
Implementation of ARTiS,

an asymmetric real-time extension of SMP Linux∗

Philippe Marquet, Éric Piel, Julien Soula, and Jean-Luc Dekeyser

Laboratoire d’informatique fondamentale de Lille

Université des sciences et technologies de Lille

France

{Firstname.Lastname}@lifl.fr

Abstract

ARTiS is a real-time extension of GNU/Linux dedicated to SMP systems (Symmetric Multi-Processors).
ARTiS divides the CPUs of an SMP system into two sets: real-time CPUs and non real-time CPUs. Real-
time CPUs execute preemptible code only, thus tasks running on these processors perform predictably. If
a task wants to enter into a non-preemptible section of code on a real-time processor, ARTiS will auto-
matically migrate this task to a non real-time processor. Furthermore, dedicated load-balancing strategies
allow all the system’s CPUs to be fully exploited.

The purpose of this paper is to describe the basic API that has been specified to deploy real-time
applications, and to present the current implementation of the ARTiS model, which was achieved through
modifications of the 2.6 Linux kernel. The implementation is build around an automatic migration of
tasks between real-time and non real-time processors and the use of a load-balancer. The basic function
of those mechanisms is to move a task structure from one processor to another. A strong constraint of
the implementation is the impossibility for the code running on an RT processor to share a lock or to
wait after another processor.

1 Real-Time Multiprocessing

In the framework of the HYADES project [5], we
have identified the need for an operating system pro-
viding real-time capabilities mixed with high perfor-
mance. Given this specifications, the use of an op-
erating system such as Linux in conjunction with a
commodity symmetrical multiprocessor system is a
good candidate: SMPs are recognized for their ease
of programming while the support of SMP systems
in Linux is now mature.

Nevertheless, the Linux operating system is a
general purpose system. Even if it provides all the
services a programmer may wish, there are problems
when dealing with real-time aspects. Even the last
version of the so called “preemptible Linux kernel”
only targets soft real-time applications and may show
latencies of up to 40ms (according to our measure-
ments presented in [6]).

An approach which combines real-time require-

ments with the basic nature of the SMP system is the
asymmetric multiprocessor principle. On an SMP
system one or several processors are dedicated to
real-time tasks: a spatial reservation of resources re-
places the usual temporal reservation of resources.
Any processing that may jeopardize the real-time
constraints of the applications is contained in those
processors which are not dedicated to real-time. De-
spite the fact that this approach is practicable [2, 9],
it has a major drawback: real-time processors may
be idle while non real-time processors are overloaded.
The static separation between real-time processors
and non real-time processors leads to resource wast-
ing.

ARTiS is an evolution of asymmetric multipro-
cessing. It allows a task to run on real-time CPUs as
long as it stays in preemptible mode: when needed
for real-time processing, the processor is able to in-
terrupt the task without delay. ARTiS is based on
the automatic migration of a task from a real-time

∗This work is partially supported by the ITEA project 01010, HYADES

1



processor to a non real-time processor before it enters
into a non preemptible section of code, this ensures
real-time reservations on the real-time processors.

The rest of the paper is organized into four parts.
The ARTiS model is presented in the next section.
The current API suggested for the deployment of
real-time applications on ARTiS is then summarized.
The main points of the ARTiS implementation as a
modification of the Linux kernel are explained in the
following section. The last section lists the future
developments we plan for the ARTiS project.

2 ARTiS Model

ARTiS promotes a programming model based on a
user-space programming of real-time tasks: the pro-
grammer uses the usual POSIX and/or Linux API
to write his applications. These tasks are real-time
in the sense that they are identified as high priority
and are not perturbed by any non real-time activ-
ities. For these tasks, ARTiS targets a maximum
response time below 300µs.

The core of the ARTiS solution is based on a
strong distinction between real-time and non real-
time processors, and also, on migrating tasks which
attempt to disable the preemption on a real-time pro-
cessor. To provide this system ARTiS proposes:

• The partition of the processors into two sets,

• Two classes of RT processes,

• A specific migration mechanism,

• An efficient load-balancing policy,

• Asymmetric communication mechanisms.

