
A Real-Time Compliant Implementation of Linear Time-Invariant

Digital Filters in the C Programming Language

Peter Wurmsdobler

Brighton, UK

peter@wurmsdobler.org

Suvendhu Laha

Charlotte, US

suvendhu.laha@eurothermdrives.com

Abstract

This paper describes a fixed-point arithmetic implementation of linear time-invariant digital filters
in the C programming language, targeted for the use in real-time applications. FIR and IIR filters are
presented in different configurations and representations, such as direct and transposed forms, as well as
wave, state-space and normal forms. All these forms provide a first, second and N

th order tick or update
function, and they may also be arranged in cascades. Scaling of parameters and input values is adressed
as well as quantization of filtered output values with optional noise shaping. The implementation is
independent of filter types (low pass, high pass, etc.) and filter families (Butterworth, Bessel, etc.). All
filters are implemented in a dynamic linkable library, both real-time safe for the GNU/Linux user space
and the Linux kernel.

1 Introduction

Generally speaking, a digital filter calculates a digi-
tal output value y for a given digital input value x

depending on internal states, parameters and an al-
gorithm. Applied on a digital signal x[k], another
signal y[k], the filtered digital signal is produced,
with k being the normalized time. A digital sig-
nal is a special sequence of numbers; it is the time
discrete, quantized equivalent of an analogue signal,
which is the result of sampling the analogue signal
at a constant sampling frequency. The analogue sig-
nal itself may be the analogon of a physical quantity.
There are several qualifiers for digital filters: time-
invariant, time-variant, nonlinear or linear. Only lin-
ear time-invariant filters are considered in this paper.

1.1 Filter transfer functions

In the case of linear time-invariant filters (LTI fil-
ter), the digital filter processes a digital input signal
x[k] according to a specified time-invariant function
G producing the digital output y[k]. Transformed in
the z-domain, this transformation can be expressed
as the linear z-transfer function G(z−1). Applied to

the z-transformed input signal X(z−1) the output

Y (z−1) = G(z−1) · X(z−1). (1)

The parameters of this transfer function G(z−1) are
time-invariant and are the result of the filter design
process (which is not in the scope of this paper).
There are basically two variants of such digital LTI
filters: FIR filters and IIR filters. In addition, both
can be arranged to form cascades.

1.1.1 FIR filter transfer function

If an impulse is applied as input to a Finite Impulse
Response filter (FIR filter), the output remains a fi-
nite sequence of non-zero values. The transfer func-
tion of such an FIR filter can be written as

GFIR(z−1) =

N
∑

i=0

bi · z
−i (2)

= b0

N
∏

i=1

(

1 − z0i
· z−1

)

= b0 · z
−N ·

N
∏

i=1

(z − z0i
)

1

with bi being the coefficents of the transfer func-
tion’s numerator polynomial, or the (finite) impulse
response with h[i] = bi for i = 0 to i = n; or z0i

its
zeros and b0 its gain. N is the order.

1.1.2 IIR filter transfer function

If an impulse is applied as input to a Infinite Im-
pulse Response filter (IIR filter), the output remains
in general an infinite sequence of non-zero values, due
to its recursive character. The transfer function of
such an IIR filter can be written as

GIIR(z−1) =

∑N
i=0 bi · z

−i

1 +
∑N

i=1 ai · z−i
(3)

= b0 ·

∏N
i=1

(

1 − z0i
· z−1

)

∏N
i=1 (1 − z∞i

· z−i)

= b0 ·

∏N
i=1 (z − z0i

)
∏N

i=1 (z − z∞i
)

with bi being the coefficents of the transfer function’s
numerator polynomial, ai being the coefficents of the
transfer function’s denominator polynomial; or z0i

the zeros, z∞i
the poles and b0 the gain of the trans-

fer function. N is again the order. The number of
zeros is here assumed to be the same as the order,
which may result in zeros at z0i

= 0.

1.1.3 Filter cascade transfer function

The transfer function G(z−1) may be split into a
product of M stages,

G(z−1) =
M
∏

i=1

Gi(z
−1) (4)

or into a sum of stages,

G(z−1) =

M
∑

i=1

Gi(z
−1) (5)

whereas each stage can be either of first order, sec-
ond order or of N th order. Alternatively, a network
of filters can be made up of a combination of series
and parallel cascades. Hence a filter cascade contains
filter instances, but also is a filter.

