
RTOS Acceleration Techniques – Review and Challenges

M. Sindhwani, T. F. Oliver, D. L. Maskell And T. Srikanthan

Centre for High Performance Embedded Systems (CHiPES)
Nanyang Technological University, Singapore

emohit@ntu.edu.sg, tim.oliver@pmail.ntu.edu.sg, {asdouglas, astsrikan}@ntu.edu.sg

Abstract

As embedded systems evolve, there is greater dependency on the real-time operating system (RTOS)
to abstract the complex hardware. In return for the services provided, the RTOS consumes CPU cycles,
thereby imposing a processing overhead on the CPU. In this paper, we review some of the techniques that
have been proposed in literature for reducing the CPU utilisation by the RTOS primitives, including our
work on two specific platforms – a multi-core processor and a soft-core processor. We clearly demonstrate
that the benefits of adopting a suitable RTOS acceleration strategy are significant. We also look at some
of the challenges that face the RTOS industry if they are to adopt these mechanisms. It is our belief that
the self-maintaining nature of open source software makes it a very viable candidate for benefiting from
these approaches.

1 Introduction

As embedded systems evolve, there is increasing re-
liance on run-time software, such as a Real-Time Op-
erating System (RTOS), to abstract the underlying
hardware and offer a consistent API to the appli-
cation developer. However, this has resulted in the
RTOS layer becoming more demanding, and consum-
ing a greater percentage of CPU time. The CPU
overheads imposed by the RTOS reduce the time
available for processing user tasks. In a sample im-
plementation, we found that the overheads imposed
by the RTOS can be as high as 27% [1].

In this paper, we look at some of the methods
proposed in literature for managing the CPU over-
heads imposed by the RTOS. To introduce the case,
we begin by looking at the advanced processing op-
tions that are being made available in embedded sys-
tems. This is followed by a review of techniques that
make use of these hardware features to reduce the
RTOS overheads in these modern platforms.

The paper is organized as follows. The next sec-
tion provides a brief introduction to hardware op-
tions in modern embedded systems. This is followed
by a review of RTOS acceleration techniques pro-
posed in literature, including our work with a multi-
core processor and a soft-core processor. In Section
4, we discuss the problems and challenges that con-
front RTOS developers who wish to adopt these tech-
niques for application-specific optimization of the

RTOS. Finally, our conclusions are presented in the
last section.

2 Embedded Hardware

Three main advancements have become common in
the embedded space. This section lists these three
advancements, and describes them briefly.

Advanced Embedded Processors: Owing to the
advances in VLSI technology, more logic gates
can be incorporated onto the same area of sil-
icon. Modern process technology also results
in systems that are more power-efficient and
higher performing. Greater degrees of integra-
tion in embedded processors have resulted in
multi-core processors that combine DSP and
RISC functionality [2], CPU and I/O proces-
sors [3], or multiple CPUs. Such processors
are becoming more common in embedded pro-
cessing due to the advantages they provide.

FPGA Space: The availability of field-
programmable gate array (FPGA) space in
modern embedded systems allows designers
to accelerate compute-intensive operations in
hardware. Also, the re-programmable nature
of the FPGA allows the hardware modules
to be upgraded even after deployment. Com-
mon models of FPGA usage in modern embed-

1



ded systems typically incorporate an FPGA +
CPU combination, either as separate chips, or
as a single integrated chip [4].

Configurable Systems-on-Chip: The rapid in-
crease in the gate counts of FPGA devices has
enabled the creation and deployment of entire
systems on FPGAs. The Configurable System-
on-Chip often uses a soft-core programmable
processor, running a real-time operating sys-
tem, as the central processing element in the
system. Typically, the instruction set of the
processor can be extended to incorporate cus-
tom instructions that reduce a complex se-
quence of software instructions to a single in-
struction implemented in hardware. In fact,
it has been predicted that by the end of the
decade, nearly 80% of semiconductor products
sold in the SoC class will belong to the config-
urable system-on-chip category [5].

These advancements in hardware offer new av-
enues for optimizing the RTOS and making it more
efficient. In the subsequent sections of the paper, we
see what options have been proposed for optimizing
the RTOS in the modern embedded system.

