
LibeRTOS: A Configurable Single-OS

Real-Time Linux Platform for Industrial Applications∗

Thomas Gleixner

Linutronix

Uhldingen-Muehlhofen, Germany

tglx@linutronix.de

Douglas Niehaus

Information and Telecommunication Technology Center,

University of Kansas

Lawrence, Kansas 66045

niehaus@ittc.ku.edu

Abstract

The LibeRTOS project focuses on producing a stable, robust, and highly configurable Linux platform
for industrial automation and other real-time applications. This paper provides an overview of LibeR-
TOS and discusses its most important capabilities which include: (1) high resolution time keeping, (2)
extremely flexible and fine grain performance data collection support, (3) highly configurable schedul-
ing policies, and (4) integration of OS computational components, including interrupt handlers, into the
system scheduling model. The combination of these capabilities provides a single-OS platform appro-
priate for a wide range of industrial automation and other real-time applications. This paper provides
an overview of the most significant and innovative aspects of the LibeRTOS system implementation and
discusses recent experimental results comparing its performance to RTAI, a popular dual-OS real-time
system, for both kernel based and user space computations.

1 Introduction

The LibeRTOS project focuses on producing a sta-
ble, robust, and highly configurable Linux platform
for industrial automation applications. LibeRTOS
has drawn extensively from the methods and experi-
ence accumulated by the authors over several years
in the course of the KURT-Linux project at the Uni-
versity of Kansas, and of many industrial automation
applications developed by Linutronix. This paper
provides an overview of LibeRTOS and discusses its
most important capabilities which include: (1) high
resolution time keeping, (2) extremely flexible and
fine grain performance data collection support, (3)
highly configurable scheduling policies, and (4) in-
tegration of OS computational components, includ-
ing interrupt handlers, into the system scheduling
model. The combination of these capabilities pro-

vides a single-OS platform appropriate for a wide
range of industrial automation applications.

Satisfying the requirements of real-time applica-
tions requires precise control over many fine grain de-
tails of system behavior to make the execution of ap-
plications as predictable as possible. One of the most
difficult aspects of real-time system design and im-
plementation is that the predictability of application
behavior is largely determined by whatever aspect of
the system is least predictable. One reason for the
popularity of dual-OS approaches to real-time under
Linux is that it permits the real-time portion of the
system to be built from the start with an emphasis
on predictability, with the Linux portion of the sys-
tem executed only when the real-time OS permits.
RTLinux [3] was the first system to use this approach
under Linux, followed fairly quickly by RTAI [4].

∗This work was supported in part by DARPA PCES contract F33615-03-C-4111 and by NSF EHS contract CCR-0311599.

1



The dual-OS approach is a fast and relatively
simple way to create support for simple real-time
computations, but it also suffers number of draw-
backs. Most obviously, it strongly separates the real-
time and Linux portions of the system, requiring
special support for real-time computations to access
Linux system services, and requiring implementation
of all system services within the real-time environ-
ment. The memory footprint of the dual-OS system
is significantly larger than that of the base Linux sys-
tem as a result of system service duplication, and the
complexity of applications with components in both
the real-time and Linux domains is increased by the
need to communicate across the boundary.

In contrast, the single-OS approach implements
real-time system services within Linux, but faces a
much more difficult problem in making the system
predictable precisely because it is affected by the be-
havior of all system components. The KURT-Linux
system [2] was the first to take this approach to
real-time under Linux, and was developed at roughly
the same time as the first version of RTLinux. The
first version of KURT-Linux was suitable only for
the most undemanding types of real-time applica-
tions because of significant event response time and
scheduling jitter arising from a number of sources.

Over the last several years, continuous develop-
ment of both KURT-Linux methods for supporting
real-time within Linux, and in the methods used by
the base Linux versions for concurrency control, have
steadily improved the predictability of KURT-Linux
and have improved the precision with which it can
control use of system resources. The most recent set
of improvements in KURT-Linux have removed es-
sentially all the remaining performance advantages
of the dual-OS approach. This prompted us to cre-
ate the first version of LibeRTOS, which is intended
to be a single-OS real-time Linux for industrial use.

