
Interfacing Linux RTAI with Scilab/Scicos

Roberto Bucher

University of Applied Sciences of Southern Switzerland

Galleria 2, Manno 6928, C H

roberto.bucher@supsi.ch

Abstract

Scilab/Scicos is an open source project developed at the INRIA (Insitut National de Recherce on
Informatique et on Automatique) in France which can be used to successfully replace other commercial
and expensive software in solving mathematical and control problems. This software integrates a code
generator for Scicos which has been modified and completed to automatically generate a code for the
RTAI-Lab environment. The result is a full open source rapid prototyping system based on Linux RTAI,
RTAI-Lab and Scilab/Scicos which has been successfully used to quickly implement real-time controllers
and data acquisition systems.

Users can work within a unique environment during all phases of control system design (analysis,
controller design, simulation, implementation). After these first steps, a Scicos scheme can be designed
in order to implement the derived control algorithm. This scheme can be completed with blocks from a
new specific Scicos library which provides all the modules needed to interface the Scicos model to data
acquisition cards, input signals and RTAI-Lab. Some I/O blocks allow distributed control in a real-
time network or in a local machine and can be used to mix Scilab/Scicos with Matlab/Simulink/RTW
generated codes.

Some applications are presented to demonstrate the capabilities and the performances of the environ-
ment.

1 Introduction

Rapid Control Prototyping techniques subsume nor-
mally the need of expensive commercial software like
Matlab/Simulink ([5]) or National Instrument Ma-
trixX ([4]). Using Scilab/Scicos and the RTAI-Lab
environment ([6]) a low cost full open source system
for the Linux RTAI OS can be implemented. Al-
most all the features of the commercial system Mat-
lab/Simulink/RTW have been implemented except
that the code generator doesn’t support continous
transfer functions and continous state space blocks.
Actually Scilab doesn’t contain an integration algo-
rithm which can be linked to the generated C-code.
A new scicos library contains the blocks needed to
interface the generated code with RTAI-Lab and a
set of input signals (sinus, square, step, etc.). Us-
ing the COMEDI drivers ([7]) the generated real-
time code can interact with real plants. This so-
lution has been used to implement different control
systems at the SUPSI control laboratory where it
successfully substitutes a previous system based on
Matlab/Simulink/RTW.

At the Realtime Linux Workshop in Valencia a
first implementation of this environment was pre-
sented in [6]. Since this first prototype a lot of im-
provements have been done:

• Sensors and actuators are now integrated in the
Scicos scheme, and therefore, the user doesn’t
call or use an external program to configure
them anymore.

• Each block can be identified by a name which
can be used for parameter tuning by xrtailab.

• The RTAI add-ons for Scilab/Scicos can be
now integrated in the Scilab/Scicos environ-
ment without touching or patching any original
file. Installation of the system becomes easier.

All the necessary files for this new release are
integrated in the last RTAI-3.1 version.

In the next sections the integration of Scilab un-
der Linux RTAI is presented. Some examples demon-
strate the capabilities of the tool.

1

2 Scilab

Scilab ([1]) is a scientific software package for numer-
ical computations providing a large set of functions
for engineering and scientific applications. It has
been developed since 1990 by researchers from IN-
RIA (Insitut National de Recherce on Informatique
et on Automatique, [2]) and ENPC (École Nationale
des ponts et chausée, [3]) and it can be freely down-
loaded from the Internet. Scilab is currently used in
educational and industrial environments around the
world.

June 2004 INRIA releases Scilab 3.0 which con-
tains a lot of improvements compared to the previous
versions.

Scilab includes different toolboxes and the pos-
sibility to add programs written in various lan-
guages(C, Fortran, ...). It contains high level data
structures including arrays, lists, polynomials, ra-
tional functions and linear systems. The syntax is
very similar to Matlab and the porting of applica-
tions written for this environment is very easy.

Scilab integrates different toolboxes specific for
control tasks:

• General System and Control Toolbox

• Robust control toolbox

• Arma modelisation and simulation toolbox

• Identification toolbox

Scilab contains a tool called ”Scicos” which al-
lows the implementations of block diagrams in a
graphical mode. Simulation of the designed scheme
can be performed directly from the Scicos window.
Since version 2.6 Scicos has been completed with a
code generator which translate the graphical scheme
into C-code for further use. This C-code generator
(”CodeGeneration .sci”) produces two kinds of ob-
jects:

• A dynamic library used in the scicos scheme to
substitute blocks with a C-code.

• A set of C files that can be used to produce a
stand-alone executable.

Scilab doesn’t deliver a ”main” file needed to pro-
duce a stand-alone executable. Input and output sig-
nal have to be integrated by hand in the code because
the standard I/O scicos blocks can’t be handled by
the code generator.

