
Hardware Partitioning Algorithm for Reconfigurable

Operating System in Embedded Systems

Krishnamoorthy Baskaran, Wu Jigang and Thambipillai Srikanthan

Centre for High Performance Embedded Systems (CHiPES),
School of Computer Engineering,

Nanyang Technology University, Singapore.
{asbaskaran, asjgwu, astsrikan}@ntu.edu.sg

Abstract

In focusing the efficacy of reconfigurable computing, one of the important dimensions is the parti-
tioning of the Field Programmable Gate Arrays [FPGAs]. As the amount of reconfigurable resources in
a single-chip FPGA is increased tremendously, it allows the change of hardware tasks at run-time. The
efficient area utilization of FPGA requires an efficient partitioning algorithm. A reconfigurable operating
system is needed in run-time reconfigurable environment to manage the system resources effectively in a
multitasking manner.

This paper addresses our work toward an efficient initial and run-time partitioning algorithm for
block partitioning of FPGA reconfigurable resources and a new methodology for the real-time scheduling
of hardware tasks in block-partitioned FPGA. The partitioned blocks in the FPGA are one-dimensional
static blocks with different widths. A novel partitioning and scheduling algorithm for reconfigurable
embedded devices is presented together with simulation results.

1 Introduction

Today, much of the recent research work on Field
Programmable Gate Arrays (FPGA) architectures
for reconfigurable computing focuses on run-time re-
configuration. The run-time reconfiguration plat-
form based design makes use of novel technologies for
improving performance, cost, energy-efficiency, and
time-to-market. A run-time reconfigurable platform
system would be able to decide - on the fly - which
hardware task to execute on the FPGA area and
what software task to run on the CPU. The use of
reconfigurable system is continuously growing in the
areas like wearable computing [1], mobile communi-
cation system [2], video communications [3], neural
computing, and network processors.

Run-time reconfiguration is the ability to rapidly
change the functionality of an FPGA during the ex-
ecution of the hardware task. The reconfigurable
hardware can be used to execute designs, which are
larger than the available hardware resources. The
current FPGAs technologies provide several millions
of gates along with partial reconfiguration and read-
back features.

Our partitioning algorithm for run-time reconfig-

uration platform is based on 1-D partition and place-
ment technique. The proposed methodology is very
well suited for currently available partial reconfig-
urable FPGAs like the Xilinx Virtex Family[[4]. In
this paper we propose an efficient partitioning algo-
rithm for FPGAs. The partitioning process is used to
determine the optimal number and widths of blocks
in reconfigurable FPGA area, which can be individ-
ually reconfigured to run a hardware task.

The remainder of this paper is organized as fol-
lows. Section 2 presents a survey of related work.
Section 3 gives the details of target architecture and
problem model. Section 4 explains the initial and
runtime-partitioning algorithm. Section 5 concludes
the paper.

2 Survey of Research Activity

in Related Works

In this section, we briefly survey a selection of related
work in the area of runtime reconfigurable platform
operating system and point out the task placement
and partitioning methods. Mignolet et al. [6] intro-
duce relocatable tasks, which can be executed either

1

in software or hardware, depending on the available
resources and the performance required. Simmler ad-
dressed multitasking and task preemption on FPGA
in [5]. In [7] [9], discussed hardware operating sys-
tem functionalities like partitioning, placement and
routing.

The partitioning and placement is an important
issue in embedded systems. Fragmentation of the
FPGA’s resources is known to cause low area utiliza-
tion [11, 12] in the dynamic reconfiguration systems.
Bazargan et al. [10] addressed the issue of placing
application mappings onto a single device for hard-
ware execution in a reconfigurable computing sys-
tem. Their work presents a placement method that
can be applied to dynamically adaptive hardware.
The solution offered is a hybrid between the typical
first-fit in a finite space and best-fit algorithms and
trades quality of placement for speed. Walder et al.
[8] combined an enhanced form of Bazargan’s parti-
tioning algorithm and a placement-finding algorithm
using 2D-hashing. The placement finding algorithm
has linear time complexity. The update of the hash
matrix is a quadratic time complexity in the worst
case. Up to now, not much work has been reported
to deal with partition of the FPGA’s logic area.

