
Early Experience with an Implementation of Java on RTLinux

Miguel Masmano, Ismael Ripoll, Jorge Real, and Alfons Crespo
Department of Computer Engineering, Polytechnic University of Valencia

Camino de Vera 1, Valencia, Spain

{mmasmano, iripoll, jorge, alfons}@disca.upv.es

Abstract

A deterministic response time is the most important and necessary feature in Hard Real-Time Systems.

This is the main reason why some years ago it was unthinkable to implement Hard Real-Time Systems with

the Java language, an object-oriented, interpreted language, mainly because Java uses garbage collection

to implicitly deallocate dynamic memory; This is widely known as“the garbage collection problem” in

the Real-Time Systems community, due to its temporal unpredictability. Nevertheless, few years ago a

new standard, known as RTJava, has been specified to transform the Java language into a Real-Time

compliant one, making it possible to implement Real-Time applications in Java. This new Real-Time

standard tries to benefit from the experience gained in the design of other Real-Time languages, taking

advantage of their real-time properties like scheduling control. On the other hand, RTLinux is a Hard

Real-Time Operating System which allows to implement Hard Real-Time applications while preserving

all of the Linux functionalities available for the Soft Real-Time part of the application. This paper

will describe how we have ported the JamVM, a free Java Virtual Machine implementation to run Java

bytecode directly on RTLinux, which allows to benefit from both the capabilities of the Java language

and the RTLinux OS. This work represents our first milestone in the more ambitious goal to provide an

Real-Time RTJava platform based on RTLinux.

1 Introduction

The most important aim of a hard real-time oper-
ating system is to achieve a deterministic response
time as well as a correct logical behaviour of the ap-
plications, being that the main reason because the
use of the Java language has been avoided till now
in this kind of systems.

Nevertheless, with the recent apparition of the
new specifications of Java for Real-Time [3], which
defines, among other things, new classes to work
in a real-time environment as well as removes from
the language all non necessary stuffs (avoiding the
garbage collection problem), the hard real-time ap-
plications are able to be written completely in Java.

In the RTLinux case the existing approach to use
Java, before the creation of these new standards, was
to program the hard real-time part of the application
in C/C++/Ada, which was executed by RTLinux
with a guaranteed bounded response time, and the
soft real-time part was written in Java, which was
executed by Linux without real-time guarantees.

This paper presents all the work done to ac-
complish our first milestone: to port a Java Vir-

tual Machine to the RTLinux environment, providing
RTLinux the capability to execute application com-
piled as byte code. With this new approach we ex-
pect to gain Java properties in the Hard Real-Time
applications.

2 RTLinux-GPL

Linux was initially designed as a general purpose
OS, mainly for use as a desktop OS. Once Linux
became more popular, it started to be used in server
machines. Kernel developers added multiprocessor
support, management of large amounts of memory,
efficient handling of large numbers of running pro-
cesses, etc. Nowadays, Linux is a full-featured, ef-
ficient (good throughput) OS, but with little or no
real-time performance.

There are two different approaches to provide
real-time performance in a Linux system:

1. To modify the Linux kernel to make it a ker-
nel with real-time characteristics. For this pur-
pose, the kernel needs to be:

1



Predictable: This requires to improve the in-
ternal design to use efficient and time-
bounded algorithms. For example, a fast
scheduler.

Responsive: The kernel needs to be preempt-
able in order to interrupt (or postpone)
the servicing of a low priority process
when a high priority process becomes ac-
tive and requires to use the processor.

Real-time API: Real-time applications have
special requirements not provided by the
classic UNIX API. For example, POSIX
real-time timers, message queues, special
scheduling algorithms, etc.

2. To add a new operating system (or executive)
that takes the control of some hardware sub-
systems (those that can compromise the real-
time performance) and that gives Linux a vir-
tualised view of the controlled devices.

