
An UML based design tool for Fault-Tolerant Real-Time Linux

Agnes Lanusse, Patrick Vanuxeem, Yann Tanguy And Sebastien Gerard
CEA - SACLAY

LIST/DTSI/SOL/L-LSP
91191 GIF-YVETTE CEDEX

FRANCE
{agnes.lanusse, patrick.vanuxeem}@cea.fr
{yann.tanguy, sebastien.gerard}@cea.fr

Abstract

Real-time embedded systems used to be hand tailored to fit requirements and constraints of appli-

cations. But the increasing complexity of applications and the rapid evolution of hardware make these

practices unbearable to face nowadays industrial reality with very fast evolution of requirements. The

development process of real-time embedded applications must be supported by specific tools to facilitate

their reuse, evolution and maintainability. Initiatives based on UML-RT provide such tools to model

applications and automatically generate code. In this paper we present one such approach providing a

simple domain model for the design of Fault-Tolerant Real-Time applications. A first implementation has

been achieved with the OCERA-Fault-Tolerant framework developed within the OCERA IST project as

target. This framework is a specialized framework based on RTLinux.

1 Introduction

The growing demand for embedded systems in the
industry has drastically changed the conditions of
development of real-time embedded systems. The
introduction of electronic and software in very com-
petitive domains such as automotive industry or mo-
bile devices among others, with pushing demand for
new services at ever reduced costs and shorter time
to market has two main consequences. On one hand,
there is an emerging need for off-the-shelf small, ef-
ficient, reliable realtime operating systems, and, on
the other hand, for new development processes that
facilitate scalability, evolutivity and maintainability
of embedded systems. Moreover, the challenges faced
by industry put more and more stress on high level
system correctness and ask for verification tools fully
integrated in the development process.

The first point is a good opportunity for the real-
time Linux community which has been very active in
recent years providing new dedicated kernels such as
RTLinux [20], OCERA [23], RTAI [22], L4 [21] and
others as well as in providing new facilities in Linux
mainstream such as Linux-HA[24]. Current users of
such systems,

specialists programmers have been successful in

developing applications that have demonstrated the
level of maturity and efficiency of these kernels.

But these are generally hand tailored applica-
tions that require skilled programmers working di-
rectly at language level whereas industry is demand-
ing for high level software design environments that
would support large scale development and rapid
adaptation to various target environments (hardware
+ programming language + OS).

Model-driven engineering, an active trend in
software engineering, has led recently to the emer-
gence of new tools supporting model-level design and
automatic or semi-automatic code generation. We
believe that the linux kernel community can take
benefit from these results to get a chance to pro-
mote the use of real-time kernels by a wider range of
developers.

Moreover, with a close cooperation between the
two communities, in particular with the UML real-
time community, it will be possible to set up efficient
and safe patterns of implementation for real-time em-
bedded applications, hence leading to active support
for better practices in the domain.

In this paper we present a small example of
model-based code generation that permits to imple-
ment simple fault-tolerant applications in OCERA

1



RTLinux starting from UML modeling. The pro-
totype described here produces RTLinux C code
and uses specialized middleware insuring transpar-
ent fault-tolerance handling. The goal of this exper-
imentation is to show the feasibility of the approach
and to put the basis of a methodology for a wider
and richer code generation process.

In the next section we introduce the context of
the experimentation, the framework used in OCERA
to support fault-tolerant applications development.
Then, in section 3, we describe the methodological
approach chosen and the tools developed to support
it. In section 4, we illustrate the process of code gen-
eration on a simple example. Finally we show how
the methodology can be extended.

2 Experimentation context

In order to test and demonstrate our approach we
needed a small but complete target real-time plat-
form; we choosed the Framework for Degraded Mode
Management developed OCERA (Open Components
for Embedded Real-time Applications). The goal of
this IST project was to provide improved support to
real-time embedded applications based on Linux ker-
nel.The OCERA architecture is based on Linux ker-
nel and RTLinux executive which provides support
for real-time applications that require very demand-
ing response time. The added facilities offered cover
four categories: Scheduling (EDF, CBS, Applica-
tion Defined Scheduler), QoS(Resource Reservation
Scheduling, Feedback Scheduling), Fault-Tolerance
(Degraded Mode Management, Redundancy Man-
agement) and Communication (ORTE real-time Eth-
ernet, RTCAN). In addition, an extensive work
has been done in order to improve POSIX compli-
ance. Thus many Posix basic facilities have been
added to RTLinux (POSIX Timers, POSIX Barri-
ers, PosixMessageQueues, POSIX Tracing...). Sup-
port for other languages then C such as Ada and
Java have also been provided.