Splitting a digital filter into stages of lower order
is done for numerical reasons, especially to guaran-
tee the stability of the filter. For instance, as Eqn. 3
shows, the transfer-function numerator is the prod-
uct of first order elements (

∏N
i=1(z − z0i

)). Since
most zeros are within the unit circle, the convolution
of many such zeros results in very small polynomial
coefficients which may become zero in a fixed point
implementation.

More importantely, however, poles must be, and
must stay within the unit circle for IIR filters. The
convolution in Eqn. 3 of many poles (

∏N
i=1(z−z∞i

))
for the denominator may result in very small poly-
nomial coefficients which may become zero in a fixed
point implementation due to the limitation in preci-
sion. If then the poles were re-calculated, they could
lie outside the scaled unit circle and cause instability.

1.2 Filter hierarchy

As mentioned earlier, two principal filter types are
considered, FIR and IIR filters, as well as cascades
of them.

DirectI DirectII TransposedI TransposedII Normal StateSpace Wave

TransposedIDirectI Parallel Series

IIR

CascadeFIR

Filter

FIGURE 1: The filter base class and its derivatives

2

All can be implemented in different, mathemati-
cally equivalent ways, depending on how the transfer
functions are calculated in the time domain, on how
the parameters are stored, and on how the states are
chosen. Even though the filters are implemented in
C, a class diagram may de drawn as shown in Fig. 1,
with an abstract base class, the Filter.

Before the implementation of all derived classes
is presented, however, some general pre-requisites
must be treated.

2 Pre-requisistes

When a digital filter is designed, its parameters are
generally calculated as float or double values, i.e. as
floating point values. If then the input to the digital
filter was a floating point value, a floating point ver-
sion of a digital filter would generate floating point
outputs. However, when signals are sampled for a
real-time digital filter, sampling occurs in general in
an ADC with limited precision and the values are
in general fixed point values, e.g. 12 bit or 16 bit
integer values. On the other hand, the output of a
digital filter may be fed back into the real world by
DACs, using limited precision (fixed point values).
Consequently, it makes sense to use a fixed point im-
plementation of the digital filter. However, special
means and measures are required for data types, ba-
sic operations, scaling of parameters and scaling of
samples.

2.1 Data types

The sampling of a signal with a certain precision is
reflected by a sample type sample t. Further, a digi-
tal filter is characterized by its parameters, hence a
parameter type param t is required. A digital filter
will carry out multiplications and additions. The re-
sult of multiplying a sample by a parameter is stored
in an accumulator type accu t, which also accumu-
lates all sums of parameter/sample multiplications.
Finally, a general purpose index type index t is intro-
duced.

The following combinations will be possible for
the types (32 bit or 16 bit implementation).

typedef signed long int sample_t;

typedef signed long int param_t;

typedef signed long long int accu_t;

typedef unsigned short int index_t;

An additional type to be used will the the filter
type, low pass, high pass, etc. which is accomodated
by:

typedef enum {

LOWPASS, HIGHPASS, BANDPASS, BANDSTOP

} fType_e;

2.2 Basic operations

There are a few principal operations carried out with
the datatypes introduced, multiplications, summa-
tions and unit delays.

2.2.1 Multiplication

A simple gain with a parameter of param t produces
an accu t for an input of sample t which is the only
type it accepts as input. This can be provided in C
in:

accu_t multiply (param_t a, sample_t x);

2.2.2 Summation

A sum retains the type, sample t or accu t, but can
only sum equal types. No special function is imple-
mented in C for summation other than + and −.

2.2.3 Unit delays

A unit delay stores a value, either sample t or accu t.
No special function is implemented in C other than
state variables.

2.3 Scaling

Both parameters and input samples need to be scaled
as detailed in the following.

2.3.1 Parameter scaling

Given that all poles for an IIR filter must remain
within the unit circle, the denominator coefficients
would usually be in the approximate range of −M...+

M ((z − 1)N), with M=(N
N/2) . Casting these floating

point coefficients to integers results obviously in a
coarse truncation. In order to make use of the word
length, i.e. the entire resolution of the fixed point pa-
rameters, the floating point paramter values have to
be multiplied by a scaling factor S such that all pa-
rameter values fit into the fixed point range, e.g. by
setting

Smax =
max(param t)

max([|pi|])
. (6)

with [pi] being the set of flaoting point parameters
for the digital filters to be scaled. A maximum input
sample multiplied by a maximum parameter would
then fit into the maximum value of the accumulator.