RTLinux was the first project to provide real-
time in Linux using two separate OSs: Linux as the
general purpose OS and a newly developed execu-
tive running beneath Linux. The RTLinux internal
structure can be divided into two separate parts: 1)
a hardware abstraction layer, and 2) the executive
operating system.

FIGURE 1: The RTLinux-GPL architec-

ture

The RTLinux HAL 1 is in charge of the hardware
devices that conflict with Linux (interrupt controller
and clock hardware). This layer provides access to
these hardware devices to both the RTLinux execu-
tive and Linux in a prioritised way. Hardware virtu-
alisation is achieved by directly modifying the Linux
kernel sources applying a patch file. These changes

do not replace the hardware drivers by virtual drivers
but prepare the kernel, adding hooks, to dynamically
replace the drivers. The code that actually virtu-
alises the interrupt and clock devices are two sepa-
rate kernel modules 2: rtl.o and rtl timer.o.

Currently, there are several Linux projects that
use this (or a similar) approach: Real-Time Ap-
plication Interface (RTAI), Adaptive Domain En-
vironment for Operating Systems (ADEOS) and
RTLinux-GPL. The work presented in this paper has
been based on the code of the RTLinux-GPL project.
In what follows, RTLinux-GPL will be referred to as
RTLinux for short.

The RTLinux executive implements a partial
Minimal Real-Time POSIX.13 interface. The execu-
tive is highly customisable. It has been implemented
in a modular way that permits to dynamically load
into the system the parts of the API that are used
by the application. In addition, several parts of the
code are surrounded by conditional preprocessor di-
rectives that allow to tailor the final RTLinux exec-
utive even more, by using a graphical interface.

3 Executing Java in RTLinux

There exist two possible ways to run a Java applica-
tion in RTLinux:

1. Compiling the application as a binary object
code file (an RTLinux module) and executing
it directly, with no differences with any other
RTLinux application. The application is exe-
cuted as a native application with all the ben-
efits that it provides. Loosing same Java good
properties as the mobility of code, however.

2. Compiling the application as a byte code file
and inserting an interpret inside of RTLinux
to execute it. The main drawback of this ap-
proach is the lost of throughput of the applica-
tion, since it is executed with less speed than
binary code.

We have decided to use the second method, that
is, to insert a interpreter inside RTLinux as defined
by Real Time Standard for Java.

3.1 Porting a JVM

The first step before porting a JVM to the RTLinux
environment is to choose the more suitable one. Our
choice has been the JamVM virtual machine.

1The mechanism to intercept hardware access off a general purpose OS to implement a real-time layer is covered by U.S.
Patent No. 5,995,745, titled: “ADDING REAL-TIME SUPPORT TO GENERAL PURPOSE OPERATING SYSTEMS”. The
owner of the patent permits the use of the patented method if the software is released under the General Public License (GPL).
For more details read “The RTLinux Open Patent License, version 2.0” [6]

2A Linux kernel module is a piece of code that can be loaded and unloaded into the kernel upon demand.

2



3.1.1 JamVM: a small but complete Java

Virtual Machine

Currently there exist a great quantity of implemen-
tations of the Java Virtual Machine (JVM for short),
examples of available JVM are the Sun Java Devel-
opment Kit (JDK), Kaffe, JamVM, IBM Jikes, and
a large etc.

Nevertheless, choosing a suitable one to be
ported to RTLinux is not an easy task, mainly be-
cause among other reasons, not all existing JVM’s
source code is freely available, or are written in C
(there is a great quantity of JVMs written in Java
itself or C++).

Our preferences to choose a JVM between all ex-
isting ones have been:

1. The foot-print: the selected JVM must be in-
serted into the kernel space as a rtlinux module,
hence the smaller, the better.

2. The compatibility of implemented features: It
is extremely important that the selected JVM
was fully compatible with the Java specifica-
tion.

3. The language used to implement the JVM [C,
assembly]: The use of a different language in
RTLinux provoke the necessity of the use of ex-
tra support, that is the case of C++ or Ada.
Therefore it will be convenient to easy the port
and the maintenance that the JVM is written
in C.