2.1 Processor Partitioning

The processors of the SMP system are partitioned
into two sets: an NRT CPU set (Non Real-Time) and
an RT CPU set (Real-Time). Each one has a specific
scheduling policy. The purpose is to insure the best
interrupt latency for particular processes running in-
side the RT CPU set.

2.2 Process Classes

Two classes of RT processes are identified. These are
standard RT Linux processes, they just differ in their
mapping:

• Each RT CPU has just one bound RT Linux
task, called RT0 (a real-time task of highest
priority). Each of these tasks has the guaran-
tee that its RT CPU will stay entirely available

to it. Only these user tasks are allowed to be-
come non-preemptible on their corresponding
RT CPU. This property ensures the lowest pos-
sible latency for all RT0 tasks. The RT0 tasks
are the hard real-time tasks of ARTiS. Exe-
cution of more than one RT0 task on a given
RT CPU is possible but in this case it is up to
the developer to verify the feasibility of such a
scheduling.

• Each RT CPU can run other RT Linux tasks
but only in a preemptible state. These tasks
are called RT1+ (real-time tasks of priority
1 and below). They can use CPU resources
efficiently if RT0 tasks do not consume all
the CPU time. To keep a low latency for
RT0 tasks, the RT1+ processes are automat-
ically migrated to an NRT CPU by the ARTiS
scheduler when they are about to become non-
preemptible. The RT1+ tasks are the soft real-
time tasks of ARTiS. They have no firm guar-
antees, but their requirements are taken into
account by a best effort policy. They are also
the main support of the intensive processing
parts of the targeted applications.

• The other, non real-time, tasks are named
“Linux tasks” in the ARTiS terminology. They
are not related to any real-time requirements.
They can coexist with real-time tasks and are
eligible for selection by the scheduler as long as
the real-time tasks do not require the CPU. As
in the case of the RT1+ tasks, the Linux tasks
will automatically migrate away from an RT
CPU if they try to enter into a non-preemptible
code section on such a CPU.

• The NRT CPUs mainly run Linux tasks. They
also run RT1+ tasks when these are in a
non-preemptible state. To insure the load-
balancing of the system, all these tasks can mi-
grate to an RT CPU but only in a preemptible
state. When an RT1+ task runs on an NRT
CPU, it keeps its high priority above the Linux
tasks.

2.3 Automatic Migration

A specific migration mechanism aims at insuring the
low latency of the RT0 tasks. All the RT1+ and
Linux tasks running on an RT CPU are automati-
cally migrated toward an NRT CPU when they try
to disable the preemption. One of the main changes
required to the original Linux load-balancing mech-
anism is the removal of inter-CPU locks. To effec-
tively migrate the tasks, an NRT CPU and an RT

2



CPU have to communicate via queues. This migra-
tion is implemented thanks to a lock-free FIFO to
avoid any active wait by the ARTiS scheduler based
on [10]. Section 4.1 details this mechanism.

2.4 Load-Balancing

An efficient load-balancing policy allows the full
power of a SMP machine to be exploited. Usually a
load-balancing mechanism aims to move the running
tasks across CPUs in order to insure that no CPU
is idle while tasks are waiting to be scheduled. Our
case is more complicated because of the specificities
of the ARTiS tasks. By definition, the RT0 tasks
will never migrate. The RT1+ tasks should migrate
back to RT CPUs quicker than Linux tasks: the RT
CPUs offer latency warranties that the NRT CPUs
do not. To minimize the latency on RT CPUs and to
provide the best performance for the global system,
specific asymmetric load-balancing algorithms have
been defined [8]. Section 4.2 outlines these algorithm
implementation.

2.5 Asymmetric Communications

Asymmetric inter-process communication mecha-
nisms are provided. On SMP machines, tasks ex-
change data by read/write mechanisms on the shared
memory. To insure coherence, critical sections are
needed. These critical sections are protected from si-
multaneous concurrent access by lock/unlock mech-
anisms. This communication scheme is not suited
to our particular case: an exchange of data be-
tween an RT0 task and an RT1+ task will involve
the migration of the RT1+ task before this latter
takes the lock, in order to avoid entering into a
non-preemptible state on an RT CPU. Therefore,
an asymmetric communication pattern should use
lock free FIFO in a one-reader/one-writer context.
These communication mechanisms are not yet defini-
tively defined and form the main part of our future
projects.

