
Real-Time display in RT Linux using IO channels

M. Shivakumar and M. Hemavathy

Central Research Laboratory, Bharat Electronics Limited

Jalahalli-post, Bangalore-560013, INDIA

{nithavis,hemavathy m}@yahoo.com

Abstract

Real Time applications involve time-critical tasks, which are to be run in a high precision scheduling
environment always meeting the timing constraints. Applications which run on RT Linux uses a hard
real-time kernel for tasks which needs real-time processing and the Linux OS for other non real-time
tasks. These include tasks like networking and display. It uses the display system present in desktop
Linux operating system for part of the application involving display. At high throughput rate this leads
to synchronization problems between real-time acquisition and display modules as in the case of real-time
tracking applications. The Linux scheduler will not handle the data sent at the rate of a real-time task
causing buffer overflow and system crash. In this paper a method to synchronize, the display task to
the output data rate of the real-time task, using IO watches for the buffered Input/Output channel is
discussed.

1 Introduction

RTLinux is a version of the Linux Operating Sys-
tem. It’s a hard real time operating system that
runs Linux as its lowest priority execution thread.
The Linux thread is made completely preemptable
so that real-time threads and interrupt handlers are
never delayed by non real-time operations. RTLinux
supports real-time interrupt handlers and real-time
periodic tasks with interrupt latencies and schedul-
ing jitter close to hardware limits.

FIGURE 1: Real-Time application archi-
tecture

Real-time tasks in RTLinux can communicate with
Linux processes via FIFOs and shared memory.
Thus, real-time applications can make use of all the
powerful, non real-time services of Linux, including:

• Networking

• Display and Graphics

• Windowing systems

• Data analysis packages

• Linux device drivers, and

• Standard POSIX API

2 Display Process

RT Linux does not have a real-time display mecha-
nism within itself. It uses the standard Linux graph-
ics facilities to do that. The real-time tasks inserts
data into the FIFO and the Linux process access
this data for further processing like creating dis-
play graphics based on this data. The FIFOs and
RT-FIFO buffers are allocated in the kernel address
space. The FIFO is filled by real-time data gener-
ated by RT Linux.
Linux user processes, on the other hand, see RT-
FIFOs as ordinary character devices and read the
data whenever it gets the scheduler. The display
process can use any of the standard Linux Graphi-
cal Widgets like KDE, GNOME and using the stan-
dard APIs like GTK, GDK, and GNOME etc. We

1



can program a thread, which looks out for the RT-
FIFO at a specified interval for any available data,
and format that data to display it on the screen.
For example, in GTK we can use the command
gtk timeout add.

gtk timeout add(ms, function, widget);

This creates a thread, which runs in every interval
specified by the timeout function. The function men-
tioned in the second parameter is called each time
and the third parameter has the widget name.

The problem here is, this thread can be scheduled
to access the FIFO in every interval specified in mil-
liseconds. This works well for the specified interval,
which is more than the Linux scheduling interval of
10ms. If the specified interval is less than the Linux
scheduling interval then it will not function accord-
ingly and it is treated as equal to the Linux schedul-
ing jitter only. So the applications, which needs dis-
play tasks at a rate, equal to the real-time task is not
possible with this set-up for lower timeout rates.

This style of accessing the FIFO to retrieve the data
sent by the real-time is not synchronous and induces
unwanted delays in displaying the information on
the screen. Here the real-time data acquisition and
the display, works independently with its own timing
parameters. Even though the real-time task is fast
enough to generate data, the output is displayed at
a slower rate. This is due to the limitation of the
display task running on the Linux scheduler. So the
whole application is treated as an inefficient one to
handle the real-time data at faster rates. This prob-
lem is discussed in detail with an example of circular
tracking application such as RADAR or SONAR.

3 Tracking application

Consider a circular tracking application, which sends
data at each degree interval to the real-time appli-
cation in polar form. The real-time task processes
the data in polar form [R,T] and converts into the
Cartesian form [X,Y]. This data is passed onto the
display task through the RT-FIFO. The targets iden-
tified are to be displayed along with the sweep line
indicating the position of the tracking beam.

In this real-time application with the present display
system using gtk timeout add() call we can schedule
to access the FIFO with the interval of 10ms only. If
we update the display at every degree displaying the
sweep and targets at that position, it will take 10 ms
x 360 = 3600 ms or 3.6 sec for one complete sweep.

FIGURE 2: A tracking application

So we can achieve only 16-RPM at the maximum.
For the higher RPM this will induce a delay in up-
dating the display and we will not achieve per degree
update. For example if we are aiming for 60 RPM
the timeout signal should work with an interval of
2.778 ms per degree, which is not possible if we use
the timeout system. So in order to decrease the dis-
play interval and synchronize with the real-time task
the IO channel watch method is used.

