
The Role of Embedded Linux in a

Microwave Point-to-Point Radio Application

Wee Kiam Peng

Microwave Networks Department

Nera Telecommunications Ltd.

109 Defu Lane 10 Singapore 539225

kiampeng.wee@neratel.com.sg

Abstract

Embedding Linux in a carrier-grade application, like a Microwave Point-to-Point Radio Link, has many

interesting concerns. These concerns range from technical issues, cost calculation issues to even political or

licensing issues. However, when compared to an existing proprietry-only product which binds a company

to long development cycles, it has many relatively obvious advantages. This report aims to address the

concerns that have been raised in the process of embedding Linux in a microwave Point-to-Point radio

application.

1 Introduction

Currently, point-to-point fixed microwave radios
have been used in the telecommunications sector for
transmission of data over areas impractical for laying
cable. The cost of these radios are dropping [1] as
market demand drives it. To be able to compete in
the market where the time-to-market is being short-
ened, cost reduction methods are required to drive
the cost down. As proprietry software has always
been used for these type of radios, the cost/time
of maintaining the changes and upgrades has been
huge. One way to reduce product development costs
is to employ open source software alternatives which
is robust enough and easily customisable for the pro-
prietry hardware.

Variants of Linux have been used in consumer
routing equipment such as wireless lan routers [2]
as well as wireless firewall devices for corporate use
[3]. In anticipation of Linus Torvalds’es involvement
with OSDL, Carrier-Grade Linux will soon become a
reality when OSDL’s Carrier-grade Linux group pro-
vides a standardised linux specification for carrier-
grade applications [4]. This is currently in progress.
These reasons combined will mean that using Linux
for a carrier-grade product will be possible and will
aid in reducing a product’s time-to-market and per
unit cost.

However, concerns do affect the route embedded

Linux [5] take to these products. Traditional product
development approaches tend to be biased against
open-source methodology as opening up of software
meant reducing the value of intellectual property.
Previous investment in proprietry software compo-
nents has to be justified and these usually lead to
reusing software components that has been previ-
ously developed in-house.

This work-in-progress report describes a generic
microwave point-to-point radio architecture and in-
vestigates how deviations to the normal process of
software development for this architecture can oc-
cur. It also brings on the technical issues, cost issues
and licensing issues to the table for further thought.

2 System Description

A microwave point-to-point radio link consists of
two mirrored and similar nodes that are ’connected’
through a radio channel (Air Interface). Figure 1
shows the basic functional units that constitutes the
radio link. They are made of two symmetrical nodes.

The main difference between these two nodes is
that the transmit frequencies of one node will be of
the same value as the receive frequencies of the other,
and vice versa. The MU (Modem Unit) and the
RFU (Radio Frequency Unit) are self-contained
within the radio link and the only external interfaces
to the public are at the IFU. (Interface Unit).

1



RFU

modem_proc

interfaces

rfu_proc
Antennae

ModemIFU

RFU

modem_proc

interfaces

rfu_proc
Antennae

ModemIFU

diplexor/waveguide

diplexor/waveguide

Air Interface
Indoor Unit (Site A)

Indoor Unit (Site B)

Outdoor Unit

Outdoor Unit

data path

data path

ctrl path

ctrl path

up/down +

up/down +
transceiver

transceivermodem
muldem

modem
muldem

ctrl_proc

ctrl_proc

FIGURE 1: A Simplified Microwave Radio
Link

In the traditional approach, where the classic su-
perheterodyne receivers are used, the modem func-
tions are usually located at the In-Door Unit while
recently, there are approaches that bring the entire
modem unit to the Out-Door Unit, in conjunction
with advances in direct quadrature modulation tech-
niques. [6]

For both approaches, the main controller soft-
ware lies in the control unit which schedules most of
the tasks that rank secondary in importance to the
control of customer data channels.

The Interface Unit interfaces with the external
environment and provides the radio link with a dat-
apath input and output as well as control and mon-
itoring signalling.