LibeRTOS offers developers a broad set of pow-
erful capabilities giving it significant advantages over
other current approaches to real-time computing un-
der Linux, and which are not fully matched by any
other single system. As a single-OS system it has
significant architectural and resource use advantages
over dual-OS approaches for many applications. As
a highly configurable and completely GPL system it
has significant advantages over proprietary single-OS
approaches that limit the user’s ability to modify or
replace significant portions of the system. LibeR-
TOS is thus an important and attractive addition
to the set of current real-time Linux systems which
can significantly increase the range of industrial ap-
plications using Linux. The LibeRTOS and KURT-
Linux projects will continue to cooperate closely as
two parts of a single effort. KURT-Linux will serve

as the research and prototyping environment con-
tributing features and methods to LibeRTOS as they
mature. LibeRTOS will serve as a source of require-
ments and ideas for new research topics, as well as a
proving ground and technology transfer platform for
KURT-Linux based systems research.

2 Architecture Overview

The power and flexibility of LibeRTOS is a result
of modifications to several aspects of the base Linux
implementation and addition of several new capabil-
ities. This section discusses the design of the major
components of LibeRTOS, including how they help
provide support for real-time and embedded systems.

2.1 High Resolution Time Keeping

The most obvious aspect of support for real-time
computations is fine-grain time keeping and event
scheduling. This was the basic capability addressed
by the first KURT-Linux implementation [2], which
divided the methods for time keeping and schedul-
ing the interrupt representing the next scheduled
event. Steady refinement of the implementation has
resulted in a well defined internal LibeRTOS API for
time keeping which is easily ported to a range of ar-
chitectures. While the current version of LibeRTOS
only runs on the x86 CPU, we have ported previous
versions of KURT-Linux using this internal API to
a variety of other processors including: StrongArm,
XScale, and PPC CPUs.

On the x86 architecture we use the Time Stamp
Counter (TSC) as the system time standard and the
standard 8254 timer chip to generate interrupts at
scheduled times. This approach permits us to keep
track of time at the resolution of the CPU clock,
and to schedule event interrupts with accuracy es-
sentially equivalent to that provided by the current
version of RTAI. More detailed performance results
under various operating conditions are provided in
Section 3.

It is worth noting that the integration of com-
putation component control under the current Lib-
eRTOS implementation has made it relatively easy
to achieve significant improvement in clock calibra-
tion and clock synchronization. We have recently
performed initial experiments using a 1.4 GHz Pen-
tium machine in which we were able to calibrate the
basic time keeping constant, TSC ticks per second,
to within 40 parts per billion against the NTP time
standard in our local network. This extremely low
drift rate has made it relatively easy to synchronize
the LibeRTOS system clock to within less than 10
microseconds of the NTP standard, while sending

2



synchronization messages every five minutes. This
synchronization precision is at least an order of mag-
nitude better than that provided by the standard
NTP methods on the same system. LibeRTOS is
thus capable of addressing distributed real-time ap-
plications with quite stringent clock synchronization
requirements.

2.2 Performance Evaluation Support

The precision of the resource control in a real-time
system must be matched by the precision of the
measurement methods used to evaluate system be-
havior. The performance evaluation framework pro-
vided by LibeRTOS is called Data Streams, and sup-
ports collection of both kernel level and application
level performance data. A wide range of events can
be recorded, resulting in extremely large streams of
recorded events from some experiments. Instrumen-
tation overhead can be an issue, especially if the
set of data sources for a given experiment is con-
figured naively. Data Streams also supports the col-
lection of aggregate data types, including counters,
histograms, and application-specific “objects” cap-
turing a snapshot of a specific set of state variables.

Sets of data from the OS and from applications
can be combined and then processed after an exper-
iment is complete to extract a wide range of infor-
mation about system and application performance.
Detailed visualizations are also possible, and fre-
quently aid the developer in identifying unexpected
or problematic sequences of events. The fact that the
combined data sets help the developer discover how
events at all levels of the system relate to one an-
other is particularly important. We have recently
been running a series of experiments in a related
project which collected a complex set of events from
the application, OS and ACE/TAO middleware lay-
ers.

