Hard Real-Time Control of Mechatronic System:
FPGA Extension for RTAI

S. Carabelli, M. Chiaberge, R. Garzella, L. Gobetto and A. Mazzetto
Laboratorio Interdipartimentale di Meccatronica - Politecnico di Torino
C.so Duca degli Abruzzi 24, 10124 Torino, Italy
stefano.carabelli@polito.it

Abstract

Hard Real-Time Control (HRTC) is to be intended in terms of the relative time scales of the electrome-
chanical components of the mechatronic system to be controlled. MicroElectroMechanical Structures
(MEMS) or Drive-by-Wire (DbW) applications are good examples of hard real-time controls.

The combination of algorithmic and logic processing power by means of micro and/or Digital Sig-
nal Processor (uP, DSP) and Programmable Logic Devices (PLD) or Field Programmable Gate Arrays
(FPGA) results in a powerful Algorithmic and Logic Core (ALC) to be used in many different and

demanding mechatronic applications.

The digital platform here proposed is an industrial PC equipped with a FPGA board whose firmware
Intellectual Properties (IP) can be accessed by the different software Service Routines (SR). Firmware
is memory mapped into the PC memory space and the interrupt management is handled by a combined
structure of software scheduler and firmware interrupt manager.

The FPGA board is also used to implement a hard real-time bus to connect such a digital platform
to a number of DSP/FPGA based Actuator Control Units (ACU) dedicated to current and torque fine

drive and control.

The FPGA board driver is developed within the proprietary hard real time RTAI API’s and the
development tool chain can be fully handled within the Simulink environment: simulation, software and

firmware code generation use the very same model.

1 Introduction

The world of mechatronics and robotics applications
always requires new and innovative devices, which
must be made available as soon as possible. From
the first idea to the finished product it is needed a
certain time period for good prototypation and en-
gineerization processes.

To minimize the prototypation time, where the
LIM (Interdepartimental Mechatronic Laboratory)
use a lot of resources, they are needed tools whose
key words be modular structure and versatility. Only
using electronic devices or just software would be
counteroproductive for the modelling and character-
ization of the problem, so at LIM it is from very much
time that we use some suitable tools which combine
excellent performances (like DSPs), reliability and
programming easiness use. A characteristic feature
is the ability to interface our systems with the rest
of the world very easily, through whichever commu-

nication channel or bus, thanks to FPGA planned as
the demand ask. The abstract vision (Fig. 1) that is
come to create of our prototype is therefore charac-
terized from the FPGA communicating with exter-
nal devices and from DSPs/CPUs elaborating infor-
mations. The interaction with the user is managed
again from DSPs/CPUs and it happens via HMIs
(Human Machine Interfaces).

A condition “sine qua non”, absolutly needed,
is the guarantee that the sampling and elaboration
times are respected. In fact, a basilar concept is that
the mechatronic discipline cannot prescind from the
hard real time. In the prototypation devices adopted
it is guaranted the hard real time through appropri-
ate schedulers and software watchdogs.

The above abstract vision introduces an impor-
tant feature: it is modular and it is possible to swap
the elaboration unit with an other therefore like the
hardware FPGA without changing the software or
firmware. A complementary solution, not so hard

real time operating system but still hard, it is really
to use systems PC processors-based to the place of
the DSP, or use them together giving to everybody
certain tasks (we prefer service routines). This last
solution it allows to relax the DSP and the CPU from
very hardly work.

Hardware

Firmware

Software

Signal
Cond &
ustoms

C

-
o

c
2
o
©
8
a
[
<t

Communication to Host
{Internal) System Bus
{Internal) Field Bus
Field

7]
Q
@
7]
3]
a]

FIGURE 1:

Adopting standard CPU we ask a question, that
is which operating system use to have the hard real
time support. The LIM philosophy is near to the
open source philosophy, in fact the Mechatronics
Laboratory has coined ”open hardware” for its de-
vices. From a careful analysis of the open source
world wide solutions we have found in RTAI the best
candidate.

Build the Linux/RTAI system (kernel recompi-
lation) [2], we have thinked how to have a man-
ageable programable logic in the PC. The step to
found the solution has been much short, in fact we
have adopted a PCI FPGA that we have used also
for other plans. Equipped with drivers for just Mi-
crosoft Windows, we have written new Linux drivers
optimized for RTAIL

The Linux/RTAI PC is a good start point for
embedded devices turned to prototypation, that is
small board that they integrate a PC processor like
Intel XScale and one or more programable logic. The
processor, whose architecture is usually RISC, would
execute the Linux/RTAI code, while integrated pro-
gramable logic the firmware of the FPGA before on
PCI bus. With good ideas, will and a little of fortune,
we have increased our knowledges and the solutions
for a prototypation process faster and more efficient.

System architecture

2 Open Digital Platform for
Mechatronic Applications

At the core of almost any modern automotive,
avionic and general industry product, there is some

kind of programmable digital platform often called
Electronic Control Units (ECUs). Such platforms
are usually based on a combination of digital devices
such as microProcessors (uP), micro Digital Signal
Processors (uDSP) and/or custom Programmable
Logic Device (PLD) in addition to application spe-
cific signal conditioning and power electronic cir-
cuitry.