3 Target Architecture And

Problem Model

3.1 Run-time Reconfigurable Plat-

form Architecture

The proposed reconfigurable computing target ar-
chitecture is shown in Fig. 1. The ReConfigurable
System-on-Chip (RCSoC) is used for this platform.
It consists of one soft-core CPU, HOPES (Hardware
OPErating System), external memory, and commu-
nication bus. The embedded processor is imple-
mented in the RCSoC as a fixed (non-reconfigurable)
core. HOPES manages the RTOS facilities, hard-
ware task allocation, and the placement engine. The
communication block serves to communicate among
the hardware blocks, HOPES, and the embedded
processor.

3.2 Technology Involves

ReConfigurable System-On-Chip (RCSoC): The RC-
SoC is an integration of microprocessor, memory,
dedicated peripherals and embedded programmable
logic area. We make use of a soft-CPU macro for
this platform, because soft-CPU allows us to carry-
out architectural changes to the CPU core to better
support partitioning. The programmable logic area
can be dynamically and partially reconfigurable.

Soft Core
CPU

HOPES
[Hardware OPErating

System]

Reconfigurable FPGA Area

Task Communication Block

HW
Block

1

HW
Block

2

HW
Block

3

HW
Block

4

HW
Block

5

HW
Block

6

HW
Block

7

ReConfigurable SoC
[RCSoC]

External Configuration Memory

Reconfiguration
Manager

Configuration Bit Streams

1 2 3 4 5 6 7

FIGURE 1: Block Diagram of RCSoC

Hardware OPErating System (HOPES): The re-
configurable hardware operating system is a new line
of research and involves several challenges. HOPES
manages the available hardware resources of the
node, i.e., CPU, reconfigurable hardware unit, I/O,
and memory. The main function of HOPES is to
manage tasks. Generally, an application will contain
a combination of tasks. While software tasks can
be run on the CPU, hardware tasks execute on the
reconfigurable hardware area. HOPES should keep
track of available resources, meaning to find the lo-
cation for incoming hardware task.

HOPES includes:

• Partitioning the reconfigurable hardware area
depending upon task size

• Placement of tasks in the configurable area.

• Scheduling of the tasks

• Loading, executing and removing tasks

We propose a HOPES kernel running on a CPU
within an FPGA. The rest of the resources on this
RCSoC are available for custom computing circuits
that can be reconfigured at run-time. The CPU has
access to memory on the FPGA as well as an inter-
face to larger off-chip memory. The CPU will have
an off-chip communication interface.

3.3 The Problem Model

Partitioning, scheduling and placement of the hard-
ware task are important issues in reconfigurable com-
puting. A hardware task is a circuit, which is exe-
cutable on the partitioned FPGA blocks. Every task

2

has different type of behavior, area requirements,
and timing.

We introduce an efficient partitioning algorithm
for runtime reconfigurable platforms to achieve bet-
ter hardware resources utilization. Now we consider
a sequence of tasks with different width. These tasks
are assumed to be uniformly distributed in [wmin ,
wmax], where wmin and wmax are the lower bound
and the upper bound of the task width respectively.
Figure 2 illustrates different types of tasks of different
widths. Let w be the size of the reconfiguration de-
vice. This section explains two types of partitioning
problems, namely initial partitioning and run-time
partitioning. The initial partitioning algorithm will
be described next.

Horizontal width

V
er

tic
al

 w
id

th

w

FIGURE 2: Task Width distribution

The following notations will be employed to de-
scribe the proposed partitioning algorithm:

wmax: Upper bound of task width.

wmin: Lower bound of task width.

w : Device width.

wi : Block width. (wmin ≤ wi ≤ wmax)

mi : Number of Blocks having width wi

k : Number of distinct sized blocks, k ≥ 1.