3 Real-Time API

A basic ARTiS API has been specified. It allows the
deployment of applications on the current implemen-
tation of the ARTiS model, available as a modifica-
tion of the 2.6 Linux kernel. ARTiS applications are
defined by a configuration of CPUs, an identification
of real-time tasks and their processor affinity.

3.1 Machine Partitioning

The CPUs are partitioned into two sets, the RT and
NRT CPU, via a basic /proc interface :

• A value greater than or equal to 1 in /proc/

artis/activate dynamically activates the
ARTiS functioning,

• The /proc/artis/maskrt file contains the
mask of the RT CPUs. It can be modified while
ARTiS is inactive.

The only limitation is to keep at least one CPU iden-
tified as an NRT CPU. We are also investigating the
use of the CPUSETS patch provided by Bull that
allows such partitioning of a multiprocessor [3].

To maintain coherence with this machine parti-
tioning, a redirection of the interrupts has to be pro-
grammed. All IRQs must be delivered exclusively
on the NRT CPU, excepting those IRQs used by the
RT0 tasks, which must be delivered on the CPU host-
ing the task. The /proc/irq/*/smp_affinity files
are used for this purpose.

3.2 RT Process Identification

The RT0 ARTiS tasks are identified as Linux
tasks scheduled with the FIFO scheduling policy
(SCHED_FIFO) and having the highest priority. The
POSIX functions sched_setscheduler(), sched_

setparam() and sched_get_priority_max() are
used for this purpose. An RT0 task must be bound to
an RT CPU. The non POSIX sched_setaffinity()

primitive is used for this. Obviously, the set of CPUs
on which an RT0 is allowed to run on must be lim-
ited to a single CPU, and this CPU must be an RT
CPU.

Figure 1 presents an outline of the code a task
may include in order to be identified as an RT0 task.
ARTiS also comes with a basic library that provides
functions to register and unregister an RT0 task:

int artis_enter_rt0 (pid_t pid, int rt_cpu);

int artis_leave_rt0 (pid_t pid);

The RT1+ tasks are all the Linux tasks associ-
ated with either the FIFO or round-robin scheduling
policy (SCHED_FIFO or SCHED_RR). As with the stan-
dard POSIX definition, the priorities of these tasks
define their relative priority. The ARTiS library pro-
vides the following two functions to identify these
tasks:

int artis_enter_rt1plus(pid_t pid,

int policy, int priority);

int artis_leave_rt1plus(pid_t pid);

The so-called Linux tasks, i.e. the non real-time
tasks, are all tasks scheduled with the usual Linux
SCHED_OTHER policy.

3



unsigned int rt_cpu;

struct sched_param schedp;

/* lock the address space of the process */

if (mlockall(MCL_CURRENT|MCL_FUTURE) != 0)

perror(...);

/* set the scheduling policy */

memset(&schedp, 0, sizeof(struct sched_param));

schedp.sched_priority = sched_get_priority_max(SCHED_FIFO);

if (sched_setscheduler(0, SCHED_FIFO, &schedp) != 0)

perror(...);

/* bound the process to the rt_cpu CPU */

if (sched_setaffinity(0, sizeof(unsigned long), 0x1UL << rt_cpu ) == -1)

perror(...);

FIGURE 1: RT0 identification

The CPU affinities of non RT0 tasks must in-
clude an NRT CPU, otherwise they will no longer
be eligible for execution when entering a non-
preemptible code section. In addition, the CPU
affinities of RT1+ tasks should also include at least
one RT CPU.

