
Cases Study of the Performance of

Real-Time Linux on the x86 Architecture

Qingguo Zhou

Network Center, Lanzhou University

Tianshui South Road 222, Lanzhou, Gansu, 730000 P.R.China

zhouqg@lzu.edu.cn

Baojun Wang

Ginwave Company

Shenzhen, P.R.China

wangbaojun@ginwave.com

Nicholas McGuire

Opentech GmbH

Lichtenstein Str.31 A-2130 Mistelbach Austria

der.herr@hofr.at

Abstract

This paper presents the experimental study of the performance of Real-Time Linux based on the
x86 architecture. Holding the hardware constant and using different measurement methodologies, we
measured a list of performance (ten kinds of test), including the overheads incurred during operating
systems context switching test, conditional variable test, rt-fifo read/write test, mbuff read/write test,
etc. Our experiments and analysis show that Real-Time linux provides good raw performance and it is
suitable as an operating system platform for developing and running soft and hard real-time applications.

1 Introduction

Unlike Linux, RTLinux provides hard real-time ca-
pability. It has a hybrid kernel architecture with a
small real-time kernel coexists with the Linux ker-
nel running as the lowest priority task. This combi-
nation allows RTLinux to provide highly optimized,
time-shared services in parallel with the real-time,
predictable, and low-latency execution. Besides this
unique feature, RTLinux is freely available to the
public. As more development tools are geared to-
wards RTLinux, it is becoming more popular in the
real-time application domain.

What is real-time? How about the performance
of RTLinux? There are several definitions and uses
of the phrases ’real-time operating system’ and ’real-
time performance’. In this article we just take into
account hard real-time. Hard real time is that the
entire application fails if it misses even one deadline.

Deadlines must always be met and worst-case de-
lay is of the utmost importance. In this article, We
do the case study in these key metrics: scheduling
jitter, conditional variable, context switch, rt-FIFO,
mbuff, semaphore, mutex, contested mutex, etc. we
hope that this paper could be intended to serve as
a guide when evaluating real-time operating systems
and the claims made by their vendors. The test suite
described in this paper could run on any x86 based
system and can be extended to more complicated
tests as required.

The rest of the paper is organized as follows. In
Section 2, we describe the test environment for evalu-
ating the various components of the OS latency, and
we formally define performance metrics for measure-
ment and present the experimental results.Finally in
Section 3 we state our conclusions.

1



2 Performance Metrics

2.1 Experimental Setup

The goal of this paper is to evaluate RTLinux per-
formance. Our tests are conducted under RTLinux-
3.2-pre3. We executed all of our tests on a common
x86 PC with CPU Celeron 300A MHz and 128M
SDRAM.

2.2 Performance Metrics and Experi-

mental Result

We study the performance analysis of RTLinux op-
erating systems by measuring the following key met-
rics.

Scheduling Jitter Scheduling jitter show the dif-
ference between when processes or threads wish
to begin execution and when they actually are
allowed to execute by RTLinux. This measures
the scheduling deadline for a thread. This is
often a limiting factor for real-time applica-
tions since it determines how much precision
can be expected. It also provides guarantee on
the largest delay that the applications by ex-
perience do to system performance. This test
creates a thread that is available. The thread
runs at 1 kHz (period of 1ms) and computes
the difference between when it was scheduled
to wakeup and the time it is actually woken
up for many times while the thread runs. We
have the test on three different environments:
normal condition, the condition with I/O visit
(using ls -lR simulates), the condition with the
memory disturb (using cat /dev/mem), and we
show the experimental data in figure1. Usually
scheduling jitter will be affected notably for the
I/O load and memory disturb, but we can con-
clude that RTLinux shows strong robust with
strong real-time performance.

RT-FIFO RT-FIFO (First-In-First-Out) is one
kind of RTLinux standard communication in-
terfaces. It is used to interact between real-
time tasks and user-level applications. Data in
rt-FIFO is dynamically updated. RTLinux is
analogous to UNIX pipes.

We perform a number of measurements on
these systems to determine any latency that
using them may cause as well as any latency
they may experience due to other operations
on the system. The kernel maintains exactly
one pipe object for each rt-FIFO special file
that is opened by at least one process. The rt-
FIFO must be opened on both ends (reading

and writing) before data can be passed. Nor-
mally, one ends of the rt-FIFO couldn’t open
until the other end close.

FIGURE 1: Scheduling jitter test on three
different conditions

As the incertitude of the written data size, we
only give a simple measurement with transmis-
sion velocity. After a constant size block of
data was written and the measurement time
has obtained, we calculate the data getting
from rt-FIFO and get the transmit speed. We
measure the two implementations with the dif-
ferent size of the transmit data. Table 2
shows the corresponding relationship between
the rt-FIFO size and transmission speed when
the size of the transmission data Sizetrsmit is
1MB.And the Table 1 is on the transmission
data Sizetrsmit =10 MB.

Size of FIFO Speed(MB/s)

10KB 604.148
100KB 479.607
1MB 224.082
10MB *
100MB *

TABLE 1: Sizetrsmit = 10 MB * represents
kernel panic.

2



Size of FIFO Speed(MB/s)

10B *
100B 47
1KB 329
2KB 541
3KB 684
4KB 786
5KB 867
6KB 916
8KB 963
9KB 690

TABLE 2: Sizetrsmit=1 MB ’*’ represents
kernel panic.