The replacement of pneumatic or hydraulic ac-
tuators with electrical motors is definitely a general
trend in the innovation of many products. This
“more electric” technology shift is not limited to
avionic or automotive industry but is a rather gener-
alized evolution. Such technology will require dedi-
cated ECUs, hereafter called Actuator Control Units
(ACUs), capable of driving different kid of electric
motors by mean of switched power electronics. ACUs
must run their critical code under a deterministic
real-time operating systems and must usually com-
municate by means of a dedicated network protocols.

Our ACU features a full set of digital pro-
grammable devices much alike those actually used
in industrial applications: a uDSP device meant for
electrical drives such as those of Texas Instruments
(C24/28 families, a Field Programmable Gate Array
(FPGA) device (Fig. 2), and a Field Programmable
Analog Array (FPAA) device. These devises allow
to implement different task on the more adapt pro-
grammable real-time device. ACU features an addi-
tional Communication Module with standard proto-
cols for copper wire and Plastic Optical Fiber (POF),
a Power Module that can be used on any kind of elec-
tric motor including voice coil and electromagnets,
and a number of Field Module to be used to im-
plement application specific circuitry, e.g for sensor
signal conditioning.

The ACU comes with a complete development
tool chain that goes from graphical programming and
automatic code generation in Matlab/Simulink en-
viornment, to local or remote virtual panels, code
download and managing console, parameter tuners
and signal scopes to be used for testing and mainte-
nance.

The Open Source approach is here extended to
include the whole system including the firmware and
hardware as well as the software components. The
open architecture of the proposed ACU allows man-
ufacturers, system and component suppliers, aca-
demic researchers to modify and adapt the hardware,
firmware, or software to their specific needs with-
out depending on closed proprietary solutions and
related services.

Replacing the DSP with a PC RTAI powered and
the integrated FPGA with an FPGA on PCI bus, we

have a complementary solution, with the same archi-
tecture and modularity. The PCI FPGA is a good
idea to allow the user to communicate with the rest of
the world, but it introduces a certain delay and some
uncertainty when you want, for example, read from
digital input lines. The PCI bus is not optimized
for hard real time uses and its nature of interrupts
shared can up-limit performances, so we prefer say
“not so hard but still hard”. If the user has an em-
bedded board RTAI powered with a dedicated and
custom bus, it is possible to link a FPGA device (not
PCI) and the above latency problem is resolved.

=
"
-
=
-
=
»
=
-

FIGURE 2: Our board with FPGA feature

2.1 ACU general architecture

The general architecture of the ACU system (with
DSP or RTAI) is devised to allow the user to de-
velop three different kind of technology components
(Fig. 1):

e Software Service Routines (SR) to be excuted
in Interrupt mode (ISR) or in Time Triggered
mode (TTSR)

e Firmware Functional Blocks (FB) sometimes
called Intellectual Properties (IP)

e Hardware Interface Circuitry (IC) to field ap-
plication signals

In order to leave the user to concentrate on the
design and testing of the above mentioned parts,
an extended Operating System is to be provided
together with the digital platform (an hard real
time operating system, like our HRTOS on DSP or
Linux/RTAI). An hard real time operating system
extends the concept of operating system from the
software component to the whole system operation.
The user coded firmware functional blocks are to be
managed by some other firmware functional blocks
that take care of their interaction with the software

on the DSP side and the hardware on the application
field side.

The circuitry specific to every different applica-
tion, e.g. sensor conditioning, can be thought as
user defined hardware to be developed within a given
framework of available analog and digital channels
with their given electrical characteristic, i.e. some-
thing that allows the user to operate the system.

3 A Linux/RTAI driver for
FPGA devices

The PCI FPGA card was supplied with just Mi-
crosoft Windows drivers, then we have written new
for Linux operating system. But running a RTAI
task that use the driver, you have continuously a
hard real time/soft real time switches, with a mean-
ingful worsening of performances. The only solution
for this problem is to write a Linux driver using some
RTAT APIs for kernel space.

Linux offers more than one possibility to write
a driver [5], for example a character driver that cre-
ate a file in /dev directory accessible from a stan-
dard program with fopen/fread /fwite/fclose calls. In
this case, when the program yelds the control to the
driver, there is a context switching from user space
to kernel space and viceversa after the appropriate
function is ran. Also using RTAI APIs this happens
but the context switching time is very insignificant.
For our prototypes, we want the best, then our so-
lution for the driver it has been various. In fact, we
have preferred the pattern named LXRT FEztension
[3], that is we have created the driver (not charac-
ter driver) and an header that it is possible to use
in the user software to extend LXRT with our func-
tions to access to the FPGA. This possibility seems
not official documented but it is very efficent.

Our driver is a generic driver, in fact it allows
to access directly to 32 bits registers simply calling
a read or write function. So it is possible that an
user, with its user space task, can custom the access
to FPGA (he extends the driver). This is a classic
feature very used at the Mechatronics Laboratory.

