
A Hardware Operating System based Approach for Run-time

Reconfigurable Platform of Embedded Devices

Krishnamoorthy Baskaran and Thambipillai Srikanthan
Centre for High Performance Embedded Systems (CHiPES),

School of Computer Engineering,
Nanyang Technology University, Singapore.

{asbaskaran, astsrikan}@ntu.edu.sg

Abstract

Runtime reconfigurable embedded systems target an architecture consisting of a reconfigurable system-
on-chip (RCSoC), which has hardcore or softcore general-purpose processor (GPP) and field programmable
gate arrays (FPGAs). The architecture provides common execution semantics for software and hardware
tasks. The partial reconfiguration abilities of the newest FPGAs are fully exploited in order to improve
performance, cost, energy-efficiency, and time-to-market

In this paper, we describe the research issues and technology approaches for the development of a
hardware operating system for runtime reconfigurable platform of embedded devices. We propose a
specialized operating system, that will manage hardware/software task management, to allow run-time
partitioning and allocation of reconfigurable FPGA area, efficient communication techniques and well-
organized task scheduling methodology.

1 Introduction

Runtime reconfiguration of FPGAs is one of the
widely researched areas in the field of computer
architecture over the last decade. The reconfig-
urable platform based design makes use of novel tech-
nologies for improving performance, cost, energy-
efficiency, and time-to-market. The embedded de-
vices employ an FPGA that has the ability to
be reconfigured in runtime to achieve the above-
mentioned objectives. The latest FPGAs have sev-
eral millions of gates, partial reconfiguration and
readback features.

A run-time reconfigurable platform system
would be able to decide - on the fly - what hardware
to execute on the FPGA area and what software to
run on the CPU. The use of reconfigurable system is
continuously growing in the areas like wearable com-
puting [1], mobile communication system [2], video
communications [3], neural computing, and network
processors.

The runtime reconfigurable platform has the fol-
lowing benefits.

• Faster execution: FPGA based implementa-
tions algorithms are much faster than software
algorithms implemented on a general-purpose
computer.

• Low cost: A reconfigurable computing system
is much cheaper for each new application than
an ASIC.

• Area Utilization: Reconfigurable approach also
allows for full hardware utilization. Unused
space on an FPGA can be dynamically allo-
cated to another task, thus increasing perfor-
mance of multiple tasks.

• Low power, foot print: One reconfigurable
computing system can take over the noncon-
curring functions of several dedicated, special-
purpose peripherals, reducing the size and
power consumption of the embedded system.

Run-time reconfiguration is the ability to rapidly
change the functionality of an FPGA during the exe-
cution of a hardware task. The reconfigurable hard-
ware can be used to execute designs, which are larger
than the available hardware resources. The Hard-
ware operating system for reconfigurable platform is
a new line of research, which supports all the func-
tionality of the real-time operating system and is ex-
tended to manage reconfigurable platform resources.

In this work we use a reconfigurable computing
system composed of an embedded processor core run-
ning the software part of the hardware operating sys-
tem, connected to an FPGA containing a group of

1

partitioned reconfigurable blocks, which can be indi-
vidually reconfigured at run time to realize hardware
circuits. We present the design and the implemen-
tation of the hardware operating system for runtime
reconfigurable platform.

The rest of this paper is organized as follows:
Section 2 provides an overview of the related work.
Section 3 lists the issues and the requirements of an
operating system for reconfigurable platforms. Sec-
tion 4 attempts to address the technology approaches
and describes the prototype implementation. Section
5 concludes the paper.

2 Related Work

Among numerous reconfigurable architectures, an ar-
chitecture with single processor and reconfigurable
resources (e.g. FPGA) has been widely studied and
commercialized [14, 15]. In our work, we plan to
use a processor/FPGA architecture to implement the
runtime reconfigurable platform specification. With
numerous resources and partial reconfiguration func-
tionality, an FPGA is a perfect target for hardware-
based operating system. A hardware operating sys-
tem executes a set of hardware tasks on a reconfig-
urable platform in a parallel multitasking manner.