• Power Supply

• Service/Auxiliary Channels

• Telecommunication Standard Data Lines

• Network Management Ports

• Local Control Ports

Customer channel data, service/auxiliary chan-
nels are multiplexed, framed, coded, modulated,
mixed and transmitted over the radio channel (air
interface) while the receive chain reverses the pro-
cess. This transmission/receiving chain represents
the core data path of the radio link and has a fixed
payload. Within this core data path that is sent
over the air interface, customer channel data, auxil-
iary data as well as control information are embedded
within this fixed payload.

While this is an oversimplification of the trans-
mission/receive chain, it is adequate to illustrate the
various conversions of digital data format that take
place.

3 Hardware Architecture

The generic hardware architecture of the radio node
consists of up to three individual processing ele-
ments (ctrl proc, modem proc (optional), rfu proc)
depending on the complexity of the radio as dis-
cussed previously. It may be possible to combine
the modem controller functions with the secondary
controller or the main controller to simplify designs.
At each stage of the datapath, the processing ele-
ments provide specific functions such as being main
controller (ctrl proc) for the radio node as well as
secondary controller (rfu proc) for the outdoor radio
unit.

An FPGA or a customised ASIC is normally used
for providing data multiplexing, framing, modula-
tion and error correction functions for the radio node.
The main controller will therefore be used to control
and configure the various states of the reconfigurable
hardware (FPGA) or the customised ASIC.

Essentially, a microwave radio unit is a hard-
ware product where the complexities lie mostly in
the hardware domain. The embedded software will
therefore be more of a tool to support the various
states and functions that the hardware can provide.

4 Software Architecture

With the hardware architecture in mind, we will be
able to understand how an embedded operating sys-
tem can fulfil the role of a main controller by inter-
facing with the software components that sits above
it. Before that, we will have to define the Radio
Functions that are essential for the radio to oper-
ate properly. These functions are derived from the
product specifications of the radio product.

4.1 Definition of Radio Functions

The chosen embedded operating system has to man-
age the system by providing functionalities that are
related to the radio node as well as considering the
implications and scenarios when a radio link is set
up.

1. Radio node/link config. and reporting
Allows raw configuration and reporting of radio
node/link. (frequency, power, alarm, modula-
tion, datapath settings)

2. Traffic controller Provides digital cross-
connect setups or add/drop capabilities. se-
lection of different customer channel data in-
terfaces.

2



3. Real-time OS capabilities Decides on tasks
that are critical and requires micro-
management of real-time response and han-
dling.

4. Routing of network management traffic
Allows remote monitoring/control of node sta-
tus/configuration which includes performance
measurement details (ITU-T G.821, G.826
etc.) and configuration information.

5. Configuration management Tracks software
and hardware production data as well as their
revisions for compatibility checks as well as
mechanism for software functionality upgrades.

6. Diagnostic and loopback tests Determines
the up/down status of the hardware modules
within the node. determines the up/down sta-
tus of the datapath through the radio node
and throughout the radio link.

7. Auxiliary channel/interfaces usage
Provides control and configuration capabilities
for auxiliary channels such as service channels,
alarm relays etc.

4.2 Components Mapped to Radio

Functions

With the abovementioned functions in mind, the
software components are therefore arranged in the
manner below (Fig. 2).

As we can see from the figure, embedded Linux
has been used as the central management system
(kernel) and it interfaces closely with the target mi-
croprocessor (ctrl proc). On and above the ker-
nel level are the functional components that are

classified to three main component groups. They
are the Interface Components, Network Management
Components and the Control Software Components.
These components are made up of proprietry (in red)
and open-source modified (in blue) codes. The map-
ping of the functional components to the radio node
functionalities listed previously are as follows

1. ctrl sw, perf mgt, bootloader, modcom, cit,
boa

2. ctrl sw

3. kernel

4. zebra, net-snmp, boa, perf mgt

5. misc sw, boa, cit

6. ctrl sw

7. pppd, voip, ctrl sw, ifcom

This is a simplified mapping that is carried out
in the design requirements stage of the development
cycle. ctrl sw is a user-mode application which pro-
vides most of the background control of various sub-
systems in the radio node. It will require real-time-
ready interfaces with the other components such as
the modcom (modem communication), ifcom (inter-
face communication) as well as the network manage-
ment components.