Then, loaded the driver as module, the user must
just include an header in its service routine to use
the FPGA and extend LXRT. Follow ANSI C main
prototypes from header source code:

extern int rtplda_check(int);

extern unsigned int rtplda_read(unsigned int,_
unsigned int, unsigned int, unsigned int *);

extern unsigned int rtplda_write(unsigned int,_
unsigned int, unsigned int, unsigned int);

#ifndef DISABLE_IRQ

extern unsigned int rtplda_mbxname (int,_
char *);
#endif

The implementation of these functions is in the
driver, but an user calls them as if they were imple-
mented in the local program. When the user calls a
function, like rtplda_read(...), the RTAI core provides
to call the related driver function. In this way, the
context switching from user space to kernel space is
minimized.

With our driver, it is possible to manage hard-
ware interrupt too (if user decides to enable this fea-
ture, but why not?), simply listening on mail-box re-
turned from rtplda_mbzname(...) function (the first
parameter is the FPGA number, because our system
manage up to 4 devices) that notify the FPGA has
triggered an interrupt.

To test the driver we have done a funny experi-
ment, so we have linked the FPGA with a function
generator, then we have chosen a square wave and
at each front an interrupt was triggered, then the
user program sended a signal through a National In-
struments DAQ PCI board. With an oscilloscipe,
we have noticed that the gap between the input and
output signal is very small because both our driver
and the FPGA are very efficent.

The driver is released as free software under the
GNU Geneal Public License Version 2 or above and
was developed by our eclectic researcher Alberto
Mazzetto.

4 Generating code for FPGA
with Mathworks Symulink

Mathworks Symulink is the tool “de facto” for tech-
nical computing and in the RTAI package is present
an extension to autogenerate ANSI C source code
for Linux/RTAI based system. We have build new
blocks (Fig. 3) to generate code for FPGA devices, so
simply the user can place a block (i.e.. RTAI/PLDA
Write) to interact with 32 bits registers, read and
write is both supported. In this way, an user can
create for example a powerful automatic control for
its device and for us it is very easy to build a proto-
type time-cheaper.

When in a Symulink project there is one or more
FPGA blocks, the generation code tool add a link
to plda_rtailzrt.h header (the same for user program
manually wrote) and put in the source code lines like
the following;:

var=rtplda_read(..., ..., ..., ...);
var=rtplda_write(..., ..., ..., ...);

Obviously, it is possible to custom each block
specifying each parameter that will be an argument
for the relative function.

The Mathworks Symulink section of the binomial
PC-FPGA was developed by Luigi Gobetto, a fun-
damental PhD researcher of the LIM.

A FPGA set blocks for Scilab/Scicos, an other
designing environment to generate code, will be re-
leased as soon as possible.

Fis EdL View Smulaton Format Tooks Help B
DSHS| L2820 = [> 8w SEe: BET®

Ready e I 4
Bsten| & @ @ > Hroc... | Brrcr..| Wwicr. | Brow.. | Brow. | Cmyc. | @ Fet.. | @vser.. | e[Sz [« @ B@BLA 157

FIGURE 3: Symulink and FPGA blocks

5 A didactical application

A very interesting test rig have been build at the In-
terdepartimental Mechatronic Laboratory for public
expositions as didactical demonstrators of magnetic
levitation principle and applications (Fig. 4).

FIGURE 4:

The magnetic levitator

Using the ACU digital platform, the electrical
and position loops can be shown implemented as part
of a DSP service routine and the FPGA can be used
to perform specific conditioning on the levitator be-
haviour.

Introducing RTAI in our didactical experiment,
the PC has become the control position manager

with exactly the same code wrote for DSP (with
Symulink) but adapted and recompiled for RTAI
platform. In this case, the FPGA PCI board is used
to communicate via digital protocol with the logic on
ACU platform to coordinate each jobs.

6 Conclusion

An open and modular digital platform specially
meant for mechatronic applications is shown to be
conveniently based on a combination of DSP or PC-
processor and FPGA digital devices. The availabil-
ity of the describing or functional source code for
every part of the system is also stressed as a major
technical advantage for the development of complex
mechatronic applications. RTAI is a good extension
for Linux and its role in our system part make a
complete and powerful digital platform.

References

[1] The RTAI Development Team,
DIAPM RTAI - Realtime Application Interface,
http://www.rtai.org.

[2] Rtai.dk,
Installation of RTAI-3.0r8 on Mandrake 9.2,
http://www.rtai.dk.

[3] Peter Soetens, Extending LXRT,
http://people.mech.kuleuven.ac.be/~psoetens/.

[4] Peter Soetens,
HOWTO Port your C++ GNU/Linuz applica-
tion to RTAI/Linux,
http://people.mech.kuleuven.ac.be/~psoetens/

[5] Alessandro Rubini and Jonathan Corbet, 2001,
Linuz Device Drivers, O’Reilly, 2nd Edition.

