
Implementation of Real-Time Virtual CPU Partition on Linux

Aloysius K. Mok, Xiang Feng

Computer Science Department, University of Texas-Austin

Austin, Texas-78713, U.S.A

{mok,xf}@cs.utexas.edu

Zhengting He

Elec. & Comp. Engr. Dept., University of Texas-Austin

Austin, Texas-78713, U.S.A

zhe@ece.utexas.edu

Abstract

A real-time virtual resource is an abstraction for resource sharing where the application task groups
sharing a resource must meet timing constraints in the absence of knowledge of all the timing requirements
of all the task groups, thus prohibiting a global schedulability analysis. RTVR addresses the issues of
application isolation in the open system environment, as well as satisfying the timeliness requirements of
all the task groups. Based on the theoretical framework in previous work [10], [11], [4], we present in this
paper the first implementation of a real-time virtual resource for the CPU. We shall describe two real-
time virtual resource (RTVR) prototypes that are based on the Linux 2.4.18.3 kernel. The first RTVR
implementation uses a static resource level scheduler which can be applied to systems with predefined ap-
plication task sets. The second implementation has a novel dynamic resource level scheduler under which
task groups (temporal partitions) can join and leave dynamically. We shall report some experimental
results on measuring system performance in various aspects such as the effect of the scheduling quantum
size, interrupt request response time and scheduling overhead. The experiments demonstrate that RTVR
can be efficiently implemented while satisfying its theoretical properties.

1 Introduction

The concept of a Real-Time Virtual Resource
(RTVR) was introduced in [10] for abstracting re-
source sharing where a physical resource such as a
CPU is time-shared by two or more applications.
Each application has a group of tasks that are sched-
uled by its own application-specific scheduler to meet
the application’s timeliness requirements. Applica-
tion task groups may be subject to a variety of tim-
ing constraints and so in general cannot be efficiently
scheduled by a centralized scheduling policy. On the
other hand, the application task groups may interfere
with one another in the absence of centralized con-
trol. RTVR provides the basis for an application pro-
grammer interface that facilitates distributed control
and is aimed at achieving the following properties:

• To ensure application isolation so that each ap-
plication task group may be programmed as
if it had dedicated access to a physical re-

source, i.e., without interference from other
task groups due to resource sharing. This prop-
erty is crucial for complex real-time systems
such as avionics control systems both for main-
taining timeliness properties of subsystems and
also for containing faults within each subsys-
tem in the event of subsystem failures.

• To investigate the problem in the open sys-
tem [3] environment where: (1) tasks may join
and leave task groups dynamically, and thus,
global knowledge of the task groups might not
be available a priori; (2) in case of hardware
failures, task groups may be relocated by coex-
isting with other task groups on the diminished
pool of shared physical resources.

• To be highly scalable so that RTVR may be
employed in large scale real-time systems with
a huge number of subsystems and applications,

1

CPU

System Virtual
Processor (VP 0)

Application Virtual
Processor (VP 1)

Application Virtual
Processor N (VP N)

System Partition Partition 1 Partition N

......

......

Resource Level
Scheduling (RLS)

IRQ
Handlers

Console
Process

System
Task

Application
Task

Application
Task

Application
Task

Task Level
Scheduling (TLS)

...

FIGURE 1: RTVR Structure Overview

and system integration and testing (debugging)
may be greatly expedited.

Towards these goals, a RTVR is defined by two
key parameters: (1) the Availability Factor (also
called the Rate) α of its corresponding physical re-
source which is reserved by the RTVR and (2) the
Delay Bound ∆ of of the RTVR. The delay ∆ is
a design parameter, a non-negative number that is
specified by the application programmer. A correctly
implemented RTVR will provide at least α×L units
of the resource’s time in any interval of length L+∆
for any value of L. An application task group is
scheduled on its own RTVR. RTVR time-shares the
physical resource with other RTVRs such that the
task group that is scheduled on this RTVR may be
programmed as if it had dedicated access to a physi-
cal resource. Tasks within the same application task
group are scheduled by a task level scheduler (TLS)
that is specialized to the real-time requirements of
the tasks in the group. Each application task group
is then assigned to run on one partition. Finally,
RTVRs on the same physical resource are scheduled
by a resource level scheduler (RLS).

In [10], we showed how schedulability analy-
sis can be performed for the earliest-deadline-first
(EDF) and the fixed-priority (FP) schedulers in the
context of the real-time virtual resource, where a
real-time task group is characterized by the stan-
dard real-time task model of Liu and Layland [8].
We showed that the schedulability analysis can be
performed without global knowledge of all the task
groups that share the physical resource. For each
task group, the schedulability analysis only needs
to take into account the delay bound of the real-

time virtual CPU on which the task group executes;
as long as the sum of the worst-case response time
of a task and the jitter introduced by the delay
bound does not exceed the task’s deadline, the task
is schedulable. This is important for the open sys-
tem environment[3] where global knowledge of the
task groups is assumed to be unavailable.

In [11], we first introduced the mathematical con-
cept of regularity and discussed how to exploit it for
realizing the delay bounds of real-time virtual re-
sources. For the case of regular partitions, we showed
that the utilization bounds of both fixed-priority
scheduling and dynamic-priority scheduling remain
unchanged from those for dedicated resources. We
determined the utilization bounds for the more gen-
eral case of irregular partitions. In particular, both
types of partitions can be efficiently constructed by
exploiting the compositionality properties vis-a-vis
the regularity measure.

Based on the theoretical results obtained from
those papers, we have implemented two real-time
virtual resource (RTVR) prototypes based on Linux
2.4.18.3 kernel. We used the Linux operating system
because its open source code was available and be-
cause of its popularity in the personal computing and
embedded system area. Our implementation archi-
tecture is shown in Figure 1. A CPU is partitioned
into N + 1 virtual processors (VP). VP 0 is called
system virtual processor (SVP) on which all system
tasks run. All other N virtual processors are called
application virtual processors (AVP). The first pro-
totype implements static resource level scheduling
(Static RLS) which can be applied to systems with a
predefined application task set. The second one im-

2

plements dynamic RLS (Dynamic RLS) where parti-
tions can be dynamically join and leave the system.
As a general purpose OS, the Linux kernel is not pre-
emptive in kernel mode, which makes accurate CPU
partition and deadline guarantee for real-time appli-
cations impossible. In both of our prototypes, (1)
the kernel is made to be preemptive by spawning a
kernel thread for each interrupt service routine (ISR)
except for ISR 0 which is the routine for timer inter-
rupt; (2) under the original Linux scheduler, a RLS
is inserted to temporally partition the CPU, and the
original Linux scheduler becomes task level sched-
uler (TLS); (3) system calls and utilities are provided
to assist applications to specify real-time parameters
and pass them to kernel.