The different components developed cover a large
range of real-time needs and can be applied to differ-
ent Linux/RTLinux levels. The degraded mode man-
agement framework relies on specific middle-ware
components named hereafter FT components (ftapp-
mon and ftcontroller) that run within the OCERA
RT kernel.

FIGURE 1: FT components in OCERA
kernel
Its goal is to help real-time developers to design

and implement dynamically reconfigurable applica-
tions. It is restricted for the moment to the im-
plementation of graceful degradation management of
applications but could be easily extended to more
general multi-mode management.

This framework constitutes a perfect testcase:
first of all, it is a typical example of a domain where
separation of concerns during design is essential; sec-
ondly, it relies on a well defined simple task model,
yet it provides abstractions that are far enough from
direct OS coding to make model-driven approaches
interesting; finally, it runs on the OCERA real-time
Linux kernel, so it is a good example of target specific
coding requirements.

2.1 The OCERA Degraded Mode
Management Framework

OCERA FT components are providing user support
for the implementation of embedded real-time fault-
tolerant applications. Among all the numerous issues
related to fault-tolerance, a selection has been made
of general basic mechanisms that we believe can be
the most useful for the development of small real-
time embedded systems.

In this paper we focus on the facility offered by
the Degraded Mode Management Framework. It has
been designed to offer transparent management of
dynamic reconfiguration of applications on detection
of faulty situations (software or temporal, i.e. dead-
line miss, errors). Continuity of service is maintained
in case of partial failure through graceful degrada-
tion management. This facility covers not only pri-
mary/backup recovery, but also global application
mode management[6], [7].

2



The Degraded Mode Management Framework is
an integrated set of tools and components offering :

• Off-line application design support;

• Code generation;

• FT-API;

• Run-time components (ftappmon and ftcon-
troller).

2.1.1 Design/build tool

The ftbuilder permits the specification of application
entities, real-time constraints, different possible ap-
plication modes along with related transition con-
ditions. From this specification, code generation is
achieved in order to instantiate internal control data-
bases of run-time components (ftappmon and ftcon-
troller) and to provide application model files.

2.1.2 Asumptions and Tasks Model

Model characteristics will be detailed in the next sec-
tion but here are the main points:

• Periodic tasks

• Synchronized communication model through
shared data. (One writer/several possible read-
ers. A reader task reads values emitted during
previous period of writer task).

• Two possible behaviors (normal and degraded)
for each task are defined by the developer.
These behaviors are implemented in two alter-
native threads that are activated or suspended
depending on application mode.

2.1.3 FT-API

A specific but reduced API has been defined
for manipulating so called ft tasks. It provides
three main functions: ft task init(), ft task create,
ft task end(). These ft tasks are actually encap-
sulation of periodic RTLinux tasks. Other func-
tions are used to init internal data-bases. Besides
these specific functions, application developers can
use RTLinux programming features.

2.1.4 Run-time components

The architecture proposed for the Degraded Mode
Management Framework in OCERA consists of two
complementary components: ftappmon and ftcon-
troller that insure transparent handling of fault-
detection, recovery mechanisms and mode manage-
ment. They provide respectively global monitoring
of application and local control of execution.

FIGURE 2: OCERA FT architecture

• ftappmon

The ftappmon component is devoted to global
application handling. It is in charge of overall
application setup and of reconfiguration deci-
sions. It contains information on different pos-
sible application modes and on transition con-
ditions. When an error is detected and notified
by the ftcontroller, the ftmonitor analyzes the
event and issues reconfiguration orders (stop,
awake, switch ft task behavior) towards the ft-
controller.

• ftcontroller

The ftcontroller is in charge of the direct con-
trol of application threads. It provides: error
detection (kill or timing error), notification to-
wards ftappmon and executes reconfiguration
orders (issued by ftappmon) at task level.

These two components are linked together in a
module ftappmonctrl that is loaded into the RTLinux
kernel space.

2.2 FT Model

The framework currently available relies on a simpli-
fied model of applications. According to this model
only applications with periodic tasks are handled (at
the moment). Though these are indeed quite restric-
tive hypotheses, they represent a large range of ef-
fective current real-time embedded applications.

2.2.1 Application modes

The application is defined as having possibly several
modes of execution. These are predefined at design
and specify the possible degraded modes of function-
ing. This choice is similar to OSEK/VDX.

An application mode defines a specific configu-
ration of active tasks. That is, the specification of
the tasks that must be active when the mode is se-
lected along with the relevant behavior for each one.
This results in a list of pairs (task,behavior). More

3



precisely, a concept of ft task, which provides an ab-
straction layer above the tasks or threads entities ma-
nipulated by operating systems has been introduced.
It will be described in details in the next section.