4 Proposed Partitioning Algo-

rithm

4.1 Initial Partitioning Algorithm

The goal of initial partitioning of the runtime recon-
figurable platforms is to achieve good partitioning
of the FPGA reconfigurable area. It also lays the
groundwork for the run-time partitioning algorithm.
The initial partitioning problem can be stated as:
Given a reconfigurable device of width w, partition
it (Figure 3) such that:

w =
k∑

i=1

miwi (1)

max
1≤i,j≤k

{|mi − mj |} (2)

W1 WkW2
W1 Wk

1 UNIT 2 UNIT

W2

FIGURE 3: Reconfigurable device parti-

tioning

We propose a heuristic algorithm for the initial
partitioning problem, as it is an optimization prob-
lem. The following outlines the proposed algorithm.

1. Define k and wi as follows: -

k = [
wmax

wmin

] (3)

wi = (i + 1)wmin (4)

wk = wmax (5)

This is because all task uniformly emerge in
the interval [wmin , wmax]. In other words,
we have k blocks of distinct size, such that

2wmin = w1 < w2 < w3........ < wk−1 < wk

= wmax (6)

(7)

2. Determine mi according to k and wi

Assume s =
k∑

i=1

wi.

Define t = [
w

s
]

In other words, the device width is divided into
t units each of width s and each unit is further
subdivided into k distinct sized blocks.
Set initial value of each mi to t.

3. For partitioning the remainder of the device
width
i.e. w − ts,
Define remaining width

r = w − ts

If current remaining width r > wn n=k, k-1,
.....1 then mn =mn +1. After each partition-
ing, update the remainder width as follows: -

r = r − wn n = k, k − 1,1

Merge the last remaining width with a block of
size w1 .

3

In this section we demonstrate the partitioning
algorithm through some simple, yet important, ex-
amples and also show that it is capable of yielding
feasible solutions. Let us consider an FPGA de-
vice with w =100, wmin = 5, and wmax=20. Then
k=20/5 = 4. The partitioned block widths are: w1

= 8, w2 = 12, w3 = 16 and wn =20 respectively.

5 Run-time Partitioning Algo-

rithm

During the initial partitioning of an FPGA recon-
figurable fabric, the minimum and maximum size
of the hardware tasks are known. However during
runtime, the incoming task size can be larger than
the available block size. In that case no block is
available for executing the incoming hardware task.
So we have to efficiently combine the available free
blocks to form a new block suitable for incoming
hardware task. We propose a run-time partitioning
algorithm for reconfigurable platforms to handle the
partitioning issues. This algorithm helps to opti-
mally merge the currently available free hardware
blocks in FPGA area to obtain sufficient space for
incoming task to execute.

The run-time partitioning algorithm satisfies the
following conditions:

Merging Blocks:

• Only adjacent blocks can be merged

• At the time of merging, no tasks should be run-
ning in those blocks.

• After merging, the block size should be greater
than or equal to the incoming task size

• Time taken for merging the blocks should be
minimal

• The configuration time is proportional to the
block size

B

A C D F GE

Merging blocks

Merging blocks

Occupied blocks

FIGURE 4: Runtime Partitioning of the

FPGA

The above Figure 4 shows how to merge the
available free blocks in the FPGA fabric. For ex-
ample, we assume the incoming task size is 30. The
available blocks sizes are 5,10,15 and 20. In the fig-
ure, A and G blocks are occupied by tasks. The other
blocks are ready to be used by incoming tasks. If the
incoming task size is larger than block size, adjacent
blocks must be merged to assign space for the incom-
ing task. There are two possible ways to do this; one
is to merge blocks B and C and the other is to merge
D, E, and F blocks. Merging blocks B and C is the
efficient solution for the above case.