4 ARTiS Implementation

The ARTiS model is currently implemented as a
modification of the 2.6 Linux kernel. The main mod-
ification concerns the automatic migration of a non
RT0 task that is about to enter into a non pre-
emptible section of code on an RT processor: this is
a requirement from the ARTiS model. Furthermore,
to benefit of the whole system, tasks must be a able
to move from one processor to another depending on
the processor load. The usual algorithm included in
Linux for this purpose has also been enhanced to deal
with the real-time aspects of ARTiS.

4.1 ARTiS Migration

ARTiS migration refers to the mechanism that auto-
matically migrates a task from an RT processor to an
NRT processor because the task is about to enter a
non preemptible section of code. As such, the mecha-
nism requires that firstly the point of entry into such
a section of code be identified, and secondly that the
task be moved from an RT processor to an NRT pro-
cessor. This latter relies on a specific implementation
which guarantees that an RT processor will not wait
for a lock shared with an NRT processor.

4.1.1 Migration Triggering

The ARTiS automatic migration mechanism is not
systematic. Many conditions must be satisfied before
allowing the migration: automatic migration only ef-
fects RT processors, neither RT0 tasks, nor the idle
task are concerned, and interrupt handlers are not
considered.

Migration must be triggered as soon as a task
enters into a state where it will not be able to stop,
so that an RT0 task can be scheduled. We have iden-
tified two paths of this kind:

• the preemption is disabled (IRQs are still han-
dled but no re-scheduling is possible), i.e. a
call to preempt_disable(),

• the interruption is disabled (IRQs are no longer
received), i.e. a call to local_irq_disable().

A task that enters into one of these two func-
tions must migrate to an NRT processor. These two
functions have been patched to include a call to the
function artis_try_to_migrate().

This function checks the migration conditions
and, if the migration is possible, effectively trig-
gers the migration by calling artis_request_for_

migration().

Moreover, one can locally disable the migration
in order to protect a part of the code, for instance,
the schedule() function. To achieve this, ARTiS
provides the two functions artis_migration_

disable() and artis_migration_enable(). They
(un)set the so-called ARTiS flag that is used as a
complement to validate an automatic migration.

4



4.1.2 Task Migration Pathway

Inter-CPU locks are unsafe because an NRT proces-
sor may block an RT processor that shares the lock,
consequently ARTiS is not able to directly use the
original Linux run-queues. The RT processor must
not take the lock on the local run-queue and the lock
on the destination run-queue at the same time.

We take advantage of the fact that the sched-
uler already takes a lock on its run-queue in order to
perform migration during the scheduler execution.
Therefore, the actions of dequeuing and queuing are
executed by different CPUs, the link between them
being achieved by an intermediate queue specific to
ARTiS, called RT-FIFO. On ARTiS, an RT-FIFO
connects every RT processor to every NRT proces-
sor.

A task triggers its own migration using a call
to artis_request_for_migration() but a task can
not queue itself in an other run-queue because, in this
case, it would be runnable on two CPUs at the same
time. Consequently, it needs a helper task in the
same way that changing its own processor affinity re-
quires the kmigration kernel thread. In ARTiS, the
duty of helper task is devolved to the next scheduled
task.

Therefore, the migration process involves the in-
teraction of three tasks: the migrating task, the next
task on the same CPU and the next scheduled task
on the other CPU. Each of these tasks performs a
part of the migration:

• The request part is carried out by the task it-
self by executing the function artis_request_

for_migration(). When the task has decided
to migrate, it first sets a special flag to identify
the migration step. It also sets its processor
affinity to that of the only local processor in or-
der to insure that it will not be moved unwill-
ingly. It then re-enables the preemption and
calls the scheduler. ARTiS guarantees that the
task will release the CPU and that, the next
time it is scheduled, it will be on the requested
CPU. Then the flag and affinity are reset and
the task resumes its normal course.

• The completion part is achieved by the
“next task”. When a “previous task” has set
the ARTiS migration flag, it is dequeued in the
scheduler, and, following the context switch,
the new current task will execute the comple-
tion function artis_complete_migration().
It uses the special Linux callback finish_

task_switch() which is always called after a
task has finished being scheduled. The com-
pletion function chooses an NRT processor as
a destination, enqueues the designated task in

RT-FIFO and forces a re-schedule on the des-
tination CPU via an inter-processor interrup-
tion.