The main contribution of this paper is fourfold.

1. This paper presents a first implementation of
RTVR. Several practical issues were identified
and discussed in details.

2. Dynamic RLS scheme is introduced so that not
only tasks but also partitions could join and
leave the system dynamically.

3. A novel two-level partitioning scheme is intro-
duced so that even partitions with small rates
with regard to their partition delay could be
scheduled efficiently.

4. A prototype implementation of network virtu-
alization is presented to show the effectiveness
of a set of RTVRs.

2 Related Work

There have been many initiatives to make Linux real-
time. Two general categories of solutions have been
proposed and provided on the market. The first one
is to modify the current Linux kernel or replace it
with a new one. The new kernel implements and
then keeps the full set of original kernel API which
contains a full set of system calls. Examples us-
ing this approach include TimeSys (Linux/RK) [12],
Red-Linux [15] and Qlinux[5].

Another creative approach is to impose another
level of kernel (called sub-kernel) on the top of exist-
ing Linux kernel. In this way, Linux is treated as the
lowest priority task of the sub-kernel OS. RTLinux
[2] and RTAI [1] are examples of this category.

While our approach falls into the first category,
it differs from others mainly in the way how it models
real-time.

Linux/Resource Kernel (RK) [12] allows appli-
cations to specify only their resource demands and
leaves the kernel to satisfy those demands to hid-
den resource management schemes. The resource

demands are usually expressed in a form of (Com-
putation Time, Period, Deadline).

Red-Linux [15] aims to provide a general
scheduling framework to integrate three paradigms,
namely, priority-driven, time-driven and share-
driven paradigms. In order to do that, Red-Linux
identifies four scheduling attributes, i.e., priority,
start-time, finish time and budget.

Constant Bandwidth Server (CBS) [7] uses a
deadline postponing scheme to provide bandwidth
isolation. A CBS Server is described by two param-
eters: Budget and Period. The bandwidth is cal-
culated as Budget over Period and the period also
serves as deadline.

The main difference between our approach and
previous ones is that we minimize the interaction be-
tween the resource level scheduler and the task level
scheduler to a simple interface. Unlike previous ap-
proaches, our resource level scheduler does not re-
quire knowledge of the task level deadlines or their
derivatives in partition scheduling. In the other di-
rection, the task level scheduler may need to know
at most the delay bound of the partition it executes
on. More importantly, the related delay bound of the
partition allows the application task scheduler to de-
termine not only compliance with deadline require-
ments but also event-separation types of constraints.
If the application task groups are not all specified
in one common task model such as Liu and Layland
periodic tasks, our partition model can still be used.

Our work is also differentiated from QLinux
(Start-time Fair Queuing - SFQ) [5] and Fluctua-
tion Constrained Server (FCS) [6, 16]. Both SFQ
and FCS have the similar notion of supply deviation
for any time interval as our work. However, SFQ
aims to minimize the delay to achieve near-optimal
fairness while our work makes sure the delay could
guarantee the schedulability of real-time tasks. Fur-
thermore, SFQ depends on the number of threads
(which are equivalent to partitions in our work) be-
ing scheduled, while the resource level delay in our
work is specified by the partition request, thus pro-
viding stronger guarantee. FCS is intended to be on
per stream basis while our work is on per task group
basis. FCS does not provide any real-time schedula-
bility analysis if a group of tasks instead one single
task (stream) is running on FCS, whereas task level
scheduling is a major problem that real-time virtual
resource addresses as discussed in [10] and [9].

In Hierarchical Loadable Scheduler (HLS) [13]
schedulers may be converted to one another by
means of service guarantee. Their goal is also quite
different from ours since HLS aims at constructing a
hierarchy of schedulers while our work is to construct
a hierarchy of virtual resources.

3

Shin and Lee recently presented their work of a
periodic resource model [14], whereas a resource al-
location of X time units every Y time units is guar-
anteed. Our approach differs from theirs mainly in
that we do not require periodicity, thus providing a
more general model for real-time applications.

The rest of the paper is organized as following.
Section 3 introduces the background concept and
definitions. Section 4 describes the static RLS. Sec-
tion 5 describes the dynamic RLS. Section 6 gives an
overview to the Linux kernel scheduler and discusses
some related implementation issues. Some experi-
ments are conducted and the results are provided in
Section 7. Section 8 concludes our writing.

3 Background Definition

In this section we shall review a few key preliminary
definitions concerning the bound-delay resource par-
tition model presented in [10] before we proceed to
the resource level scheduling. For more details and
examples pertaining to this section, please refer to
[10], [11].

Definition 1 [10] The Availability Factor (rate)
of a resource partition Π is the percentage of the to-
tal time of a resource is available to this particular
partition. Obviously, the rate of service provision of
a dedicated resource is 100%.

Definition 2 [10] The Supply Function S(t) of a
partition Π is the total amount of time that is avail-
able to Π from time 0 to time t.

Definition 3 [10] The Partition Delay ∆ of Par-
tition Π is the smallest d so that for any t0and t1,
(t1 ≥ t0), (t1 − t0 − d)α(Π) ≤ (S(t1) − S(t0)) ≤
(t1 − t0 + d)α(Π).

Partition Delay measures the largest deviation of
a partition on any time interval with regard to the
amount of supply it is supposed to receive when there
is no delay at all.

Definition 4 [10] A Bounded Delay Resource
Partition Π is a tuple (α,∆) where α is the rate of
the partition and ∆ is the partition delay.