From these tables, we know the size of rt-FIFO
needn’t be so large, when size of rt-FIFO is
from 1kB to 10 kB and it is the best size
once written, the transmission speed is the fast.
That is consistent with the BUFSIZ that the
stdio recommends. In this experiment, when
the size of rt-FIFO is 8KB, it get the best per-
formance.Because when the size of rt-FIFO is
for less content,it need more times for trans-
mitting data. We recommended that size of
rt-FIFO is in the range from 1 to 10 KB will
be the better choice.Usually the system set the
default value 4kB for rt-FIFO,so it’s a good
recommended value.

We study the performance with its’ szie from
4KB to 1MB, and every time 1MB data is
wrote in the rt-fifo and the buffer size is
8kB.(Figure 2)

FIGURE 2: Result of rt-FIFO under dif-
ferent size

MBUFF Mbuff is also one kind of RTLinux pro-
vided standard communication interfaces. It is
idle memory between kernel and user task for
communication application. It is for the share

data and is provided with share memory mech-
anism, it means data can be transmitted freely.
We can think mbuff as full duplex data com-
munication .Real-time task and user task can
exchanges data by some special rules in mbuff,
but it can not go beyond the mbuff size. This
can cause kernel panic for illegally accessing
memory. When we adjust mbuff size, we can
observe the effect of real-time tasks. The effi-
ciency experiment result is as followed.

When the size of mbuff is 4KB, every time we
write the data with the size of 4kB to mbuff
.While the other conditions were constant, we
add the mbuff size to 1MB, the result shows in
Figure 3.

Mbuff Size Speed(Mb/s)

10B 8
100B 42
1KB 107
10KB 150
100KB 237
200KB 157
300KB 129
400KB 120
600KB 112
800KB 107
1MB 103
2MB 102
3MB 102
4MB 101
5MB 101
6MB 101
7MB 101
8MB 100
9MB 100
10MB *

TABLE 3: The transmission speed under
the different mubff sizes. * represents kernel
panic.

We also measure the performance of schedul-
ing jitter with the disturbed by the mbuff writ-
ing/reading. Scheduling jitter is the user task,
not the real-time task, but the mbuff writ-
ing/reading is the real-time task. So the mbuff
write/read process should affect scheduling jit-
ter. This is because of the resource competi-
tion. We show the experimental result in figure
4. Before break point (Figure 4), we do jitter
test with the mbuff in the W/R status. At the
break point, the mbuff is in the sleep status.

3



Conditional variables A condition (short for Con-
dition variable) is synchronization device that
allows threads to suspend execution and relin-
quish the processors until some predicate on
shared data is satisfied.

FIGURE 3: The result of the normal Mubff
test

FIGURE 4: Jitter test with/ without mbuff
read/write

The basic operations on conditions are: sig-
nal the condition (when the predicate becomes
true), and wait for the condition, suspend-
ing the thread execution until another thread
signals the condition. A condition variable
must always be associated with a mutex, to
avoid the race condition where a thread pre-
pares to wait on a condition variable and an-
other thread signals the condition just be-
fore the first thread actually waits on it.
On the conditional variables test, we mea-
sure the latency between a pair of operates
for many times, pthread_cond_wait() and
pthread_cond_signal(). We specify a cycle
and let RTLinux kernel process some tasks. We
expect it can finish this task in this cycle. In
fact, the results must have some difference with
the theory data. We set the theory data as a,
the result in practice as b, so the bias defines as

p = b − a. In the specified experiment times,
we can get a largest bias series of pmax and
a minim one of pmin. We do the test for N
times, and then we can get N couples series of
pmin and pmax. The data is sent to user space
from the kernel space by rt-FIFO. We show the
result in figure5 below.

FIGURE 5: Conditional variables test re-
sult

The other test The other measurements have the
resemble principle, we only show the result in
the below table 4:

Name min max avg

Context switch 7744 10304 8194
Mutex 2048 8256 2997
Spinlock * - - -
Contested mutex 10976 15680 12110
Semaphore 9056 13952 10097
Priority
Invension Recovery 1632 20096 1902

TABLE 4: The result of the rest tests

*: The spin lock test is invalid because our
test computer is a uniprocessor machine - spin lock
should only affect the SMP system. And the spinlock
should be an empty operation in UP (uniprocessor)
system.

3 Conclusions

In this project, we measured several real-time operat-
ing system key metrics to measure the RTLinux per-
formance. We have evaluated the real-time behavior
of RTLinux by measuring the latency of various ker-
nel variants. It’s important because most of them are
very common used in the rt-task. Measuring them
can also help us evaluate the real-time performance
of the entire system. Our experiments and analysis

4



show that Real-Time linux provides good raw per-
formance and it is suitable as an operating system
platform for developing and running soft and hard
real-time applications.

Acknowledgements

We would like to acknowledge to Jing Tao and Tang
Jun from Lanzhou University for their help and fruit-
ful discussions that have contributed to improve the
quality of our work. We also especially thank Open-
tech EDV Research GmbH support this work.

References

[1] Phil Wilshire, 2000, Real Time Linux: Testing
and Evaluation, Proceeding of Second Real-Time
Linux Workshop, Orlando,FL, 2000.

[2] Opentech EDV Research GmbH,
http://www.opentech.at/

[3] Frederick M.Protor, 2001, Measuring Perfor-
mance in Real-Time Linux, the Third Real-Time
Linux Workshop in Milan Italy.

[4] Cort Dougan, 2003 March,VME under
RTLinuxPro,VME-Bus Systems Journal

[5] Cort Dougan, 2004 March,Lies, misdirectoin and
realtime measurements,C/C++ Users Journal.

5