It must be considered, however, that the accumu-
lator must also hold the sum of parameter-sample
products and an overrun must not occur. For this

3

reason the scaling factor must be smaller. In case
of an IIR filter for instance, the worst case would
be that all parameters and past values assume their
maximum values, which means that the worst case
scaling factor

Sworst =
max(param t)

∑

|pi|
. (7)

Equation 7 is too pessimistic and makes a sub-
optimal use of the dynamic range. A better approx-
imation would be a geometric approach,

Sgeo =
max(param t)

√

∑

p2
i

. (8)

In this implementation, the scaling factor is re-
stricted to be a power of 2, or

S = 2r ≤ Sgeo, (9)

and r has to be found appropriately by the filter de-
sign program as

r = floor (log2 Sgeo) . (10)

2.3.2 Signal scaling

In some cases an input signal must be upscaled prior
to further processing by an up-scaling gain, a spe-
cial form of a gain. Using Eqn. 9, the output of the
scaling gain is calculated as

Y = S(x) = 2r · x (11)

which can be implemented as a shift-up operation by
r bits in C, and provided by:

accu_t upscale (sample_t x, index_t r)

2.4 Quantizer

The digital filter introduces a gain due to the scaling
factor, or scaled parameter. Therefore, the result of
multiplications and sums will eventually have to be
divided by the same scaling factor and casted to a
sample type sample t. This may occur either for the
final output, or prior to any other multiplication by
another parameter. The quantizer may contain state
information and therefore is introduced with its own
class, i.e. data type quantizer t as a base class:

typedef struct quant_s * quant_p;

typedef struct quant_s {

/* members */} quant_t;

This base class offers the following methods:

quant_t * quantizer_create (index_t r, fType_e t);

void quantizer_destroy (quant_t *q);

sample_t quantizer_tick (quant_t *q, accu_t X);

void quantizer_reset (quant_t *q);

Later, two derived classes of quantizers will be
presented. They will implement similar methods,
only the destructor will be the same for all. An enu-
meration type is introduced as:

typedef enum { NS0, NS1 } quant_e;

quantizer t contains function pointers to the ac-
tual tick and reset function, both being set by the
corresponding constructor to:

sample_t (*tick) (quant_p q, accu_t X));

void (*reset)(quant_p q);

2.4.1 Simple quantizer

The simplest form of a down-scaling quantizer is of
zero order. This quantizer has no states, is algebraic
and offers the following methods:

quant_t * quantizerNS0_create (index_t r, fType_e t);

void quantizerNS0_reset (quant_t *q);

sample_t quantizerNS0_tick (quant_t *q, accu_t X);

2.4.2 1st order noise shaping quantizer

The division by the scaling factor, or actually the
multiplication by 2−r reduces the resolution and
hence introduces a quantization error (Note that 2−r

can be implemented as a shift down operation, avoid-
ing a division). For this reason a 1st order noise
shaping, quantizing and down-scaling gain is used as
shown in Fig. 2.

z−1

X

E

V y−r
2

2r

FIGURE 2: 1st order noise shaping, quan-
tizing gain

This quantizer has one state accu t and offers the
following methods with the filter type (high or low
pass) as additional parameter:

quant_t * quantizerNS1_create (index_t r, fType_t t);

void quantizerNS1_reset (quant_t *q);

sample_t quantizerNS1_tick (quant_t *q, accu_t X);

Adding up the quantization error will push the
quantization noise to higher frequencies and is hence
appropriate for low pass filters. Substracting the
quantization error will push the quantization noise to
lower frequencies and is hence appropriate for high
pass filters.

4

2.5 Filter structure

A structure, a filter t data type accumulates all at-
tributes of all different filter types as shown in Fig. 1
and can be seen as an abstract base class for digital
filters:

typedef struct filter_s * filter_p;

typedef struct filter_s {

* members */} filter_t;

The base filter class filter t offers the following
methods:

filter_t * filter_create (quant_e q);

void filter_destroy (filter_t *f);

sample_t filter_tick (filter_t *f,

sample_t x0);

void filter_reset (filter_t *f);

All filter classes in Fig. 1 will implement a con-
structor with parameters depending on the filter
type. The destructor will be the same for all, sim-
ply because the same structure is shared between all
filter classes, namely the destructor of the base filter
class filter t mentioned above. All filter classes in
Fig. 1 will implement at least one function to calcu-
late the output y0 for an input x0 at each time tick,
and a reset function to reset all internal states.