Definition 5 [11] The Supply Regularity Rs of
Partition Π is the smallest d so that for any t0and
t1, (t1 ≥ t0), (t1 − t0)α(Π) − d ≤ (S(t1) − S(t0)) ≤
(t1 − t0)α(Π) + d.

Similar to partition delay, supply regularity also
measures the largest deviation of a partition on any
time interval. The difference is that partition delay
is expressed in terms of time while supply regularity
in terms of amount of supply. From the definitions,
we could easily conclude that Rs/∆ = α.

4 Static RLS

Static RLS is applicable to systems where all parti-
tions are fixed and their parameters are known. The
concept of static RLS was introduced in [11]. The es-
sential idea of the algorithm is to compose the target
partition by combining several partitions which are
efficiently schedulable. Two theorems are involved
to support constructing the scheduler.

Theorem 1 Regular partitions whose availabil-
ity factors are all powers of some number and whose
total availability factor ≤ 1.0 are schedulable.

Example 1 Regular partitions Πi (1 ≤ i ≤ 4)
with availability factors of 1/2, 1/4, 1/8, 1/8 respec-
tively can be easily scheduled on a dedicated resource
with the period of 8 and the time slot assignment of
(1, 2, 1, 3, 1, 2, 1, 4) where i indicates Πi.

Theorem 2 When k partitions each with sup-
ply regularity of 1 are combined together they form a
partition with supply regularity of k.

Definition 6 Given Partition Π with availabil-
ity factor of a and supply regularity of Rs, the Ad-
justed Availability Factor AAF (a, Rs) is the total of
the availability factors of partitions that are used to
compose Π.

For a system with N partitions where the ith
partition has rate = αi and supply regularity = Rsi

(1 ≤ i ≤ N), the partition table generation algo-
rithm is as follows:

• For each partition Πi, calculate its Adjusted Avail-
ability Factor AAF (αi, Rsi) as follows:

If Rsi = 1, AAF (αi, Rsi) = 1

2k
,w

where k =
⌊

log 1

2

αi

⌋

else AAF (αi, Rsi) = 1

2
i1

+ 1

2
i2

+ ... + 1

2
iRsi

where i1 =
⌈

log 1

2

αi

⌉

, if log 1

2

αi is not an integer

otherwise i1 =
⌈

log 1

2

αi

⌉

− 1

for k ∈ [2, Rsi − 1]

if log 1

2

(αi −
∑

k−1

z=1

1

2iz
) is not an integer,

ik =
⌈

log 1

2

(αi −
∑

k−1

z=1

1

2iz
)
⌉

otherwise,

ik =
⌈

log 1

2

(αi −
∑

k−1

z=1

1

2iz
)
⌉

− 1,

iRsi
=

⌈

log 1

2

(αi −
∑

Rsi−1

z=1

1

2iz
)
⌉

Record 2iRsi as Pi which denotes the partition pe-
riod for Πi.

• If
∑

N

i=1
AAF (αi, Rsi) > 1.0, program exits.

4

• Allocate M time slots where M = max{Pi | 1 ≤
i ≤ N}. M is the partition table period.

• For each Πi, 1 ≤ i ≤ k, we have

AAF (αi, Rsi) = 1

2
i1

+ 1

2
i2

+ ... + 1

2
iRsi

For each k ∈ [1, Rsi], among the M time slots, as-
sign 1 out of every ik time slots to Πi.

• Assign the rest time slots to non-real-time tasks or
system partition.

• Combine all neighboring slots that are assigned to
the same partition.

Example 2 The following example shows how a
partition table is generated for a system which has 3
AVPs with real-time requirements as {(αi, Rsi), i ∈
[1, 3] | (0.375, 2), (0.25, 2), (0.25, 1)}.

• Calculate AAF (αi, Rsi)

AAF (α1, Rs1) = 0.25 + 0.125; P1 = 8

AAF (α2, Rs2) = 0.125 + 0.125; P2 = 8

AAF (α3, Rs3) = 0.25; P3 = 4

•
∑N

i=1 AAF (αi, Rsi) = 0.875.

• M = max{Pi | 1 ≤ i ≤ N} = 8.

• Allocating time slots.

• Combine the neighboring slots belonging to the
same VP.

5 Dynamic RLS

In the previous section, we described static RLS.
This approach can efficiently schedule partitions with
different delay requirements. However, it cannot ac-
commodate partitions joining and leaving dynami-
cally. This is due to: (1) the partition delay prop-
erty holds with regard to only one static scheduling
table; (2) when a new partition request arrives, the
entire scheduling table has to be recomputed again.
To solve this problem, we shall introduce the con-
cept of dynamic RLS. In this section, we shall first
discuss how to devise dynamic RLS algorithms ; then
we consider the effects of quantum-based scheduling
where there is a minimum size limit on CPU time
slices; finally we discuss a two-level scheduling ap-
proach for scheduling a special type of partitions.

5.1 Dynamic RLS Algorithm

A dynamic scheduling algorithm, as its name indi-
cates, allows partitions to join and leave dynamically.
This requirement implies that 1), there is no global
scheduling analysis for RLS. 2) there is no restriction
on the scheduling algorithms as long as the resul-
tant partitions meet their timing requirements. The

similarity between RLS and TLS leads us to try to
bridge them by converting RLS problem to a conven-
tional scheduling problem that has been extensively
studied in the context of TLS. In this way, we may
apply those results from task scheduling to resource
scheduling as well.

Theorem 3 Suppose the execution of a real-time
task with computation time of C and period of P is
considered as the execution of a partition. The re-
sultant partition tuple (α, ∆) is (C/P , 2P − 2C)
regardless of which scheduling algorithm is used.

Corollary 1 To schedule a partition (α, ∆)
is equivalent to schedule a task with (∆α/(2(1 −
α)), ∆/(2(1 − α))) as computation time and period,
respectively.

Example 3 To schedule Partition Π (0.2, 40ms),
C = ∆α/(2(1−α)) = 0.2× 40/(2× (1− 0.2)) = 5ms
P = ∆/(2(1 − α)) = 40/(2 × (1 − 0.2)) = 25ms
Therefore, to schedule Π is equivalent to schedule a
task with computation time of 5ms and period of 25
ms.