6 Experimental Results

6.1 Simulation-Environment

We have simulated the proposed algorithm to ex-
perimentally investigate the effectiveness of the par-
titioning algorithm and placement techniques. The
parameters of the simulator include the width of the
reconfigurable device, the configuration time, min-
imum and maximum size of the tasks, number of
tasks, and configuration and readback times for one
column. We report on a number of selected experi-
ments conducted with this simulation environment.
This section illustrates an experiment to examine
the influence of the partitioning algorithm and place-
ment technology on the performance of the nonpre-
emptive First Come First Serve (FCFS) scheduler.
We assume a sequence of task with no inter-task
communication. Task sets with different number of
tasks have been considered. The simulation envi-
ronment is similar to Xilinx Virtex XC2V 6000 (6
million gates) where the configuration and readback
time of the one column takes 193 µs.The dynamic
power dissipation of a Virtex-II CLB is 5.9 W per
MHz for typical designs [13]. There is no benchmark
currently available to characterize the workload of
the reconfigurable systems. In addition, there are no
statistical data available from the real-world appli-
cations to model this. Therefore, we have to resort
to randomly generated tasks. In hardware task man-
agement, a hardware design unit is called a task; it
is executable on the partitioned FPGA. In order to
execute a given hardware task some time is needed
to configure the FPGA. In all our experiments, we
place sets of 25,50,100,250,500,1000 tasks on a 96
X 88 FPGA. The arrival time, execution time and
width of tasks are uniformly distributed as shown
in Table 1. We compare our placement technique
in two different ways: free mode (FM) and control
mode (CM). In free mode, a task is allocated to
any free block available. In control mode, a task

4

is placed to the block whose width is closest to and
greater than the task size. Figure 5 shows the results
for both placement techniques with average response
time for FCFS. The free mode achieves better aver-
age response time than control mode. But there is
no better area utilization. In Figure 6, we present
the average configuration time for the task sets; the
control mode saves more configuration time than free
mode. According to the Figure 7 and Figure 8, we
can say that control mode in more energy efficient.

Minimum Maximum

Task Width (CLB) 5 20
Arrival Time (ms) 0.5 50

Execution Time (ms) 2 20

TABLE 1: Task Information

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6
Task Set

R
es

po
ns

e
T

im
e

Free mode Control mode

FIGURE 5: Response Time for task execu-

tion

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6
Task Set

C
on

fig
ur

at
io

n
T

im
e

Free mode Control mode

FIGURE 6: Configuration time

0

20

40

60

80

100

120

1 2 3 4 5 6
Task Set

A
ve

ra
ge

 T
as

k
P

ow
er

 (
m

W
)

Free mode Control mode

FIGURE 7: Average Task Power

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6
Task Set

A
ve

ra
ge

 T
as

k
E

ne
rg

y
(m

J)

Free mode Control mode

FIGURE 8: Average Task Energy

The Formal Description Of The Initial

Partitioning Algorithm

Input:

Integer w̄ – the size of the reconfigurable device;
Integer wmin – the lower bound of the sizes of the
tasks;
Integer wmax – the upper bound of the sizes of the
tasks;
Output:

Integers k, wi and mi such that w̄ =
k∑

i=1

mi · wi and

max
1≤i,j≤k

{|mi − mj |} is minimized.

Algorithm Initial Partitioning(w̄, wmin, wmax)
/* Find a good partitioning for the initial stage. */
Begin

/* fix the size of k */
1. Let k = bwmax/wminc;
/* fix each wi */
2. for i = 1 to k − 2 do wi = (i + 1) · wmin;

5

wk = wmax;

3. s =
k∑

i=1

wi;

4. t = bw̄/sc;
5. for i = 1 to k do mi := t;
/* partition the remainder interval*/
6. r := w̄ − t · s;
7. for i = k downto 1 do

/* get a block of size wn from the remainder interval
*/
if r ≥ wn then

begin mn := mn + 1;
r := r − wn; n:=k,k-1,.................1;
end;
8. if r > 0 then m1 := m1 + 1;
End.

The Formal Description Of The Run-Time

Partitioning Algorithm

Input:

The initial arrangement of the logic blocks:
b1, b2, · · · , bn. Let B = {b1, b2, · · · , bn}. Assume
ai is the length of the side of the block i. The com-
ing block is b with the size of a.
The objective function F (B, bi, bj , b): the cost by
replacing bi to bj by b, i ≤ j.
Output:

The optimal arrangement of the current blocks.

