer

10. Integrating transmitter and receiver with on-
board computer

11. Feedback from the actuators to flight dynamics
simulator

12. Conduct simulation for the various NGC algo-
rithms and missions

In the present work all except the integration of
transmitter and receiver have been completed. De-
tails about the aircraft flight mechanics and control
laws will not be discussed. Emphasis is on the inte-
gration of the HILS. In the following sections details
about the various systems and justification for selec-
tion is presented. FDS code is in C and executes
in real time. Fourth order fixed time step Runge-
Kutta method was used for time integration. Flight
Dynamic Simulation is verified offline with Matlab
add-on, FDC, authored by M.O. Rauw [1]. The
(Beaver) aircraft data used in the present study is
part of FDC. Simulation results obtained from FDS
and FDC compared very well. The NGC algorithm
uses vertical gyro for pitch and roll angle, yaw rate
gyro for damping directional motion, altitude and
airspeed sensors for height above ground and indi-
cated airspeed [2]. Linear models for these sensors
are used in the present work. More details about the
NGC algorithm and subsystem testing are given in
reference [3].

2.1 Selection of Hardware and Soft-

ware

For simulation of analog sensors low cost 16-bit
Digital-to-Analog Converter (DAC) card PCI-DDA
08/16 from Measurement Computing [4] is used. The
PCI-DDA 08/16 is a digital to analog converter card
with 8 channels at 16-bit resolution among other
functional blocks. It has eight DAC channels and
hence eight analog sensors can be simulated. All the
channels are programmable for output range. In the
present case five analog sensors are simulated.

For feedback to FDS, servos were connected to
potentiometers. These potentiometers will measure
the control surface deflections. 12-bit Analog-to-
Digital Converter (ADC) card PCI-DAS 1002 from
Measurement Computing is used. The PCI-DAS
1002 can work, in 8 channel differential mode or
16 channel independent mode (software selectable)
among other functional blocks.

2



FIGURE 2: Simulation Architecture

Both these cards are supported by Linux Con-
trol and Measurement Device Interface (Comedi) [6]
libraries. The Comedi project develops open-source
drivers, tools, and libraries for data acquisition.
Comedi is a collection of drivers for a variety of com-
mon data acquisition plug-in boards. It is the com-
bination of three complementary software items:

1. a generic, device-independent API,

2. a collection of Linux kernel modules that im-
plement this API for a wide range of cards, and

3. a Linux user space library with a developer-
oriented programming interface to configure
and use the cards.

The availability of open-source drivers for ADC
and DAC cards was one of the primary selection cri-
teria for using above mentioned cards.

The driver for the PCI-DAS 1002 was modified
to introduce some multiplexer settling time without
which there was significant coupling (cross-talk) be-
tween two adjacent analog channels. A 20 microsec-
ond delay was introduced as multiplexer settling time
by modifying driver (cb pcidas.c) code.

Real time operating systems are expensive and
many times support for the data acquisition cards

is equally expensive. RTLinuxFree [5] was a natu-
ral choice. Comedi drivers provided integrated real-
time support using RTLinux for most data acquisi-
tion hardware.

On-board computer selection is based on low
weight, low power consumption, adequate computa-
tional power, ease of interfacing with external world
etc. From literature [7, 8] it was observed that
many autonomous MAV systems were using Mo-
torola 68332 processor. Time processing units avail-
able on this processor are handy for interfacing radio
control servos.

Figure 2 shows the architecture of the simulation
code and how it interacts with hardware. RT-FIFOs
are used to exchange data between a RT-thread and
user space programs. Aircraft initial state, engine
data, aerodynamic data, control surface positions
etc. are initialized from files in user space and com-
municated to kernel space thread via a FIFO. It’s
easier to perform file operations in user space rather
than RTLinux kernel space. Hence for storage of var-
ious time histories data is sent from RTLinux kernel
thread to user space program using RT-FIFOs.

In the present FDS, 1 millisecond time step is
chosen for good convergence. FDS simulation takes

3



FIGURE 3: GPS Data Simulator

roughly 300-400 microseconds. The real time execu-
tion of each time step of 1 millisecond was also ver-
ified by sending hardware signal on digital line after
completion of the each execution and it was match-
ing within few microseconds (5-6). The digital signal
was observed on 60 MHz digital oscilloscope.

2.2 GPS Data Simulator

In the present NGC, Global Positioning System
(GPS) is the primary navigation sensor. Navigation
information is available from GPS serially (RS232),
asynchronously every one second. This informa-
tion from GPS is available in the form of NMEA
sentences. We use position, heading and speed
over ground from the GPS data for the NGC algo-
rithm. These values are obtained from GPGGA and
GPRMC NMEA sentences.

States from the aircraft simulation (position,
heading and speed) are used and appropriately con-
verted to the GPS sentence format. This information
(approx. 100 bytes) is to be given at every one sec-
ond on serial port at 4800 baud. The transmission
time is of the order of 200 milliseconds. Synchroniz-
ing serial communication with real time computation
of the FDS is an issue. To over come this issue an-
other computer was used for GPS data simulation.
States of the aircraft were transmitted over Ethernet
using UDP at the same rate as that of simulation
time step (presently 1 millisecond). The size of the
UDP packet is 146 bytes. In case one or two pack-
ets are lost, the data for one or two milliseconds is
also lost and it will result in position error, which is
insignificant compared to other errors in the actual
GPS.