4. The Java classes must be fully compatible with
the Java standard: The Java classes are the
heart of all JVMs, since any JVM implemen-
tation itself uses them as the Runtime Sys-
tem. Therefore the classes used by the selected
JVM must be fully compatible with the Java
standard and free, nonetheless it is not nec-
essary that they are fully implemented since
not all Java functionalities are useful inside the
RTLinux environment.

At the end we have opted to use JamVM be-
cause it accomplishes all previously enumerated re-
quirements.

JamVM [1] is a Java Virtual Machine which con-
forms to the JVM specification version 2 (blue book).
This virtual machine in comparison to most other
VM’s (free and commercial) it is extremely small.
However, it has been designed to support the full
specification, and includes support for object finali-
sation, the Java Native Interface (JNI) and the Re-
flection API.

JamVM includes a number of optimisations to
improve speed and reduce foot-print. A list of
JamVM’s features is:

• The utilisation of the native threading (Posix
threads, despite Java threads), as well as
a full thread implementation, including the
Thread.interrupt() method.

• Object references are direct implemented as
pointers (i.e. not handlers).

• It supports class loaders.

• Efficient thin locks for fast locking in uncon-
tended cases (the majority of locking) without
using spin-locking.

• Two words object header to minimise heap
overhead (lock word and class pointer).

• Execution engine supports basic switched in-
terpreter and threaded interpreter, to minimise
dispatch overhead (requires gcc value labels).

• Stop-the-world mark and sweep garbage collec-
tor.

• Thread suspension uses signals to reduce sus-
pend latency and improve performance (no sus-
pension checks during normal execution).

• Full object finalisation support within the
garbage collector (with finaliser thread).

• Garbage collector can run synchronously or
asynchronously within its own thread.

• String constants within class files are stored
in hash table to minimise class data overhead
(string constants shared between all classes).

• Supports JNI and dynamic loading for use with
standard libraries.

• Uses its own lightweight native interface for in-
ternal native methods without overhead of JNI.

• JamVM is written in C, with a small amount
of platform dependent assembler, and is easily
portable to other architectures.

Modifications suffer by the JamVM In order
to accomplish our first milestone, that is, executing
java byte-code directly in RTLinux, the modifica-
tions performed in the JamVM have been minimum,
basically they have consisted in adding a small li-
brary (the RTJL, explained in the section 3.3) which
among other things implements some library func-
tions, another performed modification has been the
division of the JamVM into two different parts:

3



1. The Java interpreter, which is compiled as an
RTLinux module and executed inside this en-
vironment. In order to accomplish our first
milestone we have been focused only in exe-
cutint the JamVM in RTLinux without taken
into account its real-time behaviour. There-
fore the modifications carried out in this part
have been focused to remove GLIBC function
replacing them with our own RTLinux Java
Layer, which is described in the 3.3 section,
as explained above.

2. The user command interpreter, which is ex-
ecuted as a Linux user program and which
loads/unloads into memory all the classes
which JamVM requires. This second part is
better described in the section 3.2.

Regarding the garbage collection problem for
this first release we have decided to disable the
JamVM garbage collector mechanism, therefore all
allocated memory is never released.

3.1.2 GNU Classpath: A free implementa-

tion of the essential libraries for Java

To interpret a java application, two different parts
are required, a Java Virtual Machine which executes
the byte code and the Java Runtime, which imple-
ments necessary support to manage the application.
In the JamVM, the Java runtime is implemented
through the GNU Classpath [2] libraries.

The GNU Classpath is a project to provide a free
implementation of essential Java Classes, released
under the terms of the GPL License version 2. It
is still under development but it implements all nec-
essary classes to run a basic or not so basic Java
Virtual Machine.

These must be the reasons because the developer
of JamVM chose GNU Classpath implementation.