3 RTOS Acceleration Tech-

niques

In this section, we review the four main approaches
that have been proposed for RTOS acceleration.
These include co-processor assisted acceleration,
hardware-assisted acceleration, hardware RTOS and
instruction set customization.

3.1 Co-processor approach

There are a few approaches based on the use of a
co-processor. In [6], the idea of a task-scheduler
co-processor for hard real-time systems is presented.
The proposed design uses an external 8032 microcon-
troller as the task scheduling co-processor and can
handle up to 32 tasks. In this design, all interrupts
are routed to the co-processor so that full scheduling
management can be performed by the coprocessor.
The coprocessor is designed on a separate board that
connects to the main CPU board over the systems
bus. Communication between the coprocessor and
the target is by using interrupts.

Our own work [7] is based on a similar concept,
but relies on an on-chip programmable I/O proces-
sor. The Infineon TriCore TC10GP microcontroller
[8] was used. The MicroC/OS-II [9] tick scheduler

was ported to run on the Peripheral Control Proces-
sor (PCP), while dispatch operations continued to
be carried out by the CPU. The PCP communicated
with the main CPU using interrupts.

The RTOS overheads on the main CPU are re-
duced because of two factors:

- The number of times the main CPU is inter-
rupted is reduced from the system timer tick
interrupt frequency (e.g. 100 times a second)
to the frequency at which tasks are made ready
in the system – this results in fewer interrupts
to the main CPU, resulting in better CPU uti-
lization by user tasks.

- Also, the time of the tick ISR on the main CPU
was reduced by about 1600 cycles, thereby re-
ducing the cost associated with each invocation
of the interrupt service routine.

Results: Due to the manner in which the RTOS
was split and the timer interrupts were separated
from the main CPU, it was found that the overheads
(in clock cycles) on the main CPU depended only on
the number of tasks that were made free every second
and were not directly affected by the number of tasks
in the system, the frequency of the system timer tick,
the cost of executing the scheduling algorithm or the
frequency at which the CPU was operating (this has
implications in power management).

Such an approach is readily applicable to any
multi-core processor in which two or more indepen-
dent processing units exist.

Finally, efforts to split some of the overheads
of message passing in massively parallel processors
are presented in [10]. Communications co-processors
provide dedicated hardware support for fast commu-
nication that can be exploited for executing user-
level message handlers, thus freeing the main pro-
cessor for computational work. Since the CPU is
freed from the tasks required for message handling,
this mechanism allows overlap of computation and
communication to a greater extent. Results in the
paper show improvements as high as about 3 times
in the execution of some benchmark programs.

3.2 RTOS Primitives in Hardware

A number of efforts to port portions of the RTOS
to hardware have been presented in literature. The
main motivation for these efforts is to:

1. Reduce RTOS overheads on the CPU.

2. Implement more complex and comprehensive
algorithms for RTOS tasks.

2



F-Timer: In [11] there is the proposition of us-
ing an external FPGA that provides dedicated hard-
ware units for maintaining a 32-task list, organized
by time priority. It provides a time resolution of
100µS and the various interrupt modes and tasks are
programmable.

Spring Scheduling Co-processor: The Spring
scheduling coprocessor [12] is a coprocessor to accel-
erate scheduling. Many different scheduling policies
and their combinations can be used. The architec-
ture has been designed for multiprocessor systems
and it has been shown that the main portion of the
scheduling operation can be improved by over three
orders of magnitude [13]. Performance issues related
to the co-processor are presented in [14].

For system-on-chip environments, a number of
propositions have been presented. It is claimed
that the hardware-assisted interprocessor communi-
cation (IPC) mechanism proposed in [15] can reduce
the communication overhead of embedded microcon-
trollers by a factor of 30 or more. In [16], an effi-
cient, small and simple hardware unit is proposed
for reducing synchronization overheads in multi-
processor system-on-chip implementations. In [17],
a hardware-assisted memory management scheme
called Two-Level Memory Management is proposed
for multi-processor implementations. In the paper,
it is also shown how to modify an existing RTOS to
support the proposed hardware.

In addition to the above, [18] discusses hardware
support for distributed real-time systems and in [19],
a novel deadlock detection algorithm and architec-
ture is presented to support the RTOS.

3.3 Hardware RTOS

Hardware RTOS approaches replicate most of the
software RTOS as a complete hardware entity. There
are two main projects in this area.