3 Interfacing Scilab with Linux

RTAI

3.1 The RTAI solution

RTAI-3.1 contains all the files needed to integrate
the generated code in the RTAI environment. The
RTAI add-ons are composed by:

• A modified Scicos code generator (”RTAICode-
Gen .sci”).

• A ”main” file (”rtmain.c”).

• A Scicos library with the RTAI specific blocks
(”RTAI-Lib.cosf”).

• A RTAI library with the code needed by the
I/O blocks (”libsciblk.a”).

• Utilities to integrate new I/O devices in the
environment (”gen dev”).

3.2 Installing the software

The installation of the RTAI add-ons for Scilab is
very simple. After installing Scilab the user has to
perform two steps:

1. Add the RTAI specific files to Scilab.

2. Add some info to the user scilab start-up file.

The first step adds a new directory ”RTAI” to
the Scilab macros. This directory contains the sci-
cos block library ”RTAI-Lib.cosf”, the RTAI specific
code generator ”RTAICodeGen .sci” and the scilab
files related to the new RTAI-Lab blocks.

The second step modifies the user start-up file
”.scilab” in order to add the RTAI-Lib library to the
scicos palettes and a new scicos menu for the RTAI
specific code generation.

No original file from Scilab/Scicos is modified by
these steps!

A ”Makefile” is provided in order to perform
these two steps. User has to:

1. Modify the macro ”SCILAB DIR” in the
”Makefile” to fit the Scilab installation.

2. Run ”make install” as superuser to install all
the files.

3. Run ”make user” as normal user to modify his
own startup script.

2

3.3 Implementation

3.3.1 The code generator

The new code generator specific for Linux RTAI con-
tains only the stand-alone generator with a lot of
modifications, in particular:

• Includes the name of the blocks in the gener-
ated files.

• Improves the model io.c in order to facilitate
the possible integration of sensors and actua-
tors by hand.

The code generator produces the following files:

<model> standalone.c contains the C code of
each block.

<model> io.c : if the super-block has input or out-
put ports, this file allows to integrate by hand
the code to handle them.

<model>c.c contains the code from C-Blocks
(blocks implemented directly in C language)
and from the RTAI specific blocks (sensors and
actuators from the scicos RTAI Library).

<MODE> Makefile is the makefile needed to
compile and create the stand-alone executable.

3.3.2 The main file

The main file performs two basic tasks:

• Handles the real-time task (initialization, ISR,
termination).

• Communicates with the monitor application
(e.g. ”xrtailab”).

The real-time task is handled by the following
code:

iopl(3);

rt_task_use_fpu(rt_BaseRateTask, 1);
NAME(MODEL,_init_blk)();

grow_and_lock_stack(stackinc);
if (UseHRT) {
rt_make_hard_real_time();

}
rt_send(rt_MainTask, 0);

rt_task_suspend(rt_BaseRateTask);
t0 = rt_get_cpu_time_ns();
rt_task_make_periodic(rt_BaseRateTask, rt_get_time() +

rt_BaseRateTick, rt_BaseRateTick);
while (!endBaseRate) {

WaitTimingEvent(TimingEventArg);
if (endBaseRate) break;

TIME = (rt_get_cpu_time_ns() - t0)*1.0E-9;
set_nevprt(nevprt);
NAME(MODEL,main1)(NAME(block_,MODEL),z, &TIME);

NAME(MODEL,main2)(NAME(block_,MODEL),z, &TIME);
}

if (UseHRT) {
rt_make_soft_real_time();

}

NAME(MODEL,_end)(NAME(block_,MODEL),z, &TIME);

The default ”WaitTiminigEvent” function is de-
fined as ”rt task wait period”. The user can over-
write this function using the ”-e” by starting the
real-time task; this method can be used to imple-
ment asynchronous systems.

3.3.3 The block library

Under Scicos, a new ”palette” has been created
specifically for the RTAI environment. In particu-
lar this palette contains:

• Input signals (sinus, square, step) to substitute
the scicos input signals that can’t be used for
code generation.

• RTAI-Lab specific modules (scope, led, meter,
fifo).

• Blocks needed to interface with COMEDI de-
vices.

• Other specific I/O devices not yet covered by
the COMEDI project.

Figure 1 shows the Scicos RTAI-Lib library with
the present implemented blocks.

FIGURE 1: Scicos RTAI Library

All the blocks have been implemented starting
from the original ”C-Block2” from Scicos. Except
for the input signals, part of the C-code is imple-
mented in the specific ”<block>.sci” function and
part is implemented in the ”libsciblk.a” library which
is integrated in the RTAI project.

3

4 A simple example

4.1 Scheme

In the following a simple example will be analyzed.
A sinus signal is sent to a DA-Card, read from an
AD-Card and sent to the RTAI Scope. The I/O de-
vices are implemented using the COMEDI driver.