The wealth of performance data has increased
the complexity facing the developer in properly or-
ganizing the instrumentation of the relevant portions
of the application and system code, in configuring the
set of performance data that is collected for a given
experiment, and in how the data collected can be
processed to extract desired information. We have
developed and are continuing to improve an exten-
sive set of support tools for helping the developer
maintain name spaces of instrumentation points, to
enable and configure specific sets of instrumentation
points for a given experiment, and to support a wide
range of post-processing on collected performance
data to extract specific kinds of information.

2.3 Fully Integrated Computation

Component Control

One of the most important features of LibeRTOS
is the strongly integrated control over all computa-
tion components on the system. We use the term
“computation components” for two reasons. First,
to emphasize that many computations of interest
to users contain several concurrent components, and
that LibeRTOS emphasizes control of computations
as a whole, which means the group of components
implementing a given computation. When people
consider computations containing concurrent compo-
nents, they most often focus on sets of concurrently
executing processes or threads. This is the most com-
mon case under LibeRTOS as well.

The second reason we use the term “computa-
tion components” is to emphasize that the LibeR-
TOS scheduling model includes computation compo-
nents that exist only within the Linux kernel whose
execution is normally concealed from the user: hard-
IRQ handlers (top halves), soft-IRQ handlers, bot-
tom halves, and tasklets. These computations are
distinguished by the fact that they borrow context

from the currently running thread. The LibeRTOS
scheduling model, called group scheduling treats all
computation components in the same way, providing
a highly configurable and extremely flexible frame-
work within which users can describe a wide range
of scheduling policies for all computational activities
in the system.

It is important to note that while the system
designer can explicitly specify the scheduling seman-
tics for all computation components on the system
they are not required to do so. The group scheduling
framework uses the existing Linux scheduling policies
for all computation components by default, permit-
ting the user to specify specialized semantics only
for the desired components. The unified schedul-
ing model was demonstrated in KURT-Linux [6],
and is currently being integrated into LibeRTOS. At
this time it controls hard-IRQ and soft-IRQ execu-
tion, and we will add control of bottom halves and
tasklets shortly. The group scheduling framework is
discussed in greater detail in Section 2.4.2.

2.3.1 Integrating Concurrency Control

At this point it is important to note that unifying
the control of all computation component types un-
der the LibeRTOS group scheduling framework also
required us to create a method for integrating the
control of concurrency in the Linux kernel, for sev-
eral reasons. The most obvious is that concurrency
control and scheduling semantics often interact, since
the purpose of a concurrency control model is to pre-

3



cisely control the conditions under which a set of
computation components can execute concurrently.
LibeRTOS has modified the control of all types of
concurrency managed by the Linux kernel, which can
be labeled: thread, interrupt, and physical. The de-
fault configuration for these modifications under Lib-
eRTOS reproduces the original Linux semantics,

We use the term “thread concurrency” to refer
to how multiple threads execute in relation to each
other, which can be either on the same CPU or on
different CPUs within a multi-CPU system. The key
point is that these concurrency issues have to do with
how the concurrent execution of two threads needs
to be controlled under both the scheduler and the
concurrency control model. The group scheduling
framework controls the most obvious aspect of thread
concurrency under LibeRTOS, while changes to the
preemption support permit controlling the preemp-
tion of one thread by another under any desired se-
mantics.

We have integrated hardware interrupt handling
under the group scheduling framework by transform-
ing the concurrency control method from hardware
based interrupt enabling and disabling to a software
based “big interrupt flag” model reproducing the
same semantics. There are some very small regions
of the kernel that still disable interrupts at the hard-
ware level for extremely brief periods, but for all but
a small number of specific issues, the interrupt han-
dling has been placed under software control. The
default configuration for hard-IRQ handling repro-
duces the “as fast as possible” semantics of Linux.
It is important to note that specific configurations
are free to modify the policy controlling the execu-
tion of interrupt handlers individually, or as a group.

The control of physical concurrency under Linux,
spin-locks, have also been modified to integrate them
under group scheduling. This was motivated by
their involvement with the thread preemption con-
trol methods, as the semantics of physical concur-
rency control remain unchanged under LibeRTOS.