The admission test for new partitions could be
expressed as

∑n
i=1 αi ≤ Utilization Bound.

The utilization bound depends on which schedul-
ing algorithm is used. It would be 1.0 for earliest
deadline first (EDF) and m(2

1

m − 1) for rate mono-
tonic scheduling (RM) where m is the number of par-
titions.

5.2 Considering Scheduling Quantum

In the discussion above, we assume that scheduling
(especially task switching) can be performed with
time being real numbers. However, many systems
have a lower limit on the smallest time allocation
unit, namely, the scheduling quantum. The schedul-
ing quantum may also be viewed as the unit for spec-
ifying the precision of time measurements. It is im-
perative to consider the effects of scheduling quan-
tum when we implement the scheduling scheme on
real systems. In this subsection we shall reexamine
the issues that we discuss in the previous subsection
and we shall also show the interdependence among
rate, partition delay and the scheduling quantum.

Theorem 4 To schedule a partition (α, ∆) on
a system with scheduling quantum of Q is equiva-
lent to schedule a task with (d∆α/(2Q(1− α))e ×Q,
b∆/(2Q(1 − α))c × Q) as computation time and pe-
riod, respectively.

Because of the interdependence of rate, partition
delay and scheduling quantum that is discussed in
[4], the introduction of scheduling quantum also puts
some constraints on rate and partition delay.

5

• α ≥ 1/(1 + b∆/Qc): The partition will get at
least one quantum available time after the ac-
tual partition delay b∆/Qc happens. This puts
a lower bound on the rate which means that the
partition rate could not be infinitely small.

• ∆ ≥ Q: The partition delay should be no less
than the scheduling quantum.

Again the admission test with quantum consid-
eration could be expressed as following:

∑n
i=1

d∆α/(2Q×(1−α))e×Q
b∆/(2Q×(1−α))c×Q ≤ Utilization Bound

5.3 Two-Level Resource Scheduling

During the implementation, we observed that the
lower bound on the rate could lead to inefficient us-
age of the resource. Typically, the scheduling quan-
tum of Linux is set as 10 ms. For example, we mea-
sured that a typical MP3 application should not be
delayed more than 190 ms which could be considered
as its partition delay. On the other hand, it needs less
than 1 ms every 190 ms of time. However, we know
from the relation between scheduling quantum and
rate, that for such a partition delay to be achieved,
the lowest rate is (1/(1+190/10)) = 5%. The actual
CPU usage of MP3 is just around 0.5%. Similarly,
ISRs also have these characteristics. To solve this
problem, we introduce a novel method of two-level
partitioning.

The essential idea of this scheduling method is
to group all those partitions with small partition de-
lays as well as small rates together and consider them
as one partition with small partition delay but with
larger rate (the sum of the rates of the small parti-
tions). When this partition is scheduled, it divides
the scheduling quantum into mini time slots and dis-
tribute them among the original small partitions. A
more detailed description is given below:

1. Partition Grouping: Small partitions (αi, ∆i)
are grouped together as one partition Π (α, ∆)
where α ≥

∑

αi and ∆ ≤ ∆i − Q.

2. Partition Scheduling: When a time slot as-
signed to Π, it will be split into N mini time
slots. d(Nαi/α)e mini time slots will be as-
signed to Partition Πi. The time slots will run
in the order of i.

3. Partition Admission: If there are n time slots
unused among those N mini time slots. A new
partition Π′ (α′, ∆′) could be admitted by Par-
tition Π if

(a) ∆′ ≥ (∆ + Q)

(b) α′ ≤ (n/N) × α

4. Partition Leaving: If a partition leaves, instead
of leaving a ”hole” among the mini time slots,
all partitions of the order higher (later) than
this partition will run earlier than this parti-
tion. It also means all active partition will run
first and if there are mini time slots that are ei-
ther unused or left by leaving partitions, they
will always run latest among all the mini time
slots. It is similar to the compression of mini
time slots.

���

���

�����
�����
�����
�����

���
���
���
���

���

��

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��������
��������
��������

���������������
���������������
���������������

(d) New partition arrived

 (e) Partition 2 left

���

���

���
���
���
���

���
���
���
���

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

(b) Divided into 10 mini time slots

(a) Original quantum

(c) Scheduling

FIGURE 2: Illustrations of Example 4

Example 4 Schedule Π1 (0.05, 40ms), Π2 (0.02,
43ms), Π3 (0.10, 48ms) using the two-level schedul-
ing described above. Assume N = 10.

1. Group: Π (0.05+0.02+0.10, 40-10ms) =
(0.17, 30ms). Because of the quantum size is
10ms and as we showed above that quantum
size will put a lower bound to rate, the Π will
get actually (.25, 30ms).

2. Scheduling: Every time slot of Π is further di-
vided into 10 mini time slots as shown in Fig-
ure 2 (a) and (b), Π1 then will get d(10 ×
0.05/0.25)e = 2 mini time slots as shown in
Fig 2 (c). Similarly, Π2 will get 1 slots and Π3

4 slots. The remaining 3 slots could be used for
non-real-time partition and could be assigned to
new partition(s) arriving later. When Π gets to
run, the 2 time slots of Π1 will run first, then
the 1 time slot of Π2, 4 slots of Π3, finally the
remaining 3 time slots.

3. Suppose a new partition Π′ (0.06, 45ms) re-
quests to join, because (1) 45 > 30 + 10, (2)
0.06 < 3/10×0.25, it will be granted admission
and d(10 × 0.06/0.25)e = 3 will be assigned to
Π′ as shown in Figure 2-(d). Those time slots
of Π′ will run latest among all partitions be-
cause Π′ joins the latest.

4. Suppose Π2 leaves, Π3 will run right after
Π1 instead of letting the resource idling for
one mini time slot which was assigned to Π2.
Therefore, that one mini time slot will be post-
poned till the last of the 10 mini time slots as
shown in Figure 2 (e).