The init mode is the mode in which the appli-
cation will be started (initial configuration). Transi-
tions between modes are triggered by the detection
of specific events. In the current implementation, the
possible triggering events are: Kill and deadline miss
events. It is planned that, in the future, User events
can also be triggering conditions for mode change.

Transition conditions and target mode activation
are explicitely specified statically during design. All
this declarative information is gathered into an ap-
plication model that is loaded at the beginning of the
application into the run-time components. Dynamic
reconfiguration can then be handled automatically
according to these specifications when a faulty event
occurs during execution. It is important to notice
that the application behavioral control is totally sep-
arated from tasks coding which means that changes
in requirements from the behavioral point of view
does not impact application code.

2.2.2 FT Tasks

As said earlier, an application consists of a set of pe-
riodic tasks: the ft tasks. These ft tasks are abstract
entities that encapsulate real threads implementa-
tion.

ft task scheduling parameters
Real-time attributes are assigned to each ft task

such as period, ready-time, expected duration
(WCET), deadline and the scheduling policy to be
applied (EDF or Priority policies are possible).

ft task behavior
From the designer point of view, a ft task may

have several possible behaviors. In the current im-
plementation, two behavior definitions are expected :
a NORMAL behavior and a DEGRADED behavior.

From the implementation point of view, a behav-
ior relates to a routine that will be executed when
the ft task will adopt this behavior. So the designer
has to define two behavior routines for each ft task.

The implementation model of a ft task consists in
creating two threads, one for each possible behavior.
On application initialization, two threads are created
and suspended for each ft task ; then the behavior
corresponding to the behavior that is relevant for the
application mode selected is made running. When
an error occurs that implies mode change and conse-
quently behavior change for the ft task, the running
behavior thread is killed and the suspended thread
is made running (waiting for the next period of the
ft task).

ft task communication

Within the application, ft tasks do not communi-
cate directly between each other. They use a specific
synchronized model communication model based on
a shared data concept. They can thus be considered
as independant. Communication between ft tasks
are restricted to data exchange on a cyclic basis with
an observability horizon of one period. Data pro-
duced by a ft task are updated at each end of the
execution cycle and made readable for client ft tasks
at each start of new cycle. There is only one writer,
the data owner. Client ft tasks read the data elab-
orated during the previous period. If a fault occurs
during one cycle, a default value based on data elab-
orated during previous cycle can be provided.

No other synchronization is defined between
ft tasks.

2.2.3 Error events

Application modes transition are triggered by the de-
tection of an abnormal event (software or temporal
error). The current handled events are the follow-
ing: KILL event resulting from the detection of a
thread abortion by the kernel due to a software er-
ror; DEADLINE MISS event resulting from the de-
tection of a deadline miss. This event is currently
issued by the OCERA EDF scheduler (deadline is
detected by the scheduler).

2.2.4 Application mode transition

On detection of one of the above abnormal events,
the application mode can be automatically shifted
to an other mode. This transition is defined at de-
sign time by the application developer. An applica-
tion mode transition is defined by a triggering event,
the ft task on which the event occurs, the source ap-
plication mode, the target application mode. When
fired an application mode transition has the follow-
ing effect : the termination of ft tasks that are speci-
fied TERMINATED in the target application mode;
the change of behaviors of all the ft tasks that are
present in the target application mode with a dif-
ferent behavior; The start of ft tasks that were cre-
ated but NOT STARTED in the current application
mode and that must be active in the target appli-
cation mode. Application consistency during mode
change is preserved thanks to the periodic function-
ning of the application and to the synchronized com-
munication model. Of course, the definition of the
different application modes and transition conditions
must be carefully designed in order to get a consis-
tent application model.

4



2.3 FT development process

The development process proposed to the application
developer follows three steps:

• Application design is achieved interactively us-
ing the OCERA ftbuilder tool. The user
describes tasks, behaviors, modes and mode
transitions. From these descriptions two
files are generated : ft appli model.c and
ft appli model.h.

• User Coding is done manually by the appli-
cation developer. It consists mainly in writing
the code of routines for the application threads
identified during previous step.

• The third step Compilation combines files is-
sued by the two previous steps and links it with
OCERA ft components.

FIGURE 3: Application development pro-
cess

The ftbuilder is a TCL/TK acquisition tool de-
signed to provide user support for the implemen-
tation of embedded real-time fault-tolerant applica-
tions. It is a major element in the Degraded Mode
Management Framework. It permits : the specifi-
cation of application real-time constraints, different
possible application modes along with related tran-
sition conditions and code generation facilities.