Schematic of GPS data simulator is shown in
figure 3. UDP reception on MS-DOS platform was
achieved by using a combination of TRUMPET soft-
ware drivers with MS-DOS networking suite. The
GPS simulator accepts UDP packets and sends GPS
sentences over RS-232 to the micro-controller every
one second. Initial experiments revealed that the
LAN card buffered incoming network packets. In
the initial implementation packets were read every
one second. But due to buffering of network packets,
consecutive UDP packets sent by FDS would be read
every second by the GPS simulator. So instead of

flight data after one second, GPS data would reflect
flight data after only one millisecond. Since there
was no way to clear the network buffer on-board the
LAN card, some software changes had to be made
on the GPS data simulator. The program sleeps till
one-second expires from the time last UDP packet
was read and then scans all the packets in the buffer
to read correct packet corresponding to one-second
latency.

As mentioned earlier, the on-board computer
uses position data from the GPS and it is available
as serial data and RS-232 can be really slow when it
comes to real-time work. The initial approach was to
use a free channel on the navigation micro-controller
for incoming GPS packets over RS-232. This ap-
proach led to the micro-controller being busy for the
entire duration of the GPS sentences, which at 4800
baud meant 200 milliseconds. To avoid this a dual
port RAM was introduced. The GPS data was read
by another micro-controller (89C52) and processed
to extract only useful information to be stored in
the dual port RAM. The navigation micro-controller
was now free to do its work except for a few millisec-
onds every second when it had to read data from the
dual port RAM. Mutual exclusion was implemented
to avoid simultaneous read from and write to the
dual-port RAM.

For graphical display, FlightGear [9] flight sim-
ulator was used. The FlightGear flight simulator
project is an open-source, multi-platform, coopera-
tive flight simulator development project available
as freeware. FlightGear can accept the flight state
data from an external flight simulation software over
UDP. Same UDP data sent by FDS to GPS data sim-
ulator can be used by FlightGear to visualize flight.

A few advantages of having a real-time sys-
tem are guaranteed worst-case jitter, high-resolution
timer functions, guaranteed worst-case interrupt re-
sponse times and assurance that not even a single
event will be missed. Any real-time system is de-
terministic. Primary logic driving the RTLinux ap-
proach was timer resolution less than one millisec-
ond and event resolution of the order of millisec-
onds. Developing application for real-time system is
a challenging task. System crashes and reboots are
very common during the development. In the present
setup two-system approach was used, one for the ex-

4



FIGURE 4: Ten-Point Simulation Trajectory

ecution of the real time application and other for the
development of the application.

The current setup includes separate development
and execution computers. The execution computer
runs on RTLinux with minimal operating system en-
vironment configured with BusyBox [10]. The devel-
opment computer runs on Red Hat Linux 9 and has
RTLinux SDK and Comedi libraries installed. The
main reason for keeping separate development and
execution machines is to handle kernel panic. In the
past, development and execution were on the same
machine. Kernel panic caused irrevocable damage
to the file system and all work was lost. By separat-
ing the development and execution processes kernel
panic will not cause any data loss. This setup adds
one extra computer but it is an elegant solution when
frequent rebooting of the execution computer is re-
quired.

3 Results & Discussions

Complete simulation was carried out for a 10-point
trajectory shown in table 1 and it is also shown in
figure 4. It may be noted that the aircraft follows
the specified trajectory within the given error band.

Present setup will be enhanced by incorporating
the radio control transmitter and receiver and it will
be possible to fly the realistic missions in which both
pilot and autonomous navigation system will be in
the loop.

Way- X Y Altitude
point Coordinate Coordinate

1 0 0 300
2 2000 0 300
3 3000 2000 300
4 6000 2000 300
5 4000 4000 300
6 3000 3900 300
7 0 4000 300
8 -3000 3900 300
9 -5000 2000 300
10 -3000 100 300
11 0 0 300

TABLE 1: Trajectory Coordinates

The simulator described in this paper is a good
research tool for autonomous MAV NGC develop-
ment. Various realistic missions will be flown be-
fore the actual flight. RTLinux and Comedi libraries
are instrumental in the reduction of the development
cost.

4 Acknowledgments

Authors wish to thank AR & DB for the financial
support in execution of the project. Authors also
wish to thank Prof. K. Sudhakar, Dept. Aero Engg,
IIT Bombay for valuable suggestions in the develop-
ment of HILS.

5



References

[1] M. O. Rauw., 2001, A SIMULINK environment

for flight dynamics and control analysis, URL
http://www.dutchroll.com.

[2] P. Srikumar and C. D. Deori, 2000, Simulation of

Mission and Navigation Functions of Nishant, In
Proc. National Workshop on Aerospace
Flight Simulation, VSSC, Trivandrum, In-
dia.

[3] Vishisht V Gupta and Prasanna G. Gandhi and
Hemendra Arya and Amitay Isaacs and K. Sud-
hakar, 2003, Hardware-In-Loop Simulator for au-

tonomous Navigation of Mini Aerial Vehicle, 2nd
International Conference on Computa-

tional Intelligence, Robotics and Au-
tonomous Systems (CIRAS 2003), Singa-
pore.

[4] URL http://www.measurementcomputing.com

[5] URL http://www.rtlinux.org

[6] URL http://www.comedi.org

[7] Marious Niculescu, 2001, Lateral track con-

trol law for Aerosonde UAV, 39th AIAA
Aerospace Sciences Meeting and Exhibit.

[8] URL http://www.micropilot.com

[9] URL http://www.flightgear.org

[10] URL http://www.busybox.net

6