2.4 Configurable Scheduling Seman-

tics

The integration of all computational components un-
der the group scheduling framework emphasized con-
figurability of the system semantics. The default
configuration of the system provides the semantics
of unmodified Linux, which is useful in simplifying
potential complications during system boot. Most
of the support for configurability takes the form of
function pointers which call the configured routines.
For example, function pointers provide access to the
routines determining when and how hard-IRQ han-

dlers are handled, when and how soft-IRQ handlers
are executed, and when the group scheduling system
decision function is invoked. For performance rea-
sons, the modifications to preemption and spin-lock
control are configurable only at compile time. How-
ever, we have found it relatively simple to provide
implementations which support the default seman-
tics during system boot, so this has not proved to be
a significant constraint so far.

2.4.1 Configurability Example

One of the first LibeRTOS configurations we have
built which significantly alters the default Linux se-
mantics for several aspects of computation compo-
nent control semantics is called the “M68K” configu-
ration because a core component features the multi-
level interrupt masking semantics made familiar to
many by the Motorola 68000 family of CPU archi-
tectures. This configuration concentrates on control
of threads and hard-IRQ handlers, leaving the con-
trol semantics for other computation components in
the default configurations.

The M68K configuration divides all thread and
hard-IRQ handlers into real-time and non-real-time
classes. Within each class, each hard-IRQ is asso-
ciated with a blocking level. Further, each thread
also has an associated blocking level. The block-
ing levels of the real-time class of computation com-
ponents are higher than those of the non-real-time
components. The configuration provides the multi-
level interrupt masking semantics by replacing the
default hard-IRQ handling routine with one support-
ing the multi-level interrupt masking semantics. The
desired thread scheduling semantics are implemented
by providing a replacement for the preemption con-
trol routine which considers the blocking level asso-
ciated with each thread when making a preemption
decision. Interrupts which are non-real-time cannot,
thus, interrupt the execution of real-time threads.

Further, this model also permits specific spin-
locks to be associated with specific IRQ blocking lev-
els, demonstrating the broad configurability of the
LibeRTOS computation control framework. Imple-
mentation of this configuration required providing
versions of the hard-IRQ handler control, preemption
control, and spin-lock LibeRTOS components which
implemented the desired semantics. It is important
to note that while the total amount of code required
to implement this configuration is quite modest, the
modification of the system semantics is significant.

Consider an example scenario with two real-time
threads; one whose execution is invoked by a periodic
timer interrupt, and one invoked by asynchronous in-
terrupts from a device interface card. In this scenario
the timer interrupt has a higher blocking level than

4



the device, and the invoked threads have blocking
levels matching that of the interrupts by which they
are invoked. Under the M68K configuration, when
the timer interrupt occurs, no card interrupt will be
serviced until both the timer interrupt handler and
the thread it invokes have completed execution, be-
cause they have a blocking level greater than that if
the interface card. In contrast, when the interface
card raises an interrupt, execution of its handler and
the thread it invokes can be preempted by a timer
interrupt.

2.4.2 Group Scheduling

A group is defined as a collection of computation
components with an associated scheduling decision
function (SDF) that selects among the group mem-
bers when invoked. Each member of a group can
have information associated with it, as required by
the SDF. Groups can also be members of other
groups, thus supporting hierarchical composition of
more complex scheduling decision semantics, culmi-
nating in the creation of an SDF for the system as a
whole; the system SDF (SSDF). A subset of the com-
putations on a system can be placed under SSDF
control because the default Linux scheduler is in-
voked to make a decision if the SSDF does not make
a choice. Computations can be placed under exclu-
sive control of the SSDF or joint control of the SSDF
and the default Linux scheduler as the user desires.
Further, the SSDF can also explicitly choose to in-
voke the default Linux scheduler.

Any number of SDFs may be implemented, but
most systems can be implemented using selections
from a standard set. We implemented a number
of SDFs under the latest KURT-Linux version [6],
including: static priority, dynamic priority, explicit
plan, cyclic, processor share, round robin, EDF, and
sequential. Most of these have now been transferred
to LibeRTOS, and the rest will be done shortly. The
interface for a scheduling decision function is quite
simple: it takes the scheduling information describ-
ing the members of the group with which it is asso-
ciated as input, and it returns a decision, which can
take one of three forms: a computation component
ID, Pass or OS which invokes the default OS sched-
uler. The group scheduling API includes the ability
to modify the scheduling parameters associated with
each member of the group. For example, if the SDF
of a particular group is priority based, then the group
API gives access to the SDF API that makes it pos-
sible to change the priority of group members.