The ftbuilder permits the description of ft-
applications in terms of :

• ft tasks. Acquisition of ft tasks entities and
their associated features : real-time parameters

(period, ready-time, expected duration, dead-
line); and behaviors (normal and degraded).

• Application modes. An application mode is
a particular configuration of ft tasks, i.e. the
specification of the relevant behavior for each
ft task.

• Application mode transitions. An application
mode transition is described by a triggering
event (kill or deadline miss), the faulty ft task,
the source mode, the target mode.

From the specification, code generation is
achieved in order to provide application model files
that will be used to instantiate internal control data-
bases of run-time components (ftappmon and ftcon-
troller).

3 Towards UML based code
generation

The recent advances in software engineering are con-
verging towards a common idea, that systems should
be designed at a model level, independant from im-
plementation languages and that code can be gen-
erated afterwards in the most appropriate language
depending on the target platform. In this context,
the notion of target platform can be understood at
different levels of abstractions, one can for example,
address first an execution model, than a virtual ma-
chine and finally several target implementations of
the virtual machines or he can directly address a par-
ticular machine with a given Operating System.

This approach has many advantages, it permits
to :

• support separation of concerns which is a very
important design issue in particular for fault-
tolerance;

• support early validation from model analysis;

• support traceability of model evolutions;

• maintain several implementation streams from
a single model.

The interest of many software communities has
led to the definition of the OMG MOF and XMI stan-
dards and to new open tools that provide means for
describing systems, manipulate models, transform
them and produce code. Thanks to such tools it can
be possible to adapt models to particular applica-
tion domains and specialize the develoment process
for this domain.

The actors involved in this field are system engi-
neering that promote Architecture Design Languages

5



such as AADL for avionics systems or EAST-ADL
for the automotive industry, and UML community.

In this paper we adopt a very basic approach of
such methodology based on a subset of UML2.0 nota-
tions and on the tools provided by the Eclipse work-
bench. This first experience will be completed in the
future in order to go further and take full advantage
of the new facilities offered by UML2.0 [10] and its
profiles related to real-time: UML Profile for Schedu-
lability, Performance, and Time [12]; UML Profile
for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms [11].

3.1 Method and tools adopted

Our goal is to transpose within the MDA paradigm,
the development process defined for the design and
implementation of real-time fault-tolerant applica-
tions in OCERA-FT.

Actually, the idea was to replace the ftbuilder in
a first place, and enrich it so that we could produce
more complete code and/or achieve more sophisti-
cated verification at design stage. The choice of this
test case was dictated by the fact that the underlying
task model was a simple one, and thus the code gen-
eration component could be rapidly written. This
has been verified, and we have been able to build a
first demonstrator in quite a short time which pro-
vides already more than the previous ftbuilder did.

We present hereafter, the methodology adopted
and the tools used.

Three main steps have been followed :

• domain modeling, i.e. provide an UML2.0
representation of the OCERA-FT Model de-
scribed in the previous section;

• realization of a specialized editor for the mod-
eling of OCERA-FT applications starting from
this UML FTModel;

• development of a code generator which browses
a user application model and produces corre-
sponding application code conform to the spec-
ified FT code structure.

Normally in a full MDA approach, the last step
would require the definition of a model for the tar-
get platform along with the definition of implemen-
tation patterns. For this first experimentation, code
generation has been directly written for the specific
OCERA target.

3.1.1 UML Modeling

The goal of this stage has been to define a do-
main meta-model corresponding to the FT concep-
tual model described above. A basic UML model

consists generally in at least three types of diagrams
describing complementary aspects of the design: the
structural model, the interaction model and the be-
havior model.

FIGURE 4: Basic UML Model

The first one describes the main entities of the
application; the second one defines a model of inter-
action between entities; and the third one describes
behaviors expected from entities. Depending on the
stage of the development process, other diagrams
may be necessary; use case diagrams for instance
are very useful in the preliminary analysis notably
to capture requirements.

Modeling can be done with any Case Tool sup-
porting UML, while the definition and management
of specialized profiles would have needed more ad-
vanced tools such as (Objecteering[17], Poseidon[18],
RSA[19],...) which provide meta-modeling facilities
and good coverage of UML2.0. These are very pow-
erful modeling tools and provide good support for
documentation and standard code generation.

However, since we needed to define specialized
code generation patterns we looked for a more open
environment. We chose thus to rely on the Eclipse
environment for its openness, and its powerful EMF
and JET facilities. The Eclipse Modeling Framework
(EMF) in particular, offers a set of tools that support
models design and manipulation, validation process
and code generation when associated with the JET
facilities (see Eclipse Framework book + site [16]).

Moreover, this environment which is becoming
very popular, provides a lot of valuable plugins as
well as facilities to develop our own ones.