6

Notice that this two-level resource scheduling
method is different from the multi-level resource
scheduling introduced in [4]. In [4], resource schedul-
ing is recursively applied to partitions because large
resources might need to be partitioned more than
once. The two-level resource scheduling introduced
here is specifically designed to address the problem
of scheduling partitions with rates smaller than the
lower bound imposed by the scheduling quantum. As
for scalability, this method is not as scalable as that
in [4].

6 Implementation Issues

Linux is an open source, Unix-style general purpose
operating system that has become popular not only
in server market, but also in the personal computing
and embedded system area. Our RTVR prototypes
are built based on Linux 2.4.18.3 kernel. However,
Linux does not support RTVR directly. Therefore, in
this section, the detailed description of RTVR kernel
scheduling implementation will be given and some
related issues will be discussed.

6.1 RTVR Kernel Structure

The kernel structure of RTVR is shown in Figure 3.
A RLS is inserted beneath the original Linux sched-
uler which now becomes the TLS (Task Level Sched-
uler). When a timer interrupt occurs, the RLS up-
dates system time information and runs the RLS to
activate a particular VP according to the partition
table. Then TLS will schedule the tasks on that VP.

Each VP can have its own customized TLS
or share a common TLS with other VPs. As
mentioned above, all VPs share the original Linux
scheduler as TLS in our prototypes. The original
Linux scheduler provides 3 scheduling algorithms:
POSIX real-time processes can be scheduled either
by SCHED FIFO or by SCHED RR (round-robin)
policy; Other non-real-time processes are scheduled
by SCHED OTHER policy.

Each VP owns a dedicated process run queue.
When a particular VP is active, TLS will schedule
processes in the corresponding run queue. In this
way the RLS and TLS are cleanly separated and any
customized TLS can be easily plugged in without ex-
tra structural modification.

The original Linux kernel is not able to pro-
vide realtime guarantee in the sense that when an
un-masked interrupt occurs, kernel jumps into the
corresponding ISR and service it immediately. This
limitation makes accurate CPU partition impossible,
which is required by RTVR. In our prototypes, an
ISR thread is spawned for each non-timer-interrupt

service routine by init process during system initial-
ization. All the real work is done in the ISR threads
except a minimum amount of code directly interfac-
ing hardware, i.e., acknowledge the interrupt con-
troller. In this way ISRs can be scheduled and run
in appropriate time, which achieves accurate CPU
partition.

ISR threads are assigned to the highest priority
by default in our prototypes. Whenever an interrupt
occurs, the corresponding ISR thread will be waken
up and inserted to the head of a run queue which is
the one associated with SVP by default. When the
corresponding VP is activated by the RLS, TLS will
guarantee to pick the ISR thread first and execute
it. After the interrupt is serviced, the ISR thread
will be de-queued from the run queue and put into
sleep state. Since all ISR threads are assigned run-
ning on SVP by default, disturbance on applications
running on other AVPs by these interrupts is kept to
a minimum, which is highly desirable for hard real-
time applications. Users are allowed to change the
priority of any ISR thread and set it to run on any
AVP if necessary so that flexibility is also achieved.

6.2 Scheduling Implementation

Due to the page limit, we shall describe only the es-
sential data structure of the dynamic RLS kernel.
The static RLS kernel is simpler and can be viewed
as a subset of dynamic RLS kernel.

• structure partition parameters [MAX PARTITION
NUMBER], which contains:

– float rate;

– float partition delay;

• int scheduling table[2][MAXIAML LENGTH];

• int effective table length;

The first member data partition parameters is a
collection of parameters of partitions. When a new
partition is requested, an admission test will be per-
formed based on the information of existing parti-
tions. Once it is admitted, the parameters of an
equivalent task are computed. Scheduling tables will
be computed based on those task parameters as if
a task were being scheduled. The actual scheduling
and the admission test are dependent on the schedul-
ing algorithm.

The second member data scheduling table shows
that scheduling tables used in dynamic RLS.
Scheduling according to a table is typically used
in time-driven scheduling systems. It is concep-
tually simple and proven to be run-time efficient.
Meanwhile, event-driven scheduling algorithm which
is used for dynamic RLS is notorious for its large

7

A
process
running

Other
syscall

Fork

.

.

.

virtual cpu 0 run queue

parent/child
process is put
into run queue

ret_from_sys_call

schedule

need
reschedule

signal_return

signal
pending

restore_all

do_signal

update
process
state

wake up
softirqd

ret_from_irq

wake up
correspondin irq

thread

...

wait queue

exit

timer
interrupt

.

.

.

.

.

.

.

.

.

virtual cpu 1 run queue

virtual cpu N run queue

other
interrupt
occurs

set_virtual
_cpu

set_partiti
on

CPU
partition

partion
table

irq
thread
running

irq
thread
sleep

softirqd
sleep

softirqd
running

wake up corresponding
thread

FIGURE 3: New Kernel Process Schedul-
ing and State-Transition Diagram

scheduling overhead. Take the EDF scheduling al-
gorithm for example, every time when a new job is
released or a job finishes the queue of deadlines will
be re-evaluated and the job with the earliest dead-
line will be chosen to run next. In order to utilize
the advantages of both time-driven and event-driven
scheduling, we chose to use tables in the dynamic
partitioning.

Two sets of tables are employed in the imple-
mentation. The table computation task is assigned
to system partition exclusively, which is created to
deal with system tasks. When the OS is scheduling
according to one set of table, system partition will
work on computing the other set using the schedul-
ing scheme that we discussed in the previous section.
Earliest Deadline First scheduling algorithm is used
to schedule the tasks that correspond to partitions.
When the table for scheduling is exhausted, the two
tables will then alternate. This process is shown in
Figure 4. In this way, scheduling decision making
is done in a batch fashion when system partition is
running and all other real-time partitions will run in
the efficient time-driven mode.

There are several noteworthy issues related to
the tables.

First, system partition has to finish computing
one set of table before the other set is exhausted. By

checking the length of tables and the partition delay
parameter of system partition, this would be easily
done.

Second, adding or removing partitions will not
be effective till a new set of tables is computed ac-
cordingly and is ready for use in scheduling. This
would induce a bounded delay for partition related
operations. Assuming that partitions in their na-
ture are more static and are requested also in a more
predictable fashion than tasks, this type of delay is
acceptable. Even if the length of delay is too large
for certain systems, the problem could be solved by
changing the effective table length or by immediate
recomputing a new set of table and activating it.