• The fetch part is achieved on the destination
processor. At every scheduling tick, the func-
tion artis_fetch_migration() is used to ver-
ify the RT-FIFOs for the NRT processors (po-
tential migration designation). All the tasks
present in those special FIFOs are pulled out
and enqueued into the local run-queue.

4.1.3 Lock Free FIFO

The RT-FIFO data structure introduced in ARTiS is
characterized by the fact that access to these FIFO
must be lock free: RT processors should never share
any lock with any NRT processor.

The algorithm proposed by Valois [10] insures
that neither the pushing nor the pulling on an RT-
FIFO is blocked. It is a lock free and wait free al-
gorithm (wait free because we restrict the use of the
FIFO to only one reader and one writer) based on
a linked chain: one edge is pulled while another is
pushed. The main characteristic of the Valois algo-
rithm is that the list is never empty:

• on initialization, a dummy node is introduced
into the structure,

• the last pulled node stays on the head list as a
dummy node.

The algorithm uses nodes containing the linkage
and a reference to the value (the task structure,
task_struct, in our case). These nodes are allo-
cated and freed dynamically.

In a real-time context, such a dynamic allocation
is not affordable. The node can no longer be embed-
ded in the task structure. This is because the node
part of a pulled task would stay as dummy node in
the data structure and consequently it would prevent
the task being pushed again.

Our solution consists of an allocation of a node
when the task structure is allocated. The node and
the task structure are associated. When a task
is pulled, its node stays as a dummy and the old
dummy node is re-associated with the task structure.

4.2 ARTiS Load-Balancing

A load-balancing mechanism aims at optimising pro-
cessor exploitation by the simple means of moving
tasks from one processor to another. The aim can
also be stated as being the minimization of the to-
tal running time for a given set of tasks. This is
usually equivalent to maintaining the same load on
every processor.

5



The characteristics of a load-balancer are ex-
plained in detail in [4] and can be enumerated as
follows:

• information update policy: how to renew
statistics on the entire system,

• trigger policy: how to decide it is time to re-
distribute the tasks,

• selection policy: a method for selection of im-
balanced nodes,

• local designation policy: a method for selection
of tasks that will be moved,

• pairing policy: a method for selection of the
destination node for a given task.

The trigger policy can be either of type “pull” –
under-loaded CPUs initiate the load-balancing and
pull the tasks from another CPU– or “push” –over-
loaded CPUs initiate the load-balancing in order to
push some of their tasks– or a mix of both.

The Linux load-balancer works well, especially
in real-life conditions. However with the addition of
the ARTiS constraints, its behaviour is far from be-
ing optimal. In particular, the introduced asymme-
try between processors requires a load-balancer that
can handle the specific affinities between processors
and tasks.

4.2.1 ARTiS Specific Constraints

In addition to the normal load-balancing in Linux
which will only be activated inside the RT CPU set
and inside the NRT CPU set, we have specified three
other constraints that the load-balancer will take
care of. An in-depth study of all the different load-
balancing scenarii which highlights the constraints is
available in [8].

Load-balancing without inter-CPU locks
One of the main changes which is required from the
original load-balancing mechanism is the removal of
inter-CPU locks. For the same reasons as those
described in section 4.1, the locks will have to be
avoided in order to insure RT properties on RT
CPUs.

Return of the RT1+ tasks The ARTiS migra-
tion may move RT1+ tasks from an RT CPU to
an NRT CPU. However best latencies are available
on the RT CPUs, so RT1+ tasks should move back
to any RT CPU as soon as possible once preemp-
tion is re-enabled. Therefore, one task of the load-
balancer will consist of migrating RT1+ tasks from
NRT CPUs to RT CPUs.

Reduction of the RT CPUs load It might occur
that an NRT CPU has less load than the RT CPUs.
In this case, to get the best performance from the
computer, some tasks should be migrated from an
RT CPU to the NRT CPU. However, as the laten-
cies are better on real-time processors, non real-time
tasks should be given migration priority. In practice,
most of the tasks trigger preemption disabling code
with enough frequency so that such load-balancing
is usually not needed. Still, it is necessary to handle
this case in order to guarantee the best use of all the
CPUs in every configuration (for instance with tasks
which are only concerned with computational work).