So, we have used the EclipseUML (Omondo) free
plugin which provides graphic facilities to enter mod-
els and have made an intensive use of EMF and JET
facilities of Eclipse framework for the next two steps.
We could have used also the UML2 plugin which is
also available from the Eclipse UML2 project and is
very complete but doesn’t offer a graphical interface
for diagrams.

EMF itself has its own core metameta-model
named Ecore which is a subset of the OMG MOF
(Meta Object Facility) API. All model manipulation
tools rely on Ecore, thus UML models are converted
to Ecore.

6



It is important to know that EMF uses XMI
(XML Metadata Interchange) as its canonical form
of a model definition and offers importation facilities
that permit to create an Ecore model from an XMI
document, an XMI document produced by a mod-
eling Tool (Rational Rose for instance), annotated
Java, or XML Schema. So it is possible to use other
modeling tools provided they offer compatible XMI
representation.

The result of the UML modeling is shown in the
following figure.

FIGURE 5: FTModel described in UML

We recognize, the entities of the OCERA FT
Model: an FT application is composed of FT tasks,
FT Resources,FT Modes and FT Mode Transitions.
FT tasks have FT SchedParameters and are associ-
ated to FT Resources.

Though this UML model is restricted to a class
diagram; as it is, it represents perfectly the current
FTModel.

Though limited, it is sufficient for our purpose
in this first experiment. There were several reasons
for this choice: first, this mapping is close to what
was done with the ftbuilder which can be useful for a
first comparison; second, the specificity of the model
make interaction between ft tasks limited to read
operations, synchronization issues are not handled
directly by the user but by the underlying implemen-
tation model of the FT entities ; third, the control
data is embodied in the specification of transition
conditions described in the structrural view.

Of course behaviors and mode transitions could
have been represented with State Machines which
is the classic UML mean to represent behaviors, but
we decided to postpone such representation to a next
version.

The resulting model corresponds to the expected
conceptual model of the OCERA FT model for
degraded mode management. Starting from this,
we should normally build a specialized UML pro-
file, that is an extension of standard UML2.0 meta-
model, where added stereotypes on some well cho-
sen model elements can provide a specialized view
of UML for describing the features of our concep-
tual model. We can find a nice example of such ap-
proach for the tentative definition of an UML profile
for OSEK from Artisan company.

In this experience though, we stick to the domain
meta-model as it is, since it does not change the na-
ture of the work to do in the next two steps, and it
is sufficient for this experimentation.

3.1.2 FT Model Editor

The FTModel editor has been implemented quite
easily thanks to the Eclipse EMF framework. This
tool encompass generic predefined plugins that are
able to produce java code for a specialized Editor
starting from an Ecore model.

So to get an OCERA-FTModel editor, all we had
to do was to specify the corresponding UML model,
build an EMF project and import the model. Then
EMF converts it to Ecore and provides a facility that
produces a .genmodel file which is used to produce
automatically a Java specialized editor correspond-
ing to the model. It also offers facilities to specify
rules that permit to extend generic model validation
procedures. This specialized editor is actually, a plu-
gin, the FTModel editor, that once installed within
Eclipse provides a specific menu whose actions per-
mit to : add, remove model entities, and validate
model.

3.1.3 FT Code generator

The code generator uses the JET technology offered
by the Eclipse Framework. It consists of a generic
code generation engine that produces java code im-
plementing code templates from user defined Jet
Templates.

A simple syntax permits to specify text scripts
corresponding to expected code production. JET
produces then an equivalent Java template with a
generate method.

The idea is then to browse a model and produce
proper code corresponding to model entities by call-
ing the various generate methods.

In our case, we had to produce four files: the
application source and header files, plus two other
files, namely ft appli model.h and ft appli model.c,
which are the files describing global application FT
control and are used to instanciate the internal data

7



bases of the runtime components (ftappmon and ft-
controller).

The application source code has to verify the
standard RTLinux structure, i.e. contain an init-
module, a cleanup module and routines to be run
within RTLinux threads. So we had to define an im-
plementation pattern that follows this structure and
provides a compliant application skeleton. More-
over, since threads manipulation operations in our
case are encapsulated within the primitives defined
in the FT API; at code generation, these primitives
are used instead of direct RTLinux primitives.

To summarize we have developed two Plugins in-
tegrated into the Eclipse workbench : the FTModel
editor and the FT2OCERA code generator.

FIGURE 6: Eclipse workbench and added
Plugins

Let’s see now how we can use them for develop-
ing a simple application.

4 Building a simple application

We have chosen to test the development process with
a very simple example which is a simulation of a real
robotic application. This application has two peri-
odic tasks : a servo task which is a standard servo
controller and a proto in task which is used to receive
feedback from the environment.