FASTCHART and Related Projects:
FASTCHART [20] is a system that consists of a
fast time deterministic CPU and hardware based
real-time kernel that implements the entire RTOS
in hardware. An analysis of the FASTCHART ap-
proach is presented in [21]. FASTHARD [22] is a
modified version of FASTCHART that can be used
with any general CPU. It is connected to the sys-
tem bus, and in addition, needs an interrupt line to
the CPU. It can cater to 256 tasks and 8 priorities.
The interface is created as a set of service calls from
the CPU to the real-time unit. Similarly, the Sierra
Operating System Accelerator [23] is a commercial
product for RTOS acceleration that can manage 16
tasks with 8 priorities, 16 resources and 8 interrupts.
It is from a company that was set up by the authors
of FASTCHART and FASTHARD.

Silicon TRON: A similar approach for RTOS
speed-up is presented in [24]. The authors have
ported the most basic system calls to hardware and
show that the hardware implementation is about 130
to 1880 times faster than the software implementa-
tions. This hardware was designed to support the
TRON Operating System [25], and is similar to the
other options discussed this far.

3.4 Instruction Set Customization

In [1] and [26], we proposed instruction set cus-
tomization of soft-core processors as the means to
contain RTOS-imposed CPU overheads. By using
custom instructions to implement parts of the RTOS
kernel, we reduced a complex sequence of software
instructions to simpler single-cycle (combinatorial)
and multi-cycle (sequential) operations, supported
by hardware. To evaluate our approach and designs,
we extended the instruction set of the Altera NIOS
processor [27] and the open-source OpenRISC pro-
cessor [28] to aid scheduling, event management and
time management of the MicroC/OS-II RTOS.

The task scheduler, event control block and the
timer management routines were supported by cus-
tom instructions, and the resulting performance was
measured. The task scheduler module resulted in a
ROM saving of about 1KByte, which would result in
improved energy dissipation of the system. The max-
imum critical-section length was reduced by around
3% to 5%, translating into an improvement in the
interrupt response time.

Individual routines showed performance im-
provements in the range of 50%–90%. Frequently
used RTOS primitives (based on the Rhealstone
benchmark [29]) showed an improvement of 10%–
35% and the Dhrystone mark [30] of the sys-
tem improved by as much as 13%. Although the
MicroC/OS-II RTOS was used, our methods are
equally applicable to other operating systems and
soft-core processors. Detailed results are available in
[1] and [26].

3.5 Summary

Clearly, there are a number of approaches that can
be used to accelerate the RTOS and reduce the CPU
overheads imposed by the RTOS.

Co-processor approaches introduce problems
with data inconsistency, communication and syn-
chronization between the multiple processors, and
verification. A similar problem affects hardware ap-
proaches where the real-time kernel runs in parallel
with the main CPU.

Instruction set customization offers a simple yet
effective technique for improving the efficiency of the

3



RTOS. Since the RTOS is still a software entity, there
are no concerns about synchronization or communi-
cation. Also, custom instruction verification is rela-
tively simple.

Most of the methods above claim excellent scal-
ability in the face of increasing number of tasks, a
feature that is crucial as embedded systems become
more complex.

4 Challenges

Typically, the RTOS has been treated as a full-
software entity with the above techniques being of-
fered by academia as options for making the RTOS
more efficient. The actual solution that should be
used depends on the requirements of the system be-
ing designed. The selection is influenced by the needs
of the embedded system and the capability of the em-
bedded system. For example, a system should use a
hardware scheduler if scheduling overheads are sig-
nificant in the system. However, this can be done
only if there is hardware space available in the tar-
get. The actual scheduler that can be used and its
performance will then depend on the amount of avail-
able hardware space.

This brings up certain challenges for RTOS de-
signers:

1. The RTOS has typically been perceived as a
software entity. The techniques highlighted in
this paper rely on the availability of hardware
accelerators. This would require a commercial
RTOS vendor to have a team of qualified digi-
tal hardware engineers to design, integrate, and
test the accelerators for different platforms.

2. Even though programmable logic space is avail-
able in modern embedded systems, the amount
of space available for RTOS activities will be
influenced by the specific application. It is dif-
ficult for RTOS developers to cater to this kind
of an unspecified target.