Third, in the case that system partition is the
only active partition, the tables will not be used and
the system partition will have exclusive access to the
processor. The system performance would be the
same as original Linux. The transition diagram is
shown in Figure 4.

The third member data effective table length
mandates the effective length of each table. There
are basically three cases that the effective length
might need change. One is that the delay of partition
related operation as mentioned above is too large.
Second, if the scheduling period is less than the total
length of these two tables, the effective length could

8

Table
unused

Tables used,
Re-computing

needed

Tables used,
Re-computing not

needed
Init

New
partition
joins

Last
partition
leaves

Table
computed

Table
exhausted

FIGURE 4: Scheduler State-Transition

be set accordingly, thus eliminating the need to re-
compute the tables till any change happens to the
partitions as a way of optimization. Third, adjusting
the effective length dynamically provides memory-
size-sensitive systems another leverage to balance be-
tween memory usage and system performance.

6.3 Network Virtualization

So far, our discussion is limited to virtualizing pro-
cessor. In an operating system, there are many other
types of resources such as network, IO and storage.
Among those resources, network is of particular in-
terest to us because 1), network is preemptible on the
packet level, 2), there is strong functionality support
for networking in Linux. Actually, our implementa-
tion takes advantage of Linux network traffic control.

In Linux, traffic control provides queueing sys-
tems and scheduling mechanism to manipulate the
time and order how packets are transmitted onto
the network. By default, Liunx has a single FIFO
queue to collect packets and dequeue them as fast as
the network hardware could accept. Other example
traffic control options include SFP, CBQ and GRED.

We implement a new queueing discipline called
Real-Time Virtual Networking (RTVN). Similar to
RTVR, RTVN provides guarantees for the amount
of packets transmitted within an interval.

The implementation of RTVN is similar to that
of Token Bucket Filter. The major difference be-
tween these two is that TBF limits the highest speed
of transmission while RTVN bounds the lowest speed
of transmission by reservation. Partition delay in
RTVN is mapped into the queue depth in TBF and
admission control exists only in RTVN.

6.4 Others

New system calls are built into the kernel of the pro-
totypes. Utilities that performs appropriate system
calls are also implemented to assist the user to man-
age the partition table and pass application real-time
requirements to the kernel.

SVP has to be given fair amount of CPU utiliza-
tion because all newly forked processes and system

tasks such as ISR threads are running on it by de-
fault. A low CPU sharing utilization leads to a large
IRQ response time which may cause the whole sys-
tem unstable. For example, if SVP shares 5% of the
CPU, the minimal interval between two neighboring
partition allocated to SVP will be 190 ms, assuming
scheduling quantum is 10ms. In our implementation,
we enforce that SVP will share at least 10% of the
CPU supply, which leaves enough CPU supply for
applications on AVPs but is the minimum to ensure
the system reliability.

Two-level resource partition is implemented in
dynamic RLS. SVP can be configured as a small
partition and grouped with other small partitions to
form a normal partition so that CPU can be shared
more efficiently in this way. For example, if a normal
partition shares 10% of the CPU and SVP occupies
1 mini slot,it actually only shares 1% of CPU but
the IRQ response time is almost the same as if it
had shared 10% of CPU in static RLS. The imple-
mentation of two-level resource partition is achieved
by dynamically adjust the scheduling quantum size
which is the reverse of the timer interrupt frequency.

7 Experiments

Several experiments were carried out to study the
performance of our prototypes. (1) The interrupt re-
sponse time both on static and dynamic RLS were
measured. (2) We measured the CPU partition
scheduling overhead. (3) An H.263 video decoder
and a g-nibble game were selected as real-time appli-
cations that coexist to compete for CPU cycles. We
qualitatively evaluate their performance on RTVR
and compare with that on Linux. (4) A video en-
coder application which requests mainly CPU cycles
and network bandwidth was selected. We shall see
how RTVR achieved better performance by appro-
priate co-partitioning of both resources.

Experiment (1)-(3) were carried on Toshiba
Satellite 1100 laptop with an Intel Pentium III
Celeron 1.33 GHz processor and 256 MB RAM.
(4) were made on a desktop PC with Pentium III
600MHz processor and 256 MB RAM. After we

9

present the measurement results, we shall discuss
system performance-tuning problem.

7.1 Keyboard Response Time

To study the typical interrupt response on our
RTVR, we measured keyboard response time. The
keyboard uses IRQ 1 in our IBM-PC compatible lap-
top. The system is set to have a SVP and an AVP.
Instrumentation code is inserted to measure the IRQ
response time. Figure 5 shows the average response
time to IRQ 1 over 10 seconds.

In the static RLS prototype, the availability fac-
tor of AVP is set to i/8, where i is an integer in the
range [0, 7]. The supply regularity is set to the min-
imal value which can accurately represent the cor-
responding availability factor. For example, if avail-
ability 7/8 is assigned to AVP, to accurately repre-
sent 7/8, supply regularity has to be at least 3 be-
cause 7/8 = 1/2 + 1/4 + 1/8. In the dynamic RLS
prototype, the AVP is set as a small partition. The
rate of AVP is set to i/10, where i is also an integer
in the range [0, 9].

Unsurprisingly, dynamic RLS significantly re-
duces the IRQ response time by adding a small par-
tition layer in RLS, which demonstrates that it can
efficiently accommodate tasks with small rate and
small delay.

7.2 Scheduling Overhead

The typical CPU partition scheduling overhead con-
sists of RLS execution, TLS execution and mem-
ory operation such as stack swap. Figure 6 shows
the maximal context-switching time measured over
10 seconds on both prototypes. Note that there
are 1328940 CPU cycles/ms, which means that the
context-switching overhead increased by adding a
RLS layer is less than 0.4%.