The development process consists in the follow-
ing steps:

• specify the application model using the FT-
Model editor plugin;

• validate the model;

• generate corresponding code skeleton;

• complete manually operation code;

• compile and link with OCERA-FT.

The FTModel Editor offers an interface permit-
ting to specify the model elements of the FT applica-
tion and to save it under the form of an Ecore model.
(It is possible to define a more convenient user inter-
face using Eclipse GEF plugin, but this is not done
yet in our example).

The designer defines the tasks, their scheduling
parameters and data ressources. Then he defines
the modes definitions and the mode transition con-
ditions.

FIGURE 7: Defining application Model
with FTModel editor

Once the model is entered, it is possible to check
it’s validity according to certain criteria. For the
moment only structural properties of the model are
checked, but the framework offers the possibility of
adding rules to extend this verification process.

In the future it will be also possible to
link the model with other tools such as UML
MAST to perform schedulability analysis. Indeed
FT sched parameters as defined are already compat-
ible with the specification of SAction in the SPT pro-
file defined by the OMG for schedulability analysis.

8



FIGURE 8: SPT profile for schedulability
analysis

When, the model is stable and valid, the code
can be generated.

Just activate the generate action in the Eclipse
bar menu and the FT2OCERA code generator pro-
duces the files corresponding to the application.

FIGURE 9: Code Generated by
FT2OCERA Plugin

The code generated can be compiled and linked
against OCERA FT-API. We obtain an application
module that can be loaded in the kernel. The code
produced is executable without any other manipula-
tion. Of course, if we want the application to per-
form something interesting, the developer has to add
its code within routines since this step is not auto-
mated. But, the overall control structure that imple-
ments the application global behavior is fully gener-
ated and can thus be changed quite easily using the
model editor.

5 Going further

The process described in the previous section pro-
duces almost all the application code along with
connection with underlying middleware components
that insure transparent fault-tolerance facilities.

At this stage, this environment is very powerfull
since any change at high level design can immedi-
ately be propagated and the code regenerated.

However, there is still a step that cannot be han-
dled automatically, i. e. the actual code of opera-
tions has to be entered manually.

This is a hole in the global objective of having a
model independant from the implementation. More-
over, this implies that the model itself is not com-
plete, and that possibilities of verification or valida-
tion are limited[1]. Worse, user programming of rou-
tines might compromise the soundness of the model.

One solution to this problem is to provide an ac-
tion language, that can be used to describe operation
code at the modeling stage. Such approach has al-
ready been used in the past notably with SDL for
the modeling of asynchronous communicating sys-
tems. Tools such as Tau from Telelogic could gener-
ate equivalent C code for target implementation.

Similar initiatives have been taken recently
within the UML community with the definition of an
action language which provides means for describing
operations using predefined action types. A graphi-
cal syntax has been defined which can be used within
Activity diagrams.

We present in the next section an example of
this approach through the ACCORD/UML experi-
ence developed in our laboratory.

5.1 The ACCORD/UML process ex-
ample

The ACCORD/UML methodology has been pro-
posed several years ago by the CEA for the prototyp-
ing of real-time embedded systems[5]. It covers a full
design process starting from preliminary analysis to
full implementation. It uses UML2.0 notation to de-
scribe the models manipulated all along the design
and development process. Particular entities have
been defined to handle signal management and con-
currency control. Thus, the notion of real-time ob-
ject is an abstraction that permit to implement ac-
tive objects able to handle real-time constraints on
requests and to react to signal events according to
specified potocols.

The design process is supported by specific meta-
modeling and code generation developed for several
Case Tools: Objecteering, Poseidon, RSA. It is com-
pleted by the ACCORD runtime platform on which
the application model is applied. It consists of a core

9



component that implements high level concepts such
as real-time objects and a virtual machine. This vir-
tual machine has been ported on Solaris, Linux and
VxWorks.

Applying the methodology for a specific domain
consists of three parts: applying specific design pat-
terns relating to real-time issues; full code generation
(structure + behavior) towards the Accord runtime
platform; the Accord platform itself implementing
high level concepts of the methodology.

FIGURE 10: ACCORD/UML Process

5.2 From models to code in AC-
CORD/UML

The OMG UML2.0 standard defines a specific pack-
age which provides syntax and semantics for the de-
scription of application Actions[9]. With this facility,
it is possible to specify an Action language that will
permit to produce an executable model. Actually,
the Action language gives an abstract form for de-
scribing code.

A subset of these actions are being used in the
ACCORD/UML modeling framework and have been
specialized so that each basic Action in the frame-
work comes with a graphic syntax and an equivalent
textual form.