3. Configurable processors allow the addition of
custom instructions. The number, nature and
complexity of these instructions depend on the
amount of available logic space in the target
hardware. Therefore, it is not possible for
RTOS developers to anticipate or assume the
availability of specific instructions in the target
processor’s instruction set.

4. System software is typically supplied by inde-
pendent vendors - this means that the hard-
ware and software teams work independently,

rather than synergistically [31]. This is espe-
cially the case if the processor hardware is cus-
tomized by the project team, but the RTOS is
licensed from a third-party vendor.

Due to the above reasons, RTOS vendors are
forced to provide more generic and non-optimal so-
lutions. On the other hand, designers of constraint-
driven embedded systems will value the ability to
tweak the RTOS and carry out application-specific
optimization for their specific target. This problem
is likely to intensify in the future as systems devel-
opers move towards greater levels of hardware cus-
tomization in their designs.

It is therefore our proposition that these tech-
niques are best suited for the open source domain.
Due to the vast number of people involved in develop-
ing, verifying and maintaining open source software,
open source operating systems are good candidates
to benefit from the techniques listed in this paper.
Due to the open source community’s willingness to
share, there is a much greater chance that such tech-
niques can be implemented, documented, maintained
and effectively used. Open source software and hard-
ware components can be developed and made avail-
able to the community. Developers can select and
integrate the components they need for their system.

We feel that the most sensible way to tackle this
problem is to define a framework [32] to customize
the RTOS before embedding it in the system. This
implies that the RTOS be customized exclusively for
the application. For this to be possible and feasible,
software tools are required that can automatically (or
with a little help) analyze the RTOS requirements
and the resource availability in the target embed-
ded system, and customize the RTOS to optimally
meet the needs. In this case, the RTOS will be auto-
generated by the software tool as a set of files, some
of which can be compiled to execute on the target
architecture, while others can be synthesized into a
hardware model.

Such a framework would need extensive informa-
tion about the performance parameters, and software
and hardware modules that implement portions of
the RTOS. It is far more believable that the open
source community would be willing to share such in-
formation.

5 Conclusion

In this paper, we have looked at the various tech-
niques offered as solutions to the problem of reducing
the CPU overheads imposed by the RTOS. Most of
these techniques rely on the availability of hardware
accelerators. We have identified the problems that

4



commercial RTOS vendors would face if they were
to support these options. We have also suggested
that the open source community is in the best posi-
tion to develop, verify, and maintain these options.
It is, therefore, our conclusion that these techniques
are best suited for the open source domain.

References

[1] Z Jin, M Sindhwani and T Srikanthan,
2004, RTOS Acceleration on Soft-core Proces-
sors Using Instruction Set Customization, In-
ternational Conference on Field Pro-
grammable Technology (FPT 2004),
Australia.

[2] Texas Instruments, 2002, TMS320VC5470
Fixed-Point Digital Signal Processor Data Man-
ual.

[3] Infineon Technologies, 2001, TC1775
User’s Manual System Units. see:
http://www.infineon.com/tricore/

[4] Xilinx, 2002, Virtex-II Pro Platform FPGAs
see: http://www.xilinx.com/

[5] Balough, C, 2000, Picking Winners in the
Configurable System-on-Chip Space see:
http://www.techonline.com/

[6] Cooling J. and Tweedale P, 1997, Task scheduler
co-processor for hard real-time systems Micro-
processors and Microsystems, 20 (1997),
pp. 553–566.

[7] Ramakrishnan N, 2002, H37/01 – Towards an
Independent On-Chip RTOS Manager. Honors
Year Project Report. Nanyang Technological
University (2002).

[8] Infineon Technologies, 2000, Infineon Tricore
TC10GP Users Manual.

[9] Labrosse J J, 1999, MicroC/OS-II: the real-time
kernel, Kansas R&D Publication.

[10] Schauser K E, Scheiman C J, Ferguson J M,
Kolano P Z, 1996, Exploiting the capabilities of
communications co-processors, Proceedings
of the 10th International Parallel Pro-
cessing Symposium, pp. 109–115.