The execution time of RLS in static RLS only
consists of table lookup operation, which is almost
constant. In dynamic RLS, the maximal execu-
tion time also consists of partition table genera-
tion. which is conducted once every effective ta-
ble length. The average RLS execution time and
context-switching time, is directly related to it. Fig-
ure 7 plots the average RLS execution time versus
effective table length in dynamic RLS. Obviously, a
longer table reduces scheduling overhead but con-
sumes more memory. The trade-off between table
length and memory consumption should be tuned
on an individual platform basis.

7.3 Applications Compete for the

Same Resource

An H.263 video decoder and a g-nibble game were
selected as real-time applications coexisting to com-
pete for CPU cycles. We qualitatively measure their
performance on RTVR and compare with that on
Linux. The H.263 decoder is a real-time application
which decodes and displays 25 CIF (352 x 288 pix-
els) frames per second. The g-nibbles game is an
interactive program which requests small CPU rate
but also small delay. It can be used to subjectively
test keyboard response. Figure 8 shows the maximal
number of video decoder threads running on each
platform while the keyboard response is still satis-
factory at the same time. Adding one more video
decoder on any platform will either cause the video
pictures to suffer from delays and/or jerkiness, or
perceptibly degrade the g-nibble game.

The static RLS prototype is set up with 1 SVP
and 3 AVPs. The availability factor and supply reg-
ularity of each AVP is set to 0.25 and 1, respectively.
Two video decoder threads can be run on each AVP
with good quality while still satisfying the g-nibble.

The dynamic RLS prototype is set up with a
SVP and 2 AVPs, each of which is a small partition.
The first one shares 40% CPU and runs 3 decoder
threads. The second one shares 50% CPU and runs
4 decoder threads.

This experiment convincingly showed that our
RTVR prototypes can accommodate more real-time
tasks when they compete for the same resource
(CPU).

7.4 Applications Compete for More

than One Resource

In this experiment, three identical video encoder
were executed simultaneously on our desktop PC for
10 seconds. Each one encodes the same video file
and then sends the coded stream out. Thus, they
mainly compete for CPU computation and network
bandwidth. We show how RTVR achieves better per-
formance by co-partitioning both resources.

To simplify the test, the video encoder is set to
code 1 I frame and then 4 P frames at the normal
rate of 25 frames/s. The average output bandwidth
request by each stream is 50 Kbps. Each encoder can
buffer 5 frames waiting to be sent at most. To see
how network scheduling affect the performance, we
set the total available bandwidth to 300 kbps. Each
packet is 1k bytes in length. For each frame, we
measure the time difference (in ms) between when it
is actually sent and when it is supposed to be sent.
The delay from previous frames will accumulate and
result in delay of later ones. We set the initial delay

10

as 1000 ms; thus the deadline of frame k to be sent
out can be calculated as 1000 + 40k ms.

Figure 9-12 showed the result with all four com-
binations of resource partition, that is, with/without
CPU/network partition. Figure 9 can be seen as the
result when they run on original linux kernel. Each
stream has about 50 % frames missing the deadline.
Figure 10 is the performance measured with network
partition only. We reserve 100 kbps bandwidth with
latency 40 ms for each stream. the performance is
much better than case 1, but still stream 2 and 3 has
almost 20% deadline miss. Figure 11 is the perfor-
mance measured with CPU partition only. There are
no deadline miss. The gap between deadline and the
actual time when packets are sent increases as sim-
ulation continues, which means it is possible to sup-
port more stream(s). 12 is the performance measured
with both CPU and network partition. As expected,
there are no deadline miss. And, the“gap” is larger
compared to case 3, which means the best perfor-
mance is achieved by proper resource co-partitioning.

7.5 RTVR Performance Tuning

We now discuss how to tune a RTVR system to
achieve optimal performance.

The relationship between availability factor and
partition delay is shown in Figure 13 in static RLS.
For a given availability factor α, the actual partition
delay D depends on the scheduling quantum Q and
the supply regularity Rs. For example, given Q as
10 ms and α as 1/16, if Rs is 1, it is partitioned as 1
out of every 16 quantum which results in D equal to
150 ms. If Rs is 2, it is partitioned as 2 out of every
32 quantums and D can be as large as 300 ms. In
Figure 13, the solid line and dash line represent the
minimal and maximal partition delay for any given α
in static RLS, respectively. In dynamic RLS, parti-
tion delay cannot be bounded by the rate only since
the EDF algorithm is employed in RLS.

Take the H.263 decoder used in the experiment
as an example. We measured its periodic deadline
as 40 ms and rate as 1/9. To guarantee the 40 ms
deadline, α on static RLS should be at least 1/4 and
Rs be 1 as the point A in Figure 13. Since each one
only requires rate 1/9, two decoders can run on the
same partition, which explains the experiment setup
of static RLS. Clearly, in the static RLS case, the
deadline of the H.263 decoder is the constraint.

In dynamic RLS, the scheduling quantum of a
small partition can be as small as 1 ms, which makes
the rate to become the constraint. To maximize
the number of the decoder threads running, we set
two small partition AVPs. One shares 40% of CPU
and accommodates 3 threads; the other shares 50%
and accommodates 4. Note that theoretically we

can group 8 decoder threads on an AVP sharing
90% CPU. However, as expected, too many threads
grouped together will interfere with each other which
makes some displays un-smooth.

Again, different supply regularity results in dif-
ferent partition delay even with the same availability
factor in static RLS, such as point B and C in Fig-
ure 13. A larger supply regularity yields a larger
partition delay which may violate the deadline of
real-time tasks. On the other hand, it provides more
scheduling flexibility, and possibly reduces schedul-
ing overhead. For example, a RM scheduler can ac-
commodate a task set {(C, P) | (4, 7), (2, 8), (2, 32)},
where C is the computational time and P is the task
period. However, it cannot accommodate a task set
such as {(C, P) | (4, 7), (2, 8), (1, 16)}.