4.2.2 Load-Balancing Implementation

The current Linux implementation of load-balancing
is simple, compact, modifiable and proven to work
well with most of the usual workloads. Therefore,
we have decided to base the load-balancer for ARTiS
on this implementation. The work presented is cur-
rently in progress and is being developed on version
2.6.4 of the Linux kernel.

Run-queue length weighting The pairing pol-
icy of Linux selects the processor that will receive the
tasks by locating the one which is the most loaded.
The load is estimated using the number of task ready
to be run (the length of the run-queue). This estima-
tion works well as long as there are only Linux tasks
being executed, this is because they share the CPU
time and consequently the longer the run-queue is,
the less time there is for every application.

This last assumption is false when there is a high
number of real-time tasks on the computer. Because
real-time tasks have an absolute priority over the
other tasks, the CPU time is not shared. There-
fore, the run-queue length is no longer representa-
tive of the available power. We propose improving
equity between Linux tasks by adding the CPU time
consumed by RT tasks as a parameter of the load
estimation.

For example, on a bi-processor computer, if a
real-time task consumes 3/4 of a processor time and
there are 5 Linux tasks also being executed then the
current Linux implementation will put 3 tasks on
each processor. This implies that some Linux tasks
will have 1/3 of the CPU time while others (with
the same priority) will only have access to 1/8 of the
time, as shown on figure 2(a). By taking into account
the real consumption of the RT task, equity is recov-
ered and every Linux task is given 1/4 of the CPU
time, as shown on figure 2(b). This type of scenario
is highly probable on an ARTiS system because the
real-time tasks are asymmetrically distributed.

6



RT task

Linux
task

Linux
task

CPU RT

Linux
task

Linux
task

Linux
task

CPU NRT

(a) Original Mechanism

Linux
task

RT task

CPU RT

Linux
task

Linux
task

Linux
task

Linux
task

CPU NRT

(b) Run-queue length weighting

FIGURE 2: Improvement of the fairness between Linux tasks done using weighting of the run-queue length.

The solution we propose is to measure the load of
each processor using the formula L× 1

1−RT
, where L

is the run-queue length without the real-time tasks
and RT is the ratio of time that was consumed by
real-time tasks. Consequently, the implementation
requires the addition of statistics regarding the num-
ber of RT tasks being executed on each processor,
and also the measurement of the RT ratio. At a
given instant the RT ratio is either 1 (there is a real-
time task) or 0 (the processor is idle or executing a
Linux task). To obtain the intended value it is neces-
sary to smooth the value over time. We have chosen
to use a similar mechanism to the CALC LOAD() one
which weights the values so that more recent values
have more importance.

Inter-CPU locks withdrawal One of the direct
constraint of ARTiS is avoidance of all the locks that
could be taken at the same time by RT and NRT pro-
cessors. Using the RT-FIFO allows this problem to
be resolved but implies several changes in the load-
balancer. The original version uses a “pull” trigger
policy but the FIFO model is much more easily im-
plemented within a “push” policy: a processor can
just select a task, put it inside the FIFO and later
on, another processor will asynchronously take it. A
“pull” policy would be possible but it would be more
complex and less time effective.

In order to inverse the trigger policy the main
thing that needs to be changed is the function

find_busiest_queue()which should no longer look
for the longest run-queue but for the smallest one.
Another implication of the change is that processors
will not execute any search for a busier processor at
the moment they enter into the idle state.

Next migration attempt estimation In order
to provide the return of the RT1+ tasks from an
NRT CPU to an RT CPU in an effective way, we
had to introduce a special mechanism. Typically,
an RT1+ application might call several consecutive
functions that endanger real-time properties. The
calls will have to be made on an NRT processor. If
the load-balancer migrated it back to an RT CPU as
soon as a call was finished it would lead to a ping-
pong effect between the two types of processors. Not
only would execution be slowed down for this task
but the load-balance would not be achieved.