4 GIO Channels

The GIOChannels data type provides a method
for using file descriptors, pipes, and sockets,
and integrating them into the main event loop.
To create a new GIOChannel on UNIX systems
g io channel unix new() is used. This works for plain
file descriptors, pipes and sockets. Alternatively, a
channel can be created for a file in a system indepen-
dent manner using g io channel new file(). To add a
GIOChannel to the main event loop g io add watch()
or g io add watch full() is used. You have to specify
which events you are interested in the GIOChan-
nel, and should provide a function to be called
whenever these events occur. Inside the function
g io channel read chars() is used to read the data
from the RT-FIFO. This data is further processed
and displayed.

FIGURE 3: The working of IO watches

The data thus obtained is in synchronisation with the
real-time data acquired through the real-time task.

2



5 Adding IO Watches

The real-time task in RTLinux, takes the input data
from the external source and data is processed. Then
the processed data is stored in the RT-FIFOs as-
signed with that task. On the Linux side, the RT-
FIFO, which we want to add IO watch, is opened
in the read mode with the specified options. This
is typically done with Linux open() system call as
shown below.

fd=open("/dev/rtf1", O RDONLY, O NONBLOCK);

This call opens the /dev/rtf1 with the read only op-
tion and in non-blocking mode. The file descriptor
is return in fd.

A IO Channel is created by declaring a variable of
the type GIOChannel and passing the file descriptor
of the FIFO.

GIOChannel *MyChannel;

MyChannel=g io channel unix new(fd);

Assign the watch parameters to the GIOChannel
and the function name to call whenever a new data
is found. This will integrate the GIOChannel to the
main event loop of the GTK. This has to be called
with the following parameters.

channel: a GIOChannel
condition: the condition to watch for. Here you have
to specify the condition so has to look for the arrival
of new data in the FIFO.
function: the function to call when the condition is
satisfied.
user data : user data if any to pass to the function.
returns: the event source id.

g io add watch(MyChannel,G IO IN | G IO NVAL,

my function, NULL);

When the add watch satisfies the condition and re-
turn success, my function is called. GIO channel
read function is invoked inside my function, which
reads the channel to access the data. This has to be
called with the following parameters.

channel: a GIOChannel
buffer: a buffer to read data into
count : the size of the buffer
bytes read : The number of bytes read
error : A location to return an error of type
returns: the status of the operation.

g io channel read chars(myChannel, &buffer,

sizeof(buffer), error, bytes read);

The read data is available in the buffer variable for
further display processing. The processed data is fi-
nally displayed on the screen. The timing diagram in
Figure 4, shows the interaction between the real-time

task and the linux display task.

FIGURE 4: Timing diagram of IO watch
operation

6 Tracking application using

IO watch

Now consider the tracking application again with the
implementation of IO watches. We can schedule the
real-time process to generate the data necessary for
the per degree update. For 60 RPM we can set the
timer in real-time task with an interval of 2.778 ms
delay. So every 2.778 ms the data needed for the one-
degree updation is pushed into the RT-FIFO. At the
Linux end, the main-event loop of the display pro-
cess watches this new arrival of data on the FIFO
and a signal is generated, which calls GIOChannel
read function. Then the data in the FIFO is read
and passed it on to the display function, where fi-
nal processing is done and the data is displayed on
the screen. In this approach one complete revolution
takes 2.778 ms x 360 = 1000 ms or 1 sec, thus pro-
ducing a 60-RPM. Still the speed can be increased
to match the refreshing cycle of the monitor screen
by reducing the timer interval in the real-time task.

7 Conclusion

The IO channel watch method in real-time displays
helps us to achieve the display rate well equal to the

3



real-time data generation rate. So we can improve
the performance of the display graphics as equal to
the refreshing capacity of the monitor screen and the
display hardware. In addition to that the data dis-
played on the screen is synchronized to the real-time
data obtained without any delay.

References

[1] Cort Dougan & Matt Sherer, RTLinux POSIX
API for IO on Real-time FIFOs and Shared
Memory, Finite State Machine Labs.

[2] Matt Sherer , Writing applications in RT Linux,
Finite State Machine Labs.

[3] FSM Labs, Inc. December 2002 Getting Started
with RTLinux.

[4] FSM Labs, Inc. 2001-2002 Real-Time program-
ming in RTLinux.

[5] Alex Ivchenko , June 2001, Application code and
RT Linux, Embedded systems programming.

[6] Kevin Dankwardt , 2000, Fundamen-
tals of Real Time Linux software design,
www.linuxdevices.com

[7] The Embedded Linux GUI/Windowing Quick
Reference Guide, www.linuxdevices.com

[8] The Real Time Linux API,www.rtlinux.org-
documentation-man pages

[9] The GLib reference manual,
http://developer.gnome.org/API/2.0/glib/glib-
IO-Channels.html#GIOChannel

[10] Introduction to Linux for Real-Time Control,
National Institute of Standards & Technology,
Gaithersburg, MD.

[11] GTK+ and GNOME Reference manual,
www.developer.gnome.org

[12] Beginning Linux Programming,www.wrox.com
Wrox publications.

[13] Eric Harlow, Developing Linux applications,
www.informit.com.

4