Given a set of tasks with different real-time re-
quirements, it is an interesting question how to tune
a RTVR system to achieve optimal performance. We
believe that all responsible factors such as partition
delay, scheduling quantum, task grouping should be
carefully investigated.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

7

SVP rate

R
es

po
ns

e
tim

e
in

 c
pu

 c
yc

le
s

(a), keyboard resp. vs. SVP rate

static RLS
dyn RLS

FIGURE 5: Keyboard Response

1 2
0

5000

10000

15000

static RLS dynmic RLS

cp
u

cy
cl

es

(b), context−switching overhead

Memory operation
TLS
RLS

FIGURE 6: Context-switching Overhead

11

0 50 100 150
2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

effective table length x10ms

cp
u

cy
cl

es

(c), RLS Execution vs. Table Length

FIGURE 7: RLS Execution Time

1 2 3
0

1

2

3

4

5

6

7

Linux static RLS dynmic RLS

vi

de
o

de
co

de
r

(d), performance comparison of h.263 with gnibble

FIGURE 8: Performance

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

frame num

tim
e

in
 m

s

sim result: without any control

flow1: %40.40 miss
flow2: %72.80 miss
flow3: %59.60 miss
deadline

FIGURE 9: Without Any Scheduling

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

frame num

tim
e

in
 m

s

sim result: with network partition control

flow1: %0.00 miss
flow2: %17.20 miss
flow3: %18.00 miss
deadline

FIGURE 10: Network Scheduling

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

frame num

tim
e

in
 m

s

sim result: with cpu partition without network partition control

flow1: %0.00 miss
flow2: %0.00 miss
flow3: %0.00 miss
deadline

FIGURE 11: CPU Scheduling

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

frame num

tim
e

in
 m

s

sim result: with cpu and network partition control

flow1: %0.00 miss
flow2: %0.00 miss
flow3: %0.00 miss
deadline

FIGURE 12: CPU + Network Scheduling

12

40ms

C

B

A

1/9 2/9

350

300

250

200

0.05 0.1 0.15 0.2 0.25

min partion delay

max partion delay

rate vs. partion delay
partition
delay in

ms

rate

FIGURE 13: Partition Rate vs. Delay

8 Conclusions

In this paper, we have described two prototypes
of the RTVR (Real-Time Virtual Resource) con-
cept. The prototypes were implemented based on
the Linux 2.4.18.3 kernel.

The RTVR concept is an elegant abstraction for
programming real-time applications in an open envi-
ronment. It was an open question, however, whether
its theoretical advantages could actually be realized
in practice. The work reported herein gives some
credence to a positive answer to the implementabil-
ity question.

Some highlights of our implementation are:

• The design of resource level scheduler was in-
tensively investigated. High level description of
static resource level scheduling and dynamic re-
source level scheduling were presented. In dy-
namic RLS, partitions are allowed to join and
leave the system dynamically.

• Modifications made to Linux in order to sup-
port RTVR were explained in detail. The ker-
nel scheduler implementation was emphasized.
Device virtualization with network as a proto-
type is also discussed.

• Several experiments were conducted to mea-
sure system performance in various aspects in-
cluding IRQ response time, scheduling over-
head and memory consumption.

We are continuing our work on improving the
implementation. Even though we have shown that
our implementation can deal with more than one re-
source type, our longer-term goal is to be able to ap-
ply the real-time virtual resource concept to all types
of resources that an operating system may need to
manage.

References

[1] RTAI:http://www.rtai.org/

[2] RTLinux:http://www.fsmlabs.com/

[3] Z. Deng and J. Liu, 1997, “Scheduling Real-
Time Applications in an Open Environment”,
in IEEE Real-Time Systems Symposium,
pages 308-319.

[4] X. Feng and A. Mok, 2002, “A Model of Hierar-
chical Real-Time Virtual Resources”, in IEEE
Real-Time Systems Symposium, pages 26-
35.

[5] P. Goyal and Harrick M. Vin and Haichen
Cheng, 1996, “Start-Time Fair Queu-
ing: A Scheduling Algorithm for In-
tegrated ServicesPacket Switching Net-
works”, Technique report, Dept. of Com-
puter Sciences, Univ. of Texas at Austin
(ftp://ftp.cs.utexas.edu/pub/techreports/tr96-
02.ps.Z).

[6] K. Lee, 1995, “Performance Bounds in Commu-
nication Networks with Variable-Rate Links”, in
SIGCOMM, pages 126-136.

[7] G. Lipari and S. Baruah, 2001, “A Hierarchi-
cal Extension to the Constant Bandwidth Server
Framework”, in Real-Time Technology and
Applications Symposium, pages 26-35.

[8] C. L. Liu and James W. Layland, 1973,
“Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment”, in Jour-
nal of ACM, 20(1).

[9] A. K. Mok and X. Feng, 2001, “Towards Compo-
sitionality in Real-Time Resource Partitioning
Based on Regularity Bounds”, in IEEE Real-
Time Systems Symposium, pages 129-138.

[10] A. Mok and X. Feng and D. Chen, 2001,
“Resource partition for real-time systems”, in
Real-Time Technology and Applications
Symposium, pages 75-84.

[11] A. K. Mok and X. Feng and D. Chen,
2001, “Resource Partition for Real-Time
Systems”, Technique report, Dept. of Com-
puter Sciences, Univ. of Texas at Austin
(ftp://ftp.cs.utexas.edu/pub/amok/UTCS-
RTS-2001-01.ps).

13

[12] R. Rajkumar and L. Abeni and D. De Niz and
S. Gosh and A. Miyoshi and S. Saewong, 2000,
“Recent developments with Linux/RK”, in Pro-
ceedings of the Real Time Linux Work-
shop”.

[13] J. Regehr and J. Stankovic, 2001, “HLS:
A Framework for Composing Soft Real-Time
Schedulers”, in IEEE Real-Time Systems
Symposium, pages =3-14.

[14] I. Shin and I. Lee, 2003, “Periodic Resource
Model for Compositional Real-Time Guaran-

tees”, in IEEE Real-Time Systems Sympo-
sium, pages 3-12.

[15] Yu-Chung Wang and Kwei-Jay Lin, 1999, “Im-
plementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Ker-
nel, in IEEE Real-Time Systems Sympo-
sium, pages 246-255.

[16] Geoffrey G. Xie and Simon S. Lam, 1995, “De-
lay guarantee of virtual clock server”, in IEEE/
ACM Transactions on Networking, 3(6):
683-689.

14