Boolean Function Decision of Feasible Solution
(B, current sum, left boundary);
/*find a feasible solution bounded by left boundary
and right boundary */
begin

part sum of blocks := current sum;
i := left boundary;
while (part sum of blocks < a) and (i < n) do

part sum of blocks := part sum of blocks + ai;
i := i + 1;
end;
if i < n then

Right boundary := i;
current sum := part sum of blocks;
Feasible solution :=
{blef boundary, bleft boundary+1, · · · , bright boundary};
return (’yes’);
else return (’no’);
end

Algorithm Schedule(B, b);
Begin

Current sum := a1;
Left boundary := 1;
while left boundary < n do

begin

if Decision of Feasible Solution
(B, current sum, left boundary)==’yes’
/* there exits feasible solution */
then

Calculate the current objective function
F (B, Feasible solution, b);
Update the current optimal solution if necessary;
Left boundary := left boundary + 1;
else

/* stop the while-loop*/
left boundary := n + 1;
end;
End

7 Conclusion

In this paper, we introduced an efficient partitioning
algorithm for runtime reconfigurable platform. We
presented a simulation framework that can be used to
estimate average response time, configuration time,
task power and task energy at different blocks on the
FPGA. We use this model to increase area efficiency
of the placement methodology. Our results show that
partitioning based placement techniques provide bet-
ter reconfigurable FPGA area utilization. The inves-
tigation of different types of scheduling algorithms,
study on how to partition application-specific devices
for reconfigurable computing can be taken up as fu-
ture work.

References

[1] C. Plessl et al. ’Reconfigurable Hardware in
Wearable Computing Nodes’, In ’Proceedings of
the 6th International Symposium on Wearable’
Computers (ISWC), pages 215-222. IEEE Com-
puter Society, October 2002.

[2] IMEC Interuniversity Micro Electronic Center,
T-ReCS Gecko, http://www.imec.be.

[3] J.Villasenor, C.Jones, and B.Schoner, ’Video
communication using rapidly reconfigurable
hardware’, IEEE Trans. Circuits Syst. Video
Technol., 1995,5, (6), pp.565-567

[4] Xilinx Inc., Virtex Family Series
http://www.xilinx.com.

[5] H. Simmler, L. Levinson, and R. Manner, ’Mul-
titasking on FPGA Coprocessors’. In proceed-
ings of the 10th International Workshop on
Field Programmable Gate Arrays (FPL), pp
121-30. Springer, 2000.

6

[6] J.-Y. Mignolet et al, ’Infrastructure for Design
and Management of Relocatable Tasks in a Het-
erogeneous Reconfigurable System-on-Chip, ’In
proceedings of Design, Automation and Test in
Europe (DATE), pp 986-991. IEEE Computer
Society, March 2003.

[7] G. Wigley and D. Kearney. ’Research Issues in
Operating Systems for Reconfigurable Comput-
ing’, In proceedings of the International Con-
ference on Engineering of Reconfigurable Sys-
tem and Algorithms (ERSA), pp 10-16. CSREA
Press, Junie2002.

[8] Herbert Walder and Marco Platzner ’Fast On-
line Task Placement on FPGAs: Free Space Par-
titioning and 2D-Hashing’ 17th International
Parallel & Distributed Processing Symposium
(IPDPS); Reconfigurable Architectures Work-
shop (RAW) April 2003

[9] Herbert Walder and Marco Platzner ’Reconfig-
urable Hardware Operating Systems: From De-
sign Concepts to Realizations’ Conference on

Engineering of Reconfigurable Systems and Ar-
chitectures (ERSA), pages 284-287, June 2003

[10] Kiarash Bazargan, Ryan Kastner, and Majid
Sarrafzadeh, ’Fast Template Placement for Re-
configurable Computing Systems’, In IEEE De-
sign and Test of Computers, volume 17, pp 68-
83, 2000.

[11] M. Gericota, G. Alves, M. Silva, and J. Ferreira.
’Run-Time Management of Logic Resources on
Reconfigurable Systems’, In Proc. of Design,
Automation and Test in Europe, Mar. 2003.

[12] M. Handa and R. Vemuri. ’Area Fragmentation
in Re-configurable Operating Systems’, In Proc.
of the International Conference on Engineer-
ing of Reconfigurable Systems and Algorithms.
CSREA Press, Jun. 2004.

[13] L. Shang, A. S. Kaviani, and K.
Bathala”Dynamic power consumption in
VirtexTM-II FPGA,” 10th ACM International
Symposium on Field-Programmable Gate
Arrays(FPGA), Feb. 2002, pp.157-164.

7