Brebner addressed the Virtual hardware operat-
ing system [17]. He explores some of the fundamen-
tal issues that will influence the construction of any
operating system for FPGAs with dynamic recon-
figuration. He proposes that application be designed
into relocatable cores known as swappable logic units
(SLU) [18]. Mignolet et al. [20] introduce relocat-
able tasks, which can be executed either in software
or hardware, depending on the available resources
and the performance required. Simmler addressed
multitasking and task preemption on FPGA in [19].
Wigley et al discussed operating system functional-
ities like partitioning, placement and routing [16].
Previous research work has exposed various advan-
tages of implementing a Real Time Operating Sys-
tem (RTOS) in hardware [21, 22]. Many research
issues have not been addressed yet, so it is very dif-
ficult to compare the existing work as well as imple-
mentations aspect.

3 Issues In Run-Time Recon-
figurable Architecture

3.1 Hardware/Software Codesign Is-
sues

Recently, embedded processors integrated on the
FPGA chip have introduced a new boundary for

hardware/software co-design with software running
on the embedded core as well as hardware tasks run-
ning on the FPGA. The computational sequence of
tasks in an embedded device is represented by task
flow graphs (TFG). For many applications, these
tasks can be distributed both as hardware area as
well as software resources. Resources in hardware
side can be Application Specific Integrated Circuits
(ASIC) or reconfigurable logic device like FPGA.
ASICs are not suitable for runtime reconfigurable
platform because of the lack of reconfiguration func-
tion and very large design times. The FPGA devices
play a major role in reconfiguration to utilize hard-
ware resources on account of their run-time recon-
figuration functionalities. In this platform, is com-
monly used for implementing software operation a
general-purpose processor (GPP). The architecture
for runtime reconfigurable platform consists of an
embedded processor system for software operations,
reconfigurable logic resources for hardware functions
integrated in an FPGA and shared memory as illus-
trated in Figure 1.

In the proposed run-time reconfigurable plat-
form, we describe the fundamental difference be-
tween the hardware and software resources as fol-
lows. The tasks in the software process are executed
in a sequential way. In the FPGA, the hardware
tasks can be executed concurrently. At run-time the
hardware tasks take time to configure the FPGA re-
sources. This is not applicable to software opera-
tions. The number of tasks executed in the FPGA
resources depends on the number of hardware units
that can be configured on the device at run-time.
The execution of the hardware tasks is faster com-
pared to the software tasks. The power consumption
of the software resources is much less than hardware
and there is no concurrency in software.

FPGA GPP

MEMORY

FH FHRH RH RH SU SU

FH Fixed Hardware Unit
RH Reconfigurable Hardware Unit
SU Software Unit

FIGURE 1: Codesign Issues

3.2 Platform issues

3.2.1 Operating System Level Issues

In the run-time reconfigurable platform, we intend
to develop an RTOS-like system known as Hardware

2

OPErating System [HOPES], which will manage the
different hardware/software task, FPGA area man-
agement, memory handling, and placement loader
running on the platform. In the run-time reconfig-
urable platform, each hardware task is a circuit, i.e.,
a task can consist of a combination of logic circuits
and memory. This task is loaded and executed in
an FPGA area. Our proposed operating system per-
forms the following functions:

• Partitioning the reconfigurable hardware area
depending upon the task size

• Placement of tasks in the configurable area.

• Scheduling of the tasks

• Loading, executing and removing tasks

3.2.2 Partitioning Issues:

The latest commercial FPGAs have several millions
of reconfigurable gates, and are capable of running
with clock speeds in the hundreds of MHz range. The
FPGAs can be configured in two ways: complete and
partial reconfiguration [4]. Partial reconfiguration
is the ability to reconfigure a portion of the FPGA
while the remainder of the design is still in operation.
This configuration method is useful for applications
that require the loading of different designs into the
same area of the device. To make use of this tech-
nology, we need to handle the partition issues.

In the runtime reconfigurable platform, a hard-
ware resource is partitioned into blocks. While the
vertical dimension of each block is fixed, the hori-
zontal dimensions can be varied. Each partitioned
block accommodates one task at a time. In order to
obtain good resource utilization and to reduce config-
uration times, the partition size of the block should
be based on the hardware task size. When we par-
tition the FPGA fabric, we consider the configura-
tion and readback time. The hardware tasks require
the blocks to be configured before they are executed
in the available hardware blocks. The configuration
time various depending upon the block size. Fig-
ure 2 shows the TGF application and the partitioned
Reconfigurable FPGA. Each task in the TGF is in-
stantiated through partial reconfiguration and its in-
stantiation will not affect the other existing tasks.
In Figure 2, tasks D, E, and F, can be instantiated
by reconfiguring the partitioned hardware resources.
This operation will not affect the configured existing
tasks B and C.