Later it will be seen that a filter class may imple-
ment several tick functions depending on the order.
filter t contains function pointers to the actual tick
and reset function, both being set by the correspond-
ing constructor to:

sample_t (*tick) (filter_p, sample_t);

void (*reset)(filter_p);

Finally, filter t contains a function pointer to an
array of quantizers used in the filter.

quant_t *Q;

3 FIR filters

Equation 2 for an FIR filter can be implemented ei-
ther as direct I or tranposed I form. With x[k] being
the digital input at time k, the output y[k] at time k

can be calculated by the difference equation Eqn. 12
as

y[k] =
N

∑

i=0

bi · x[k − i]. (12)

where N is the order (i.e. number of delay elements).
Values of x[k] with negative index are zero. This
equation is the basis for all FIR implementations.

In the following k is set to zero for a given time
instance and all parameters are assumed to be scaled.
The FIR filter offers the following methods:

filter_t * FIR_create (param_t *b, index_t N,

index_t r, fType_t t);

sample_t FIR_tick (filter_t *f, sample_t x0);

void FIR_reset (filter_t *f);

3.1 Direct I form

The direct I form requires storing and updating the
past N sample t inputs x1 to xN with N being the
order. The FIR direct I filter offers the following
methods

filter_t * FIRdirectI_create (param_t *b, index_t N,

index_t r, fType_t t);

sample_t FIRdirectI_tick (filter_t *f,

sample_t x0);

void FIRdirectI_reset (filter_t *f);

z−1

z−1

z−1

b0

b1

b2

bN

x0 y0

x1

x2

xN

Q1
V

FIGURE 3: N th order FIR filter stage, di-
rect I form

y0x0
b0

b1

b2

bN

z−1

z−1

z−1

Y1

Y2

YN

Q1
V

FIGURE 4: N th order FIR filter stage,
transposed I form

5

3.2 Transposed I form

The transposed I form requires storing and updating
N accu t states Y1 to YN with N being the order. The
FIR transposed I filter offers the following methods:

filter_t * FIRtranspI_create (param_t *b, index_t N,

index_t r, fType_t t);

sample_t FIRtranspI_tick (filter_t *f,

sample_t x0);

void FIRtranspI_reset (filter_t *f);

4 IIR filter

Equation 2 of an IIR filter may be implemented in
a direct I, direct II, transposed I or transposed II
form. With x[k] being the digital input at time k,
the output y[k] at time k can be calculated by the
difference equation Eqn. 13

y[k] =
N

∑

i=0

bi · x[k − i] −
N

∑

i=1

ai · y[k − i] (13)

where N is the order (i.e. number of delay elements).
Values of x[k] with negative index are zero. This
equation is the basis for most implementations. The
other implementations presented here, such as the
normal form, state space and wave form, can be de-
rived from them.

In the following k is set to zero for a given time
instance and all parameters are assumed to be scaled.
The IIR filter offers the following methods:

filter_t * IIR_create (param_t *a, param_t *b,

index_t N, index_t r,

fType_t t);

sample_t IIR_tick (filter_t *f, sample_t x0);

void IIR_reset (filter_t *f);

4.1 Direct I form

The direct I form requires storing and updating the
N last sample t inputs x1 to xN and the N last
sample t outputs y1 to yN with N being the order.
The direct I form filter offers the following methods:

filter_t * IIRdirectI_create (param_t *a, param_t *b,

index_t N, index_t r,

fType_t t);

sample_t IIRdirectI_tick (filter_t *f,

sample_t x0);

void IIRdirectI_reset (filter_t *f);

z−1

z−1

z−1

z−1

z−1

z−1

b0

b1

b2

bN

1a

a2

aN

x0 y0

x1

x2

xN yN

y2

y1

Q1
V

FIGURE 5: N th order IIR filter stage, di-
rect I form

4.2 Direct II form

The direct II form requires storing and updating N

sample t states z1 to zN with N being the order (first
canonical form). The direct II form filter offers the
following methods:

filter_t * IIRdirectII_create (param_t *a, param_t *b,

index_t N, index_t r,

fType_t t);

sample_t IIRdirectII_tick (filter_t *f,

sample_t x0);

void IIRdirectII_reset (filter_t *f);

z−1

z−1

z−1

b0

b1

b2

bN

1a

a2

aN

z2

z1

zN

z0Q1

S Q2

y0x0

U V

FIGURE 6: N th order IIR filter stage, di-
rect II form

4.3 Transposed I form

The transposed I form requires storing and updating
N accu t states X1 to XN as well as N accu t states
Y1 to YN , with N being the order. The transposed I
form filter offers the following methods:

6

filter_t * IIRtranspI_create (param_t *a, param_t *b,

index_t N, index_t r,

fType_t t);

sample_t IIRtranspI_tick (filter_t *f,

sample_t x0);

void IIRtranspI_reset (filter_t *f);

z−1

z−1

z−1

z−1

z−1

z−1

b0

b1

b2

bN

1a

a2

aN

z0

X1

X2

XN YN

Y2

Y1

Q1

S
x0

Q2

y0

U
V

FIGURE 7: N th order IIR filter stage,
transposed I form

4.4 Transposed II form

The transposed II form requires storing and updating
N accu t states Z1 to ZN (second canonical form).
The transposed II form filter offers the following
methods:

filter_t * IIRtranspII_create (param_t *a, param_t *b,

index_t N, index_t r,

fType_t t);

sample_t IIRtranspII_tick (filter_t *f,

sample_t x0);

void IIRtranspII_reset (filter_t *f);

z−1

z−1

z−1

b0

b1

b2

bN

1a

a2

aN

x0 y0

Z1

Z2

ZN

Q1
V

FIGURE 8: N th order IIR filter stage,
transposed II form

4.5 Normal form

The normal form implements a filter with the poles
split into the real and imaginary part. Only poles
strictly within the unit circle are considered. The
normal form filter offers the following methods:

filter_t * IIRnormal_create (param_t *alpha,

param_t *beta,

index_t N, index_t r,

fType_t t);

sample_t IIRnormal_tick (filter_t *f,

sample_t x0);

void IIRnormal_reset (filter_t *f);

z−1

z−1

z−1 z−1

z−1

b0

b1

b2

x0 y0

x1

x2

z1 z2
αα

β
−1β

β

U1 u1 U2 u2

z3

Q1 Q2 Q3
V

FIGURE 9: 2nd order IIR filter stage, normal form

A 1st order normal form is equivalent to the di-
rect form I and will be redirected. The 2nd order nor-
mal form requires storing and updating past sample t

inputs x1 and x2, as well as the sample t states z1, z2

and z3. Higher order filters can only be realized by
combinations of 1st and 2nd order elements. The re-
lation between the normal form parameters and the
second order IIR filter can be derived by comparison

7

of polynomial coefficients.

4.6 State space form

The state space form requires storing and updating
N sample t state z1 to zN . The state space form filter
offers the following methods:

filter_t * IIRstatesp_create (param_t *alpha,

param_t *beta,

param_t *gamma,

param_t delta,

index_t N, index_t r,

fType_t t);

sample_t IIRstatesp_tick (filter_t *f,

sample_t x0);

void IIRstatesp_reset (filter_t *f);

Only the second order implementation is detailed
here. A higher order implementation is not consid-
ered for numerical reasons. The relation between
the state space parameters and the second order IIR
filter can be derived by comparison of polynomial co-
efficients achieved after solving the state space equa-
tion.

β1

β2

z−1

z−1

1γ

δ

z1

z2

Q1

Q2

Q3

y0x0

U

W

α12

21

22

γ2

11α

α

α

V

FIGURE 10: 2nd order IIR filter stage,
state space form

4.7 Wave form

The wave form requires storing and updating N

accu t state Z1 to ZN . The wave form filter offers
the following methods:

filter_t * IIRwave_create (param_t *beta,

param_t *gamma,

index_t N, index_t r,

fType_t t);

sample_t IIRwave_tick (filter_t *f, sample_t x0);

void IIRwave_reset (filter_t *f);

Only the second order implementation is detailed
here. Higher order filters can only be realized by
combinations of 1st and 2nd order elements. The re-
lation between the wave parameters and the second

order IIR filter can be carried out by coefficient com-
parison.