The group scheduling framework emphasizes
modularity of the SDF implementations and thus
makes it relatively easy for users to implement their
own SDFs if the library of available functions does

not include one matching the scheduling semantics
they desire. The group scheduling framework can
thus easily subsume all of the popularly scheduling
models by providing matching SDFs. However, it
can support application specific and otherwise highly
specialized scheduling semantics with equal ease,

We have, for example, recently conducted some
experiments with group scheduling control of sets of
pipelined computations operating on streams of mes-
sages representing streams of video frames, where
each frame has a sequence number. In this sce-
nario we compared performance under popular prior-
ity and CPU share based scheduling policies to per-
formance under an SDF which was aware of appli-
cation progress. Specifically, the “progress aware”
SDF looked at information published by each pro-
cessing pipeline about which frame number was last
complete. The processing scenario included variable
processing time for different frames within various
pipeline stages. Given this information, it was rea-
sonably simple to write an SDF that balanced the
progress of the various streams much more effectively
than the SDFs which were not aware of the applica-
tion state.

We are currently exploring a number of ways in
which the group scheduling framework can be used
to improve support for various kinds of distributed
real-time and embedded systems. One effort, the one
using the computation load modeling video frame
processing, is examining how group scheduling may
be able to coordinate execution of application, mid-
dleware and OS computation components to improve
execution using the ACE ORB (TAO) as the experi-
mental platform. A second effort is considering how
to implement real-time quality of service for network
connections by integrating the network protocol pro-
cessing soft-IRQ routines under group scheduling,
and by implementing a simple time division multi-
plexing strategy for sharing a local network among a
modest number of machines. A third effort is consid-
ering how group scheduling might be used to coordi-
nate computation component execution in a GRID
based computation.

3 Performance

This section gives a brief view of how LibeRTOS
performance compares to one of the most popular
dual-OS solutions, RTAI, and its support for real-
time computations in user space, LXRT. The tests
described here were performed on a 300 MHz Pen-
tium machine for fairly long periods running a vari-
ety of loads using a LibeRTOS kernel based on Linux
2.4.26. These results were taken with permission of
the author from a recent thesis by Jan Altenberg [1].

5



The measurements presented in the two tables are
the maximum latencies for executing a minimal ser-
vice routine associated with a test interrupt gener-
ated periodically by a custom device at 1 millisecond
intervals.

RTAI LibeRTOS
No Load 7,8 usec 7,8 usec
ping -f 8,6 usec 9,8 usec
hackbench 12,6 usec 11,8 usec
hb + ping -f 13,6 usec 13,4 usec

TABLE 1: OS Handler Latency

In each table, the “No Load” line shows the max-
imum latency on an “idle” machine which means
that it was supporting only the default Linux sys-
tem processes in addition to the instrumented appli-
cation. The “ping -f” or “ping flood” load is used to
create a large number of interrupts from the Ether-
net device, which provides competing interrupt load
where the interrupt handler for the competing load
is lightweight. The “hackbench” load adds a local
processing load to the test machine and is disk in-
tensive. The disk interrupt handler typically requires
more processing time than the Ethernet handler, and
tends to introduce more scheduling jitter than Eth-
ernet interrupt processing. The last line in the ta-
ble show the results when both the “ping flood” and
“hackbench” loads were present on the system.

Table 1 presents the results for hard-IRQ handler
latency where the main routine for responding to the
test interrupt was implemented in the OS. Obviously,
LibeRTOS and RTAI performance is extremely close
under all tested load conditions.