The main basic actions handled are: Condition-
alAction, SwitchAction, SendSignalAction, Broad-
castSignalAction,CreateObjectAction; and are used
within Activity diagrams to describe the code of op-
erations.

A first implementation of this proposal is avail-
able within the ACCORD platform and permit to
produce C or C++ code[3],[4].

Moreover, code for different optimization pur-
poses can be generated from the same model. Cur-
rently, the user can manually make the choice of a
code generation pattern.

FIGURE 11: Example of Action Language
in Activity Diagram

The code generated from this diagrams in C++
gives the following.

void DestHandler::requestGPSCoordinates(

String country,

String city, String zip) {

Country = country;

City = city;

Zip = zip;

if(City == "" && Zip == "") {

aI_OutputUI->alertError();

DestinationError();

}

else

QTW->informationFromDestHandler(country,

city, zip);

}

From the same diagram it is possible to generate
a different target language code. Here is the corre-
sponding code generated for C.

void requestGSPCoordinates(DestHandler *self,

gstring country, gstring city, gstring zip) {

Country = country;

City = city;

Zip = zip;

if(City == "" && Zip == "") {

alertError(self->aI_OutputUI);

DestinationError(self);

}

else

informationFromDestHandler(self->QTW,

country, city, zip);

}

5.3 Perspectives

The ACCORD/UML project is a good example of
the MDA approach and we can gain a lot from it.
Several directions will be investigated:

10



• improvement of user oriented modeling.

The next step of our developments will to be
to extend our FTModel and redefine it so as
to be compliant with UML2.0 new facilities to
describe real-time concurrent systems and de-
fine a dedicated profile. For example, StateMa-
chines will be used to describe mode transi-
tions. This profile will encompass parts of re-
cent new profiles devoted to specific real-time
needs [2]: UML Profile for Schedulability, Per-
formance, and Time [12];UML Profile for Mod-
eling Quality of Service and Fault Tolerance
Characteristics and Mechanisms[11]. The ex-
pected results will be to offer : a full UML
Modeling and profile definition for OCERA-
FT; a subset of action language to describe op-
erations (and generate code from it).

• improvement of platform modeling.

In the current implementation, target plat-
form constraints are taken into account directly
at the templates level during code generation.
This has been done in this first implementation
in order to test the feasibility and demonstrate
the benefits of model-based approaches. How-
ever, the right way to achieve code generation is
to rely on formalized coding patterns and tar-
get platform. We have thus to work on three
main issues:

– Formalization of implementation patterns
(FT Tasks, FT SharedData,...)

– Formalization of FT components (model-
ing of ftappmon and ftcontroller)

– Formalization of RTLinux implementa-
tion pattern (modeling of code structure
and specific features)

The FT2OCERA code generator will be rewrit-
ten in order to take these models into account.
This will permit to envisage the following step
that would be to offer various target platforms
for an FT application and produce code for
RTAI or an other kernel.

6 Discussion

A part from some specific safety-critical domains
such as space, avionics, air-traffic control or nuclear
power plants, the design process of embedded sys-
tems was not very well supported by software tools
other than IDEs, cross-compiling and debugging fa-
cilities.

Model-based approaches bring support for higher
level design environment that can be very promis-
ing especially for preserving separation of concerns.
They are a way to improve maintainability and
portability of applications as well as a very good sup-
port for early validation process.

It is one of the reasons why this research domain
is very active in the comunities of system engineering
that promote Architecture Design Languages such as
AADL for avionics systems or EAST-ADL for the
automotive industry, and in the UML community.
Already several profiles for specialized domains such
as avionics or automotive industry have been defined,
and new proposals such as SysML [8], an extension
to UML to support Architecture design are arising.

An other major interest of the MDA is that it
can help produce good quality optimized code. For
instance, it is quite easy to produce C code conform-
ing to development guidelines such as for example
MISRA C for the automotive industry.

Moreover code generation can be adpated to
target platforms so that a same application can
be generated for different kernels, in different lan-
guages. This is made possible thanks to the separa-
tion between what is called Platform Independant
Model(PIM) and Platform Specific Model(PSM).
The idea is that given a PIM, one can build a PSM
using a Platform Model (PM) by successive transfor-
mation and/or merging and thus produce code for
the final target.

Though this may appear quite futurist to expert
real-time developers, it is precisely were we think
that the two research communities can gain the most
from each other. Real-time development expertise
from skilled programmers can be captured in the re-
alization of generic implementation patterns which
once tested and verified can be integrated in the de-
velopment tools. This way, handler programming for
instance could be made easier and safer.