β0

β1

β2

z−1

z−1
Z2

Z1

1γ

Q1

y0x0 V

γ2

FIGURE 11: 2nd order IIR filter stage,
wave form

5 Filters cascades

The cascade filter offers the following methods:

filter_t * cascade_create (void);

filter_t * cascade_destroy (void);

filter_t * cascade_add (filter_t *f);

void cascade_remove (filter_t *f);

sample_t cascade_tick (filter_t *f, sample_t x0);

void cascade_reset (filter_t *f);

5.1 Serial cascade of filter stages

The serial cascade filter offers the following method:

filter_t * cascadeSerial_create (void);

sample_t cascadeSerial_tick (filter_t *f,

sample_t x0);

1 2 NGGG
x y

FIGURE 12: Serial cascade of filter stages

5.2 Parallel form of filter stages

The parallel cascade filter offers the following
method:

filter_t * cascadeParallel_create (void);

sample_t cascadeParallel_tick (filter_t *f,

sample_t x0);

G

G

G

1

2

N

x y

FIGURE 13: Parallel form of filter stages

8

References

[1] Andreas Antoniou: ”Digital Filters: Analysis,
Design and Applications”, March 1993, ISBN:
0071126007.

[2] D. Schlichtharle: ”Digital Filters: Basics and
Design”, August, 2000, ISBN: 3540668411.

[3] Thede: ”Analog and Digital Filter Design Using
C”, November 1995, ISBN: 0133526275.

[4] I. Ain: ”Digital Filters: An Introduction”,
http://www.dsptutor.freeuk.com/dfilt1.htm,
http://www.dsptutor.freeuk.com/

[5] Julius O. Smith III: ”Introduction to Digital Fil-
ters”,
http://www-ccrma.stanford.edu/
˜jos/filters/filters.html

[6] Greg Welch and Gary Bishop: ”An Introduction
to the Kalman Filter”,
http://www.cs.unc.edu/
˜welch/kalman/kamlan filter/kalman.html

[7] The Mathworks: ”Digital Filter Design”,
http://www.mathworks.com/access/helpdesk/
help/toolbox/dspblks/digitalfilterdesign.shtml

[8] Rice University: ”FIR and IIR Filter Design Al-
gorithms”,
http://www.dsp.rice.edu/
software/rufilter.shtml

[9] Mehmet Zeytinoglu: ”Digital Filter Package
(DFP)”,
http://www.ee.ryerson.ca:8080/
˜mzeytin/dfp/index.html

[10] K. Steiglitz, T. W. Parks and J. F. Kaiser: ”ME-
TEOR - FIR Design Package”,
http://www.cs.princeton.edu/ ken/meteor

[11] Brian Wagner and Michael Barr: ”Introduction
to Digital Filters”,
http://www.netrino.com/Publications/
Glossary/Filters.html

[12] Schlichter, Timothy J.: ”Introduction to Digital
Filter Design in C++”, EE 4000, Introduction
to Digital Filtering. Mississippi State University,
1999.
http://www.isip.msstate.edu/publications/
courses/ece 4000/papers/ifc filter/

[13] Schlichter, Timothy J.: ”Digital Filter Design
Using Matlab”, EE 4000, Introduction to Digi-
tal Filtering. Mississippi State University, 1999.
http://www.isip.msstate.edu/publications/
courses/ece 4000/papers/digital filters matlab/

[14] Gernot Kubin ”Digital Signal Processing Labo-
ratory”,
http://spsc.inw.tugraz.at/courses/dsplab/

[15] Tony Fisher: ”Interactive Digital Filter De-
sign”,
http://www-users.cs.york.ac.uk/
˜fisher/mkfilter/

[16] Steve Moshier ”Astronomy and numerical soft-
ware source codes”, http://www.moshier.net/

[17] ”libDSP - C++ Library of Digital Signal Pro-
cessing Routines”,
http://sourceforge.net/projects/libdsp/

[18] ”SciPy - Scientific tools for Python”,
http://www.scipy.org/

[19] ”Numerical Python - a fast, compact, multidi-
mensional array language facility to Python”,
http://www.numpy.org/

9