Zebra, net-snmp and boa are well-tested open
source applications that provide dynamic routing,
network status reporting as well as web interface
functionalities respectively. They require minimal
changes to fit to the system.

uP
CORE

user mode

PCIEXPBUS SDRAM
CTRL

HSS 0

USB UART 0 UART 1

GPIOS

kernel mode

Ethernet Ethernet

uP peripherals/hw

Interface Components

boa net−snmp

zebrapppdvoip cit

modcom ifcom

net

eth0

ppp_async

ser_uart
usbdevice

voip_dsp

hci_api

jffs2 ramfs

mtd kernel

bootloader

eth1

perf_mgt

ctrl_sw

misc_app

CTRL SW ComponentsNetwork Management Components

FIGURE 2: Software Architecture

3



4.3 Availability of Components

From the previous diagram (Figure 2), we can es-
timate that almost fifty percent (or even more) of
the software components is already available. With
slight modifications, they will be able to be cus-
tomised to requirements. This implies that for a
product development cycle, previous development
time can be utilised for focusing on critical compo-
nents such as modcom, ifcom as well as the ctrl sw or
that the software development time can be reduced.
The following table also illustrates the complexities
of the software versus the availability before the start
of the software development cycle.

Table 1 Availability/Complexity of Components

Component availability Complexity

kernel yes highest
zebra yes high
ctrl sw no high
net-snmp yes high
boa yes normal
perf mgt no normal
pppd yes normal
cit no normal

TABLE 1: Availability/Complexity of
Components

4.4 Other Issues

From a technical and product development point of
view, it seems like the usage of embedded Linux will
be an advantage over totally proprietry software sys-
tems for this application.

However, there are other issues to be aware
of. One of the pressing questions that management
boards ask is whether there will be legal issues in-
volved in using embedded Linux. As this is still an
evolving matter with Linux having acquired strong
legal ground, we see that the future is bright.

The second issue that might be worth addressing
is due to a strong proprietry-only development envi-
ronment. It will be difficult for these sort of users to
justify a switch to embedded Linux as costs have al-

ready been incurred in running development licences
and development work that was already done.

5 Conclusion

This short report addresses the concerns that has
come about when using embedded Linux in a mi-
crowave point-to-point radio application. It de-
scribes the hardware-centric nature of these types
of products. At the same time, it tries to illustrate
how a pre-development evaluation is being carried
out by grouping the software components according
to availability and complexity and then eventually
map them to the radio node’s subsystems acording
to defined radio functions that are extracted from
product design specifications.

Through the exercise where radio functions are
defined for software components, it has shown that it
might be possible to cut development costs and also
reduce product development time when compared
to a development cycle that favours proprietry-only
concepts. However, this is on assumption that the
proprietry-only project requires major coding.

The role of embedded Linux for a microwave
point-to-point radio application is to aim to provide
a low setup cost, consistent, licence-free, extensible
and robust environment to satisfy the defined radio
functional requirements.

References

[1] Q4 2003, Microwave Forecast Report, Skylight
Research.

[2] http://www.seattlewireless.net/
index.cgi/LinksysWrt54g

[3] http://www.cyberguard.com/
snapgear/products.html

[4] http://www.osdl.org/

[5] G. Ungerer, uClinux, Micro-Controller Linux

[6] A. Abidi, Dec. 1995, Direct-conversion radio
tranceivers for digital communications, IEEE J.
Solid-State Circuits, vol 30, pp. 1399-1410, ISBN.

[7] D.P. Bovet,M. Cesati, 2003, Understanding the
Linux Kernel, O’reilly.

4