RTAI LXRT LibeRTOS
No Load 18,92 usec 20,45 usec
ping -f 19,10 usec 21,14 usec
hackbench 33,10 usec 35,16 usec
hb + ping -f 34,56 usec 35,40 usec

TABLE 2: User Space Handler Latency

Table 2 show the maximum latency for the same
basic scenario as that of Table 1, except that the
handler run in response to the interrupt is in user
space, rather than in the kernel. Again in this case,
the performance of the RTAI and LibeRTOS plat-
forms is extremely close, although there is a consis-
tent advantage for RTAI of roughly 2 microseconds
that was not present in the results for the OS based
handler. It is clear from these results that few if any
applications would find RTAI an acceptable platform
but not consider LibeRTOS acceptable on the basis
of response latency for user space computations. It
is worth noting that in LibeRTOS development so

far we have emphasized clarity and simplicity rather
than performance optimization so some improvement
in LibeRTOS performance is plausible.

4 Conclusions and Future

Work

This paper has provided an overview of the cur-
rent version of LibeRTOS. The design of the system
has emphasized the creation of a stable, robust, and
highly configurable Linux platform for industrial au-
tomation and other real-time applications. The key
elements of the LibeRTOS system architecture are:
(1) high resolution time keeping, (2) extremely flex-
ible and fine grain performance data collection sup-
port, (3) highly configurable scheduling policies, and
(4) integration of OS computational components, in-
cluding interrupt handlers, into the system schedul-
ing model. This paper has provided an overview of
how the elements of the architecture, singly and in
combination, implement a single-OS platform appro-
priate for a wide range of industrial automation ap-
plications. The recent experimental results described
demonstrate that LibeRTOS performance, in terms
of execution latency, is essentially the same as that of
RTAI, a popular dual-OS RT system, for both kernel
based and user space computations.

While the current capabilities of LibeRTOS
make it suitable for a wide range of applications, a
number of developments are also planned for the fu-
ture. In the near future we will be experimenting
with time division multiplexing on local area Ether-
net which will strongly benefit from the fine grain
time keeping, clock calibration, clock synchroniza-
tion, and soft-IRQ computation component schedul-
ing under LibeRTOS. Another near-term effort will
consider how to extend the data stream support
for performance evaluation to collection and post-
processing of performance data from more than one
machine in a distributed real-time system. The re-
cent improvements in clock calibration and synchro-
nization will significantly simplify aspects of this
work.

In the middle term, we will be porting LibeRTOS
to Linux 2.6 and continue development of methods
for using group scheduling to create integrated con-
trol of all computational components (application,
middleware, and OS) in ACE/TAO based applica-
tions [5]. In the longer term there is also work
planned to provide an ACE interface to both Lib-
eRTOS kernel based group scheduling as well as a
portable middleware based implementation of group
scheduling. Other work will consider how an FPGA
based group scheduling implementation might be

6



used to help improve real-time system performance
and predictability as part of a more general HW/SW
co-design project [7].

References

[1] Jan Altenberg, 2004, Adaption of a CNC on

Real-Time Linux and the Comparison of Possible

Scheduling Strategies of Different Linux Deriva-

tives, Diplomarbeit (Thesis), Fachrichtung Infor-
mationstechnik, Berufsakademie Stuttgart.

[2] B. Srinivasan, S. Pather, R. Hill, F. Ansari and
D. Niehaus, 1998, A Firm Real-Time System

Implementation Using Commercial Off-The Shelf

Hardware and Free Software, Proceedings of
4th Real-Time Technology and Applica-
tions Symposium.

[3] FSM Labs, RTLinux, http://www.fsmlabs.com

[4] DIAPM RTAI, DIAPM RTAI —

Realtime Application Interface,
http://www.aero.polimi.it/˜rtai/

[5] M. Frisbie, D. Niehaus, V. Subramonian and
C. Gill, 2004, Group Scheduling in Systems

Software, Workshop on Parallel and Dis-
tributed Real-Time Systems.

[6] M. Frisbie, 2004, A Unified Scheduling Model for

Precise Computation Control, Master’s The-
sis, University of Kansas.

[7] D. Niehaus and D. Andrews, 2003, Using the

Multi-Threaded Computation Model as a Uni-

fying Framework for Hardware-Software Co-

Design and Implementation, Proceedings of
Ninth IEEE International Workshop on
Object-oriented Real-time Dependable
Systems (WORDS), Capri, Italy, October
2003.

7