[11] Parisoto A, Souza A Jr, Carro L, Pontremoli
M, Pereira C, Suzim A, 1997, F-Timer: ded-
icated FPGA to real-time systems design sup-
port, Proceedings of the Ninth Euromi-
cro Workshop on Real-Time Systems,
1997, pp. 35–40.

[12] Burleson W, Ko J, Niehaus D, Ramamritham K,
Stankovic J A, Wallace G, Weems C, 1993, The
spring scheduling co-processor: a scheduling ac-
celerator, IEEE International Conference
on Computer Design: VLSI in Computers
and Processors, pp. 140 – 144

[13] Burleson W, Ko J, Niehaus D, Ramamritham
K, Stankovic J A, Wallace G, Weems C, 1999,
The spring scheduling coprocessor: a scheduling
accelerator, IEEE Transactions on Very
Large Scale Integration (VLSI) Sys-
tems, Volume: 7 Issue: 1 pp. 38–47.

[14] Niehaus D, Ramamritham K, Stankovic J A,
Wallace G, Weems C, Burleson W, Ko J, 1993,
The Spring scheduling co-processor: Design,
use, and performance, Real-Time Systems
Symposium, 1993. pp. 106–111.

[15] Srinivasan S, Stewart D B, 2000, High speed
hardware-assisted real-time interprocess com-
munication for embedded microcontrollers, 21st
IEEE Real-Time Systems Symposium, pp.
269–279.

[16] Saglam B E, Mooney V J III, 2001, System-
on-a-chip processor synchronization support in
hardware, Design, Automation and Test
Conference and Exhibition in Europe,
2001., pp. 633–639.

[17] Shalan M, Mooney V J III, 2002, Hard-
ware support for real-time embedded multi-
processor system-on-a-chip memory manage-
ment, Tenth International Symposium on
Hardware/Software Codesign, pp. 79–84.

[18] Pontremoli M M B, Pereira C E, 1997, Hard-
ware Support for distributed Real-Time Operat-
ing Systems, Control Eng. Practice, Vol
5, No. 10, pp. 1435–1442.

[19] Shiu P H, Yudong Tan, Mooney V J III, 2001, A
novel parallel deadlock detection algorithm and
architecture Ninth International Sympo-
sium on Hardware/Software Codesign,
pp. 73–78.

[20] Lindh L, 1991, Fastchart – a fast time determin-
istic CPU and hardware based real-time-kernel
Workshop on Real Time Systems, 1991.
Euromicro ’91, pp. 36–40.

[21] Stanischewski F, 1993, FASTCHART – Perfor-
mance, Benefits and Disadvantages of the Ar-
chitecture Fifth Euromicro Workshop on
Real-Time Systems, pp. 246–250.

5



[22] Lindh L, 1992, FASTHARD – A Fast Time De-
terministic HARDware Based Real-time Kernel,
Fourth Euromicro workshop on Real-
Time Systems, pp. 21–25.

[23] Realfast, 2002, Realfast Sierra Operating System
Data Sheet.

[24] Nakano T, Komatsudaira Y, Shiomi A, Imai M,
1997, VLSI implementation of a real-time oper-
ating system, Asia and South Pacific De-
sign Automation Conference, 1997, pp.
679–680.

[25] The TRON Project. See:
http://www.sakamura-lab.org/TRON/

[26] Timothy F Oliver, Douglas L. Maskell, 2004,
Accelerating an Embedded RTOS in a SOPC
Platform, Annual Technical Conference
of the IEEE Region 10.

[27] ALTERA NIOS CPU Data Sheet, March 2003.

[28] Lampret D, 2004, Open RISC 1000 Project, see:
http://www.opencores.org/

[29] Rabindra P Kar, 1990, Implementing the Rheal-
stone Real-Time Benchmark, April 1990 issue
of Dr. Dobb’s Journal.

[30] Reinhold P Weicker, 1984, Dhrystone: a syn-
thetic systems programming benchmark, Com-
munications of the ACM Volume 27, Is-
sue 10.

[31] Harbison S P, 1999, System-level hard-
ware/software trade-offs, 36th Design
Automation Conference, pp. 258–259.

[32] Mohit Sindhwani, 2002, A Framework for a
Portable, Scalable and Extensible Real-Time
Operating System, Nanyang Technological Uni-
versity, Master in Engineering, Year 1 Progress
Report.

6