Therefore, we propose the modification of the
task selection method so that it can favour tasks
which are more likely to stay a long time on the RT
processor. By simple observation of the calls endan-
gering real-time (that is to say, a migration attempt)
made by an application it is possible to obtain the
frequency of the calls as well as the time of the last
one. Hence, it is possible to estimate the next time a
migration attempt will be made. The load-balancer
can avoid migrating the tasks for which the risk of a
second migration is high. This mechanism is repre-
sented in figure 4.2.2.

7



�������������������
�������������������
�����������������
�����������������forcasted deactivation

Timeinterru
pt deactivation

interru
pt deactivation

interru
pt deactivation

interru
pt deactivation

interru
pt deactivation

Forbidden migration to CPU RT

FIGURE 3: Period of forbidden migration (hatched rectangle). The period is deducted from the study of
the previous behavior of the given task.

Typically, at a given time t, there are two possi-
bilities:

• the next estimated migration is after t, if the
migration is likely to happen soon then no mi-
gration should be carried out. On the contrary,
if the migration is not likely to happen for some
time (specified as a system wide constant), the
task can be migrated back to an RT CPU.

• the next estimated migration is before t, if it
should have happened recently then it is still
likely to happen soon and no migration should
be carried out. If the migration was forecasted
considerably beforehand, the task can be mi-
grated back to an RT CPU. This test is relative
to the measured period of the task.

A detailed mathematical representation of this con-
ditions is available in [7].

Of course the implementation of this predicting
mechanism consists in slightly modifying the load-
balancer code (the function load_balance()) but
it also consists of getting the statistics about the
migration attempts. The statistics are saved inside
the task structure as two numbers, one for the time
weighted average period between two attempts and
one for the timestamp of the last attempt. Each time
the function artis_try_to_migrate() is called, and
would trigger a migration if the current task was on
an RT CPU, the statistics are updated.

Task/processor association The local designa-
tion policy (the mechanism which selects which task
should be moved) and the pairing policy (the mech-
anism which decides the new location for a task)
have to be modified so they respect the asym-
metry of ARTiS. Based on the original function
load_balance(), several versions will be derived and
called depending on the types of the origin and des-
tination CPUs.

Concerning the symmetric load-balancings (NRT
to NRT and RT to RT), very little has to be done, the

policies will be the same as the original one. For the
load-balancing from RT to NRT, the function will be
little modified so NRT tasks are moved before RT1+
tasks because the latter have better response time on
the RT CPUs. Obviously, the load-balancing from
NRT to RT has to behave in the opposite way by
favoring the move of real-time tasks. The function
will be replaced by two functions: one to specifically
move the RT1+ tasks, as soon as possible, even if
the RT CPU is more loaded than the original CPU.
Another function will handle the move of Linux tasks
but it will be executed only if the first function has
not moved any task (otherwise the statistics are not
correct). The two functions will also integrate the
migration attempt prediction mechanism described
previously.

One very important aspect of specializing the
load_balance() function is the ability to have dif-
ferent triggering frequencies according to their spe-
cialization. In particular, the migration of RT1+
tasks from NRT processors to RT processors will
be triggered with a high frequency. The exact fre-
quency will be tuned during the test phase, it should
be about 5 times more often than the original version
so that the time the tasks spend on NRT CPUs can
be minimized. It should also be noted the removal
of the trigger which occurs when the processors hap-
pen to become idle, because it is not beneficial for
the “push” trigger policy.

5 Conclusion and Future Work

We outlined our proposal of ARTiS, a model of real-
time processing especially well suited to SMP sys-
tems. ARTiS proposes the definition of real-time
tasks at the user space level and defines a basic API
to do so. The main lines of the current implementa-
tion of ARTiS as a modification of the Linux kernel
have been presented.

This current implementation has been evaluated
on a 4 way IA-64 system [6, 5]. This evaluation mea-

8



sures the latencies between an IRQ waking-up a real-
time task and the effective activation of the task at
the user level. A maximum observed latency of 120µs
has been reported on a heavily loaded system, an or-
der of magnitude less than the 40ms of the standard
Linux kernel.