In the same manner, with a small cooperation ef-
fort with kernel developers to help defining a special-
ized platform model, use of dedicated kernels could
be facilitated, and hence help promote their dissem-
ination.

The ACCORD/UML initiative is one of the
many projects devoted to provide generic tools per-
mitting the implementation of such development pro-
cess. At the moment full C code can be generated.

As said all along this paper, the experimenta-
tion done for the OCERA FTModel was just a first
experience to test the approach and have some first
feedback. This experience has been very positive,
and we are ready now to serve a more ambitious ob-
jective and work towards a full scale development
environment. The example and experience gained

11



from ACCORD/UML and from other work such as
the work done by the TRAME team make us confi-
dent in the feasibility of this project.

7 Conclusion

In this paper, we have described an experimentation
whose goal was to test the feasibility of model-based
approaches for the development of real-time embed-
ded systems. This experimentation has been done
on a specific target domain, that of fault-tolerance,
and more particularly degraded mode management.
We have provided a design environment that permits
to produce automatically from an UML model, ap-
plication skeleton for the OCERA FT target relying
on RTLinux kernel.

We are confident that this approcah can be gen-
eralized so that it can produce more complete code.

Moreover, a close cooperation with expert kern-
bel develpers could be very fruitful and permit to
provide smart code generation and set up safe scripts
templates for tricky coding parts such has handlers.

References

[1] H. Dubois, S. Gerard, C. Mraidha, 2005Un lan-
gage d’action pour le developpement UML de
systemes embarques temps rel., Proceeding
of IDM05 Paris June 30 - July 1st 2005.

[2] S. Gerard, H. Dubois, H. Espinoza, 2004, UML2
et ses profils pour le temps-reel, Proceedings
of ETR05.

[3] C. Mraidha, S. Gerard, and Y. Tanguy,H.
Dubois, and R. Schneckenburger, 2004, Action
Language Notation for ACCORD/UML.,CEA
Internal Report DTSI/SOL/LLSP/04-163/HD.

[4] C. Mraidha, S. Robert, S. Gerard, David Servat,
2004, MDA Platform for Complex Embedded
Systems Development., Proceedings of IFIP
Conference on Distributed and Paral-
lel Embedded Systems (DIPES) 2004.

[5] A. Lanusse, S. Gerard and F. Terrier, 1998,
Real-time Modeling with UML: the ACCORD
Approach., Proceeding of UML98: Beyond
the Notation..

[6] A. Lanusse, P.Vanuxeem, 2005, Towards provid-
ing fault-tolerance facilities in RTLinux : the
OCERA Degraded Mode Management frame-
work, Proceedings of RTS Embedded Sys-
tems Paris, France 2005

[7] D. Servat, S. Gerard,A. Lanusse,P. Vanux-
eem,F. Terrier. Author(s), 2003, Doing Real-
Time with a Simple Linux Kernel, Proceed-
ings of RTLWS’2003 Valencia Spain.

[8] M.C. Hause, F. Thom, 2005, Building Embedded
Systems with UML2.0/SysML, Proceedings
of RTS Embedded Systems Paris, France
2005

[9] OMG, 2001, UML Action Semantics,OMG.

[10] OMG, 2004, UML2.0 Superstructure Specifica-
tion,OMG.

[11] OMG, 2004, UML Profile for Modeling Quality
of Service and Fault Tolerance Characteristics
and Mechanisms,OMG, ptc/04-09-01.

[12] OMG, 2005, UML Profile for Schedulabil-
ity, Performance, and Time, v1.1, OMG,
formal/05-01-0.

[13] OMG, 2005, UML Profile for Modeling and
Analysis of Real-Time and Embedded systems
RFP,OMG, realtime/05-02-06.

[14] OMG, 2005, UML Profile for Modeling and
Analysis of Real-Time and Embedded systems
RFP,OMG, realtime/05-02-06.

[15] Eclipse,Eclipse Foundation, ,http://eclipse.org

[16] Eclipse Modeling Framework,
http://eclipse.org/emf/

[17] Softeam,Objecteering, ,
http://www.obecteering.com

[18] Poseidon, Gentleware,
,http://www.gentleware.com

[19] Rational Software Architect,IBM,
,http://www.ibm.com/software/awdtools/architect/swarchitect/

[20] RTLinux, FSMLabs, http://www.fsmlabs.com/

[21] L4, Dresden TU, , http://os.inf.tu-
dresden.de/L4/

[22] RTAI, RTAI, ,http://www.rtai.org

[23] OCERA, OCERA consortium and UP-
VLC,,http://www.ocera.org

[24] Linux-HA, Linux-HA
project,,http://www.linux-ha.org/

12