We are currently in the process of developing an
efficient partitioning algorithm for runtime reconfig-
urable platforms to achieve a better hardware re-
sources utilization.

B

A

B C

FED

G H

I

2 2

3
3

3

4 4

5

Partitioned
Reconfigurable Hardware

D E FC

FIGURE 2: Executing TGF On A Parti-

tioned Reconfigurable Hardware

3.2.3 Scheduling Issues

Task scheduling is an important problem in HOPES.
A scheduler is a module that allocates processor
and resources to various tasks. Tasks are scheduled
and allocated resources according to a chosen set
of scheduling algorithms and the availability of re-
sources. Scheduling hardware tasks is different from
ordinary software task scheduling because in the case
of hardware task, there is a need to reconfigure the
partitioned FPGA area. A good hardware scheduler
satisfies the following conditions:

• One hardware block is assigned one hardware
task at any given instant

• Hardware task size should be less than or equal
to the size of the block to which it is assigned.

• No hardware task is scheduled before its release
time

• Depending on the scheduler, the configuration
and readback time is added to the task execu-
tion time

• Placement handler handles the placement con-
straints.

• Resource utilization constraints should also be
satisfied

3.2.4 Communication Issues

The next major issue in HOPES is inter-process
communication. In reconfigurable platform, there
are different hardware and software mechanisms that
could communicate with each other. The user appli-
cations running under the HOPES and the HOPES
itself are implemented in hardware, so we need
standard communication interface between hardware
(FPGA) and software (CPU). The hardware tasks

3

are stored in external memory in the form of config-
uration bitstreams. Interface between external mem-
ory and the FPGA is one of the communication is-
sues. The hardware inter-task communication is also
one of the major issues.

3.3 Target Architecture for reconfig-
urable computing

The proposed reconfigurable computing target ar-
chitecture is shown in Fig. 3. The architecture
consists of an embedded processor running HOPES.
Reconfigurable hardware blocks, memory and appli-
cation specific hardware modules as well as recon-
figuration manager are attached to the communi-
cation block. The ReConfigurable System-on-Chip
(RCSoC) is used for this platform. It consists of
one soft-core CPU, HOPES (Hardware OPErating
System), external memory, and communication bus.
The embedded processor is implemented in the RC-
SoC as a fixed (non-reconfigurable) core. HOPES
manages the RTOS facilities, hardware task alloca-
tion, and the placement engine. The communication
block serves to communicate among the hardware
blocks, HOPES, and the embedded processor.

Soft Core
CPU

HOPES
[Hardware OPErating

System]

Reconfigurable FPGA Area

Task Communication Block

HW
Block

1

HW
Block

2

HW
Block

3

HW
Block

4

HW
Block

5

HW
Block

6

HW
Block

7

ReConfigurable SoC
[RCSoC]

External Configuration Memory

Reconfiguration
Manager

Configuration Bit Streams

1 2 3 4 5 6 7

FIGURE 3: Proposed Run Time Reconfig-

urable Architecture

4 Technology approaches

4.1 ReConfigurable System-on-Chip
(RCSoC)

ReConfigurable System-on-Chip (RCSoC) has be-
come the reality now, driven by fast development of
CMOS VLSI technologies. The RCSoCs are some-
times called platform FPGAs. The basic concept
for RCSoC is using reconfigurable resources along
with a conventional microprocessor. The main goal
is to take advantage of the capabilities and features of
both resources. ReConfigurable SoCs (RCSoC), con-
sist of processor, memory, and on-chip reconfigurable

hardware parts for customization to a particular ap-
plication. The RCSoC device consists of an FPGA
that incorporates a CPU located in the fixed logic
area. The hardware tasks are executed in the recon-
figuable logic area, so that CPU is not interrupted.
The CPUs used in the reconfigurable computing sys-
tems can be characterized as either hard cores or soft
cores. Hard cores are designed into the FPGA fabric
by the vendor as custom VLSI layouts and are con-
nected to the FPGA through predefined wiring. Soft
cores are designed like any other FPGA-based cir-
cuit. For the proposed run-time reconfigurable plat-
form, we are planning the use of a soft core CPU.