4.2 Implementation

4.2.1 Designing the scheme

First of all the user has to design the block diagram
using Scicos. In this example all the block can be
extracted from the RTAI-Lib palette.

Figure 2 represents the Scicos scheme of this
example.

FIGURE 2: Scicos scheme

At present each input respectively each output
block should have a different port number:

• RTAI sinus: 1

• COMEDI DATA IN: 2

• COMEDI DATA OUT: 1

• RTAI Scope: 2

Scilab/Scicos generates a code for a ”super
block” and not for a full scheme. To create a su-
per block the user should choose the Scicos menu
”Diagram → Region to Super Block” and select all
the blocks except the clock. He obtains the system
shown in figure 3.

FIGURE 3: Super Block

The default name of the ”superblock” is ”Unti-
tled”. Before starting with the code generation and
compilation, the ”superblock” can be renamed:

1. Open the Super Block by clicking on it.

2. Open the Scicos menu ”Diagram → Rename”
and give a new Name (default is ”Untitled”).

3. Close the Super Block.

Now the user can set the sampling time simply
by opening the ”Clock” block and giving the desired
value under ”Period”.

The code generation and compilation will now
be performed with the new Scicos Menu ”RTAI →

RTAI CodeGen”. A dialog box allows to change the
default compilation parameters.

5 Didactic example

5.1 Plant

The inverted pendulum of Figure 4 has been con-
trolled by software generated with this environment.

4

FIGURE 4: The Plant

5.2 The real plant

Figure 5 shows the real inverted pendulum with the
I/O modules.

ComputerBoards

CIO−QUAD4

ComputerBoards

PCI−1200

M

Pendulum encoder

Car motor + encoder
u

PC with Linux RTAI and Rtai−Lab

φ

y

FIGURE 5: I/O scheme of the inverted
pendulum

The PC generates the control signal and gives
it to the plant through a ComputerBoards DA
Card (PCI-1200). The pole and cart positions are
read using an encoder card (ComputerBoards CIO-
QUAD4).

5.3 Control of the inverted pendulum

A state-space feedback controller with reduced or-
der observer has been implemented. The Scicos
model contains the controller-observer pair imple-
mented with 2 discrete transfer functions.

Figure 6 shows the controlled system. The state
feedback gains (Klqr) can be calculated using a LQR

approach. The missing states can be obtained using
a reduced order observer.

K lqr

Reduced order

observer

y

φ
u

FIGURE 6: Control scheme of the inverted
pendulum

The state feedback can be written as

u = −Klqr · x (1)

The reduced order observer can be calculated us-
ing the provided function ”redobs” (see appendix A).
The state space representation of the observer can be
transformed into two transfer functions ”Gu” (trans-
fer function between the input u and the states x)
and ”Gy” (transfer function between the output sig-
nals [y(t); ϕ(t)] and the states x).

Figure 7 shows the signal flow diagram of the
controller.

-K

G y

G u

y
φ

x

u

lqr

FIGURE 7: Signal flow diagram of the con-
troller

The transfer function of the reduced order ob-
server is given by

x = Gu · u + Gy ·

[

ϕ

x

]

(2)

Inserting 2 into 1 gives

u =
−Klqr ·Gy

1 + K · Gu

·

[

ϕ

x

]

(3)

The script in appendix A shows how easy the full
controller can be programmed under Scilab.

5

5.4 Implementation

The controller has been implemented under Scicos as
shown in figure 8

FIGURE 8: Super block of the controller

More details about this project can be found at
the author’s home page ([9]).

5.5 Distributed control

The same mechanism used to communicate between
the real-time task and the RTAI-Lab GUI can be
used to establish a communication between different
hard real-time tasks. This makes it possible to cre-
ate a distributed control system within a single PC
or in a LAN, using the net rpc layer and the rtnet
hard real-time network driver ([8], see Figure 9).

NETWORK
UDP/IP

HARD RT−NET

PC with
hard real−time

I/O task

PC with
hard real−time
controller task

FIGURE 9: Distributed control for the pen-
dulum task

Figure 10 shows the two super-blocks for the dis-
tributed control.

FIGURE 10: Main scicos scheme

The contents of the two super-blocks are repre-
sented in the figures 11 and 12. The I/O task reads
and sends the sensor values using the RTAI mailbox
”SENS”. The control task reads these values from
the mailbox ”SENS”, calculates and sends the con-
trol value using the mailbox ”CTR”. The I/O task
gets the value from the mailbox ”CTR” and writes
it to the COMEDI device.

FIGURE 11: Contents of the superblock
”I/O”

6

FIGURE 12: Contents of the superblock
”control”
This distributed control system has been imple-

mented and tested at the SUPSI. The I/O task and
the control task were on two different PCs in the
SUPSI LAN.