Modifications suffer by the GNU Classpath

At the current moment of the porting has not still
been necessary to modify the GNU Classpath at all.

For the second milestone is planned to remove
all unnecessary stuffs from the GNU Classpath like
all graphic classes and to add the most important
classes defined in the RTSJ.

3.2 The Linux class loader

Once compiled, any java program is compiled as a
byte-code file, this file is open and executed by the
interpreted. However, at least currently, RTLinux
do not implement any way to access directly to the
Linux filesystem, therefore it is necessary to imple-
ment some methods to load/unload classes to/from

memory. The Linux class loader is a Linux user ap-
plication which loads/unloads classes under demand.
This application implements all necessary operations
to manage Linux files and is communicated via an
RTL-Fifo and shared memory with the RTL-JVM
which has been porting by us.

The working of this application is as follow, when
the RTL-JVM needs some classes, it sends a message
via the opened RTL-Fifo requesting the opening and
the reading of the requested class, once the class is
opened and read, it is sent through a shared memory
buffer to the RTLinux context.

Besides the Linux class loader also interacts with
the user to manage the working of the RTL-JVM.

Another functionality of this part is to insert the
JVM in RTLinux as well as to send it the user com-
mands, that is, which class has to be executed, etc.

3.3 RTLinux Java Layer (RTJL)

In order to substitute the GLIBC functionality, we
have implemented the RTLinux Java Layer (RTJL
for short) which implements a minimum C library.
It is important to recall that all file management is
carried out by the linux class loader, hence they have
not been included in the RTJL, RTJL just imple-
ments math functions, printf, and string functions.

RTJL also includes a dynamic memory alloca-
tor: TLSF dynamic memory allocator [4, 5], which
is designed to achieve Real-Time capabilities.

FIGURE 2: RTLinux-GPL running Java

Figure 2 shows the resulting architecture, the
java virtual machine is communicated via an RTL-
Fifo and shared memory with the class loader which
loads/unloads classes to/from memory. All threads,
which are created by the java virtual machine, are
directly mapped as RTLinux Posix threads.

4



4 Conclusions and Future
Work

This paper presents the work done to accomplish our
first milestone, the port of a JVM to be executed as
RTLinux module. Allowing us to execute directly
Java byte code as any other RTLinux application.

However there are still much work to be done.
Our second milestone contains between other things:

1. To study the behaviour of real java applications
in the RTLinux environment.

2. To study current existing solutions for the
garbage collector problem and implement some
of them in the JamVM, removing the current
JamVM mechanism. In the case that this
study would be unsuccessful, the adopted so-
lution will be the same that now, to avoid the
release of dynamic memory, using only the al-
location operation.

3. To strip GNU Classpath removing all non-
RTJava compliance stuffs: GNU Classpath has
been implemented keeping in mind the fully
compatibility with Sun Java Classes. However,
a lot of implemented stuffs are useless in the
RTLinux environment (i.e. RMI features, file
handling classes, etc).

4. To implement some RTJava new real-time
classes.

References

[1] Robert Lougher, JamVM, available at
http://jamvm.sourceforge.net

[2] GNU Classpath, available at
http://www.gnu.org/software/classpath/-
classpath.html

[3] RTSJ: The Real-Time Specification for Java 1.0,
available at http://rtj.org

[4] Miguel Masmano, Ismael Ripoll, Alfons Crespo,
and Jorge Real, TLSF: a New Dynamic Mem-

ory Allocator for Real-Time Systems, Proc. of the
16th Euromicro Conference on Real-Time Sys-
tems.

[5] Miguel Masmano, Ismael Ripoll, and Alfons Cre-
spo, Dynamic storage allocation for real-time em-

bedded systems, Proc. of Real-Time System Sim-
posium WIP.

[6] FSMLABS, The RTLinux Open Patent License,

version 2.0, available at http://fsmlabs.com/-
products/rtlinuxpro/rtlinux patent.html

5