4.2 Soft Core CPU

The Soft Core CPU architecture provides the de-
signer with the ability to customize the CPU archi-
tecture. There are several soft CPU cores currently
available that can meet the performance demands of
real time applications. Commercial CPU cores such
as the NIOS [6] and Microblaze [7] are FPGA ven-
dor supported and hence cannot be ported into other
FPGA platforms. For our runtime reconfigurable
platform, we have chosen to use an open source CPU
that is capable of supporting future enhancements
.The CPU needs a supporting assembler, simulator
and C compiler. The LEON SPARC Processor in
VHDL [8] and Opencores OR1200 in Verilog [9] are
both open source CPUs. We have chosen to use the
OR1200 as it fares better in terms of performance
and FPGA resource requirement.

4.3 Hardware OPErating System
(HOPES)

The reconfigurable hardware operating system is a
new line of research and involves several challenges.
HOPES manages the available hardware resources
of the node, i.e., CPU, reconfigurable hardware unit,
I/O, and memory. The main function of HOPES is
to manage tasks. Generally, an application will con-
tain a combination of tasks. While software tasks can
be run on the CPU, hardware tasks execute on the
reconfigurable hardware area. HOPES should keep
track of available resources, meaning to find the lo-
cation for incoming hardware task.

We propose a HOPES kernel running on a CPU
within an FPGA. The rest of the resources on this
RCSoC are available for custom computing circuits
that can be reconfigured at run-time. The CPU has
access to memory on the FPGA as well as an inter-
face to larger off-chip memory. The CPU will have
an off-chip communication interface.

4

4.4 Partitioning & Placement Tech-
nology

In runtime reconfigurable computing, we make use of
task based partitioning method [10] for partitioning
the reconfigurable hardware FPGA area. A hard-
ware design unit is called a task; it is executable on
the partitioned FPGA. The FPGA fabric is parti-
tioned into blocks. The blocks are static with differ-
ent widths, which allows running the hardware tasks.
The latest FPGA devices from Xilinx [11] have par-
tial reconfiguration functionality. To make use of this
technique we need to partition the FPGA surface de-
pending upon the hardware task size.

The next major step is to place the hardware
task into the partitioned hardware surface. We have
implemented the new placement handler in our plat-
form. The placement handler determines where to
place each hardware task on the FPGA.

4.5 Scheduling Technology

Scheduling is one of the primary issues in runtime
reconfigurable computing. Partitioning and schedul-
ing are known to be complex optimization prob-
lems [12]. The task scheduler decides which task
has to be executed next, among all tasks ready to
execute. Scheduling can be classified into offline
and online. The proposed architecture is based on
online scheduling; we develop non-preemptive and
preemptive schedulers for hardware tasks. In non-
preemptive scheduling, the currently executing task
will not be interrupted until it decides on its own to
release the allocated resources, normally after com-
pletion. For non-preemptive scheduler, we take the
configuration time into consideration while schedul-
ing the task. In preemptive scheduling, the currently
executing task may be preempted, i.e., interrupted,
if a more urgent task requests service. The preemp-
tive scheduler takes configuration time and readback
time into consideration while scheduling task.

4.6 Target Technology and Platform

We have chosen the Celoxica RC200 board [13] as the
implementation platform. This board integrates a
Virtex XC2V2000 SRAM based FPGA and a variety
of different I/O devices, i.e., Ethernet, Audio, Video,
SmartMedia, Parallel port, RS-232 and PS/2 key-
board and mouse. The Opencores OR1200 soft-core
CPU is installed in the FPGA fabric as fixed logic.
Xilinx ISE Foundation 5.1 in combination with the
Modular Design Package [14] serves as the develop-
ment environment for circuit/bitstream generation;
all PC software is created with C or C++.

5 Conclusion

In this paper, we have examined research issues and
technology approaches for run-time reconfigurable
platforms. We then proposed an environment that
describes operating system services and services in a
hardware device. We also list a set of approaches to
runtime reconfigurable computing. We want to have
a proof of approaches for three main topics. The
first issue to be tackled is the infrastructure that al-
lows multitasking on an FPGA. For this we have
to exploit the partial reconfiguration abilities of the
newest FPGAs. Next, a good partitioning algorithm
for FPGA is required. The third issue is the develop-
ment of HOPES (Hardware OPErating System) that
can manage hardware and software constraints.