6 Conclusions

A low cost, high quality and full open source rapid
control prototyping system have been presented. Dif-
ferent applications at the SUPSI laboratory have

demonstrated the potentialities of this tool. In the
last year it has successfully substituted a previous
commercial system based on Matlab/Simulink/RTW
as educational environment, but industrial applica-
tions are already planned.

References

[1] www.scilab.org

[2] www.inria.fr

[3] www.enpc.fr

[4] www.ni.com

[5] www.mathworks.com

[6] R. Bucher, L. Dozio, 2003, CACSD under RTAI
Linux with RTAI-Lab, Realtime Linux Work-

shop, Valencia, Spain

[7] www.comedi.org

[8] www.rts.uni-hannover.de/rtnet

[9] www.dti.supsi.ch/˜bucher/scilab.html

7

A Scilab script for the inverted pendulum controller

// Inverted pendulum!

Ts=1e-3; // Sampling time

// System variables

M=1.316; // cart mass
g=9.81;

m=0.10632+0.08555; // Pole mass
r=331.33e-3; // Pole length

J=m*r^2; // Inertial
alfa=3.656; // alfa=kt*kb/(M*ra*r^2)+d/M
kangle=1; // angle constant

kx=123.6374/0.75; // position constant [rad/m]
u0=1.5;

k=122.317/kx; // k=kt/(ra*rr*M)

// Linearized system

den=J*(M+m)-m^2*r^2;

a=[0,1,0,0;

(m*r*(m+M)*g)/den,0,0,-m*r/den*alfa*M;
0,0,0,1;
(m^2*r^2*g)/den,0,0,-J/den*alfa*M];

b=[0;
m*r/den*k*M;

0;
J/den*k*M];

c=[kangle,0,0,0;

0,0,kx,0];
d=[0;

0];

sys=syslin(’c’,a,b,c,d);

sysd=dscr(sys,Ts);

[ad,bd,cd,dd]=abcd(sysd);

// State feedback controller [LQR]

// weights

Q=diag([1000,1,10000,1]); // 4 by 4

R=[1]; // 1 by 1

k_lqr=bb_dlqr(ad,bd,Q,R);

E=spec(ad);

plqr=abs(real(log(E)/Ts))’;

pmax=max(plqr);

k_lqr=-k_lqr;

preg=spec(a);

// Reduced order observer

poli_oss=exp([real(preg(3)),real(preg(4))]*10*Ts);
T=[0,0,0,1;0,1,0,0];

[ao,bo,co,do]=redobs(ad,bd,cd,dd,T,poli_oss);

Greg=comp_form(ao,bo,co,do,Ts,k_lqr);

[g1n,g1d]=tfdata(Greg(:,2));
[g2n,g2d]=tfdata(Greg(:,3));

//***

function [A_redobs,B_redobs,C_redobs,D_redobs]=redobs(A,B,C,D,T,poles)
P=[C;T]
invP=inv([C;T])

AA=P*A*invP

ny=size(C,1)

nx=size(A,1)
nu=size(B,2)

A11=AA(1:ny,1:ny)

8

A12=AA(1:ny,ny+1:nx)
A21=AA(ny+1:nx,1:ny)

A22=AA(ny+1:nx,ny+1:nx)

L1=ppol(A22’,A12’,poles)’;

nn=nx-ny;

A_redobs=[-L1 eye(nn,nn)]*P*A*invP*[zeros(ny,nn); eye(nn,nn)];

B_redobs=[-L1 eye(nn,nn)]*[P*B P*A*invP*[eye(ny,ny);L1]]*[eye(nu,nu) zeros(nu,ny);-D, eye(ny,ny)];
C_redobs=invP*[zeros(ny,nx-ny);eye(nn,nn)];
D_redobs=invP*[zeros(ny,nu) eye(ny,ny);zeros(nx-ny,nu) L1]*[eye(nu,nu) zeros(nu,ny);-D, eye(ny,ny)];

endfunction

//***

function [Gu,Gy]=get_gu_gy(G)

Gu=G(’num’)(:,1)./G(’den’)(:,1);
Gy=G(’num’)(:,2:$)./G(’den’)(:,2:$);

endfunction

//**

function [Greg]=comp_form(A,B,C,D,Ts,K)

ss_sys=syslin(’d’,A,B,C,D);

ss_sys(7)=Ts;
g_sys=ss2tf(ss_sys);

[gu,gy]=get_gu_gy(g_sys);

Greg=[1/(1+K*gu),-K*gy/(1+K*gu)];
endfunction

//**

function [num,den]=tfdata(G)
num=G(’num’);

den=G(’den’);
endfunction

9