The ARTiS patches are available from the ARTiS
web page [1] for the x86 and IA-64 architectures. Ex-
cepting small details (such as the IRQs disable mech-
anism), the vast majority of the code is architecture
independent.

Future work covers two main aspects: the defini-
tion of interprocess communications and the defini-
tion of a scheduling for more than one hard real-time
task on a processor.

ARTiS promotes a user space definition of real-
time tasks, these real-time tasks must be able to com-
municate, typically via the shared memory or via ex-
plicit send/receive primitives. Standard communica-
tion layer implementations do not take into account
either the real-time aspect or the asymmetric nature
of ARTiS which distinguishes between RT and NRT
processors, and which identifies different levels of RT
and NRT tasks. We must propose either a new im-
plementation, for example relying on lock-free algo-
rithms, or new communication schemes, for example
exploiting the asymmetry (real-time and non real-
time tasks) between two communicating tasks.

Another limitation of the current ARTiS imple-
mentation is the definition of multiple RT0 tasks on
a given processor. ARTiS allows multiple RT0 tasks
on a given RT processor. These multiple RT0 tasks
will not be interrupted by any other tasks. Neverthe-
less, it is up to the programmer to manage the share
of the processor resources between these tasks. We
plan to add the definition of usual real-time schedul-
ing policies such as EDF (earliest deadline first) at
this level. This extension requires

• the definition of a task model,

• the extension of the basic ARTiS API,

• the implementation of the new scheduling poli-
cies.

The new RT0 tasks would be periodic tasks running
an endless loop. The ARTiS API would be extended
to associate properties such as periodicity and ca-
pacity to each RT0 task. A hierarchical scheduler
organization would be introduced: the current high-
est priority task being replaced by a scheduler that
would manage the RT0 tasks.

References

[1] Laboratoire d’informatique fondamentale de
Lille, Université des sciences et technologies de
Lille. ARTiS home page. http://www.lifl.

fr/west/artis/.

[2] Steve Brosky and Steve Rotolo. Shielded pro-
cessors: Guaranteeing sub-millisecond response
in standard Linux. In Workshop on Parallel and
Distributed Real-Time Systems, WPDRTS’03,
Nice, France, April 2003.

[3] Simon Derr and Sylvain Jeaugey.
CPUSETS for Linux home page. http:

//www.bullopensource.org/cpuset/.

[4] Cyril Fonlupt. Distribution Dynamique de
Données sur Machines SIMD. Thèse de doc-
torat (PhD Thesis), Laboratoire d’informatique
fondamentale de Lille, Université des sciences
et technologies de Lille, December 1994. (In
French).

[5] ITEA Hyades Project. Linux for high perfor-
mance and real-time computing on SMP sys-
tems. In Sixth Realtime Linux Workshop, Sin-
gapore, November 2004.

[6] Philippe Marquet, Julien Soula, Éric Piel, and
Jean-Luc Dekeyser. An asymmetric model
for real-time and load-balancing on Linux
SMP. Research Report 2004-04, Laboratoire
d’informatique fondamentale de Lille, Univer-
sité des sciences et technologies de Lille, France,
April 2004.

[7] Éric Piel. Équilibrage de charge pour systèmes
temps-réel asymétriques sur multi-processeurs.
Master Thesis (Mémoire de DEA), Univer-
sité des sciences et technologies de Lille, Lille,
France, June 2004. (In French).

[8] Éric Piel, Philippe Marquet, Julien Soula,
and Jean-Luc Dekeyser. Load-balancing for a
real-time system based on asymmetric multi-
processing. In 16th Euromicro Conference
on Real-Time Systems, WIP session, Catania,
Italy, June 2004.

[9] Sillicon Graphics, Inc. REACT: Real-time in
IRIX. Technical report, Sillicon Graphics, Inc.,
Mountain View, CA, 1997.

[10] John D. Valois. Implementing lock-free queues.
In Proceedings of the Seventh International
Conference on Parallel and Distributed Comput-
ing Systems, Las Vegas, NV, October 1994.

9