References

[1] C. Plessl et al., “Reconfigurable Hardware in
Wearable Computing Nodes. In Proceedings of
the 6th International Symposium on Wearable”,
Computers (ISWC), pages 215-222. IEEE Com-
puter Society, October 2002.

[2] IMEC Interuniversity Micro Electronic Center,
T-ReCS Gecko, http://www.imec.be.

[3] J.Villasenor, C.Jones, and B.Schoner., “Video
communication using rapidly reconfigurable
hardware”, IEEE Trans. Circuits Syst. Video
Technol., 1995,5, (6), pp.565-567

[4] Xilinx Inc., Vertex Series Configuration Ar-
chitecture User Guide, Application Note,
http://www.xilinx.com/bvdocs/appnotes/
xapp151.pdf

[5] Altera M-DS-EXCNIOS-01 ”Nios Soft
Core Embedded Processor Data Sheet”,
http://www.altera.com June 2000.

[6] Xilinx, ”MicroBlaze Hardware Reference
Guide”, http://www.xilinx.com Mar. 2002.

[7] J. Gaisler, “LEON SPARC Processor”,
http://www.gaisler.com/leonmain.html, June
2001.

[8] D. Lampret, “Open RISC 1000 Project”,
http://www.opencores.org/projects/or1k/,
Dec. 2002.

[9] Pedro Merino, Margarida Jacome, and Juan
Carlos Lopez. “A Methodology for Task Based
Partitioning and Scheduling of Dynamically Re-
configurable Systems”, In Proceedings of the

5

IEEE Symopsium on FPGAs for Custom Com-
puting Machines (FCCM), pages 324-325. IEEE
CS Press, April 1998.

[10] Xilinx Inc., “Two Flows for Partial Re-
configuration: Module Based or Small
Bit Manipulations”, Application Note,
http://www.xilinx.com/bvdocs/appnotes/
xapp290.pdf

[11] J.W.S.Liu, “Real-Time Systems”. Prentice Hall,
2001.

[12] Celoxica Limited, Celoxica RC200 Development
Board, http://www.celoxica.com.

[13] Xilinx Inc., Advanced Design Techniques, Mod-
ular Design, http://www.xilinx.com

[14] Xilinx Inc., Virtex II Pro Series
http://www.xilinx.com.

[15] Chameleon Systems, Inc. CS2000 Reconfig-
urable Communications Processor Family Prod-
uct Brief, San Jose, CA, 2000.

[16] G. Wigley and D. Kearney. “Research Issues in
Operating Systems for Reconfigurable Comput-
ing”, In proceedings of the International Con-
ference on Engineering of Reconfigurable Sys-
tem and Algorithms (ERSA), pp 10-16. CSREA
Press, Junie2002.

[17] G. Brebner, “A Virtual Hardware Operating
System for the Xilinx XC6200”, In proceedings
of the 6th International Workshop on Field Pro-
grammable Logic and Applications (FPL), pp.
327-336. Springer, 1996.

[18] G. Brebner and O. Diessel,“Chip-Based Recon-
figurable Task Management”, In Proceedings
of the 11th International Workshop on Field
Programmable Gate Arrays (FPL), pp 182-191.
Springer, 2001.

[19] H. Simmler, L. Levinson, and R. Man-
ner,“Multitasking on FPGA Coprocessors,” In
proceedings of the 10th International Workshop
on Field Programmable Gate Arrays (FPL), pp
121-130. Springer, 2000.

[20] J.-Y. Mignolet et al,“Infrastructure for Design
and Management of Relocatable Tasks in a Het-
erogeneous Reconfigurable System-on-Chip,” In
proceedings of Design, Automation and Test in
Europe (DATE), pp 986-991. IEEE Computer
Society, March 2003.

[21] J.Adomat et al, “Real-Time Kernel in Hardware
RTU: A Step Towards Deterministic and High-
Performance Real-Time Systems,” Proceedings
of EURWRTS ’96, PP. 164-168, June 1996.

[22] T,Nakano et al,“ VLSI implementation of a Real
Time Operating System,” Proc. Of ASP-DAC
’97, PP.679-680, January 1997.

6

