
On Integrating POSIX Signals into a Real-Time Operating System†

Arnoldo Dı́az, Ismael Ripoll and Alfons Crespo
Universidad Politécnica de Valencia
Camino de Vera s/n, Valencia, Spain

ardiara@doctor.upv.es, {iripoll,alfons}@disca.upv.es

Abstract

POSIX is a set of international standards whose main goal is to support applications portability at the
source code level. It defines an operating system interface and environment based on the UNIX operating
system. A series of POSIX Real-Time standards have been defined to support real-time applications
portability. However, portability is often sacrificed in Real-Time Operating Systems (RTOS) since they
must provide predictability and low overhead. In this paper we discuss the POSIX Real-Time Signals
Extension and we propose an approach to implement it into a RTOS in order to improve the performance
of systems where the execution entities are threads instead of processes, making a compromise between
standard conformance and efficiency. The notion of Signal Owner is presented to avoid ambiguity and
assign signal priorities accordingly in priority-based systems and to minimize overhead. Also, we discuss
the consequences of the defined default POSIX signal actions in real-time systems and the implementation
of signal queueing in the Minimal Real-Time System Profile, and different approaches are presented to
address these issues. The paper also describes briefly the implementation of the POSIX Real-Time Signals
Extension in RTLinux.

1 Introduction

POSIX1, the Portable Operating System Interface,
is an evolving set of standards whose main goal is to
support applications portability at the source code
level. POSIX defines an operating system interface
and environment based on the UNIX2 operating sys-
tem. It doesn’t specify portability of application bi-
nary code or the OS kernel itself . Instead, it defines
a series of Application Program Interfaces (APIs),
that are written contracts between kernel writers and
application writers.

Although initially was used to refer to the orig-
inal IEEE Std 1003.1-1988 [3], the name POSIX
more correctly refers to a family of related stan-
dards: IEEE Std 1003.n and the parts of ISO/IEC
9945, where n is a number that indicates a spe-
cific part of the standard. The term “POSIX.1”
emerged to differentiate the 1003.1 standard with the
“POSIX” family of standards. POSIX has evolved
since it was first proposed and approved, and many
small working groups have been formed to address

specific areas of the standardization effort, as the
base UNIX functionality (1003.1), the commands set
(1003.2 or POSIX.2), the real time extension (1003.4
or POSIX.4), and so forth. Over the years, additions
and amendments to the POSIX standard has been
done. For instance, the shell and utilities (commands
set) standard has been incorporated into subsequent
revision of POSIX 1003.1 and thus a POSIX.2 stan-
dard no longer exists. Similarly, real time exten-
sion (1003.4 or POSIX.4) were incorporated into
POSIX.1. Nowadays, the IEEE Computer Society’s
Portable Applications Standards Committee (PASC)
group continues the development the POSIX family
of standards. The goal of the PASC standards has
been to promote application portability at the source
code level. The 2004 edition of the 1003.1 standard
was published on April 30th 2004 and it has four
components or volumes [4, 7, 6, 5]. This standard
defines a ”standard operating system interface and
environment, including a command interpreter (or
”shell”), and common utility programs to support
applications portability at the source code level” [4].

†This work has been partially supported by the the European Union project IST-2001-35102 (OCERA project)
1POSIX is a registered trademark of the IEEE
2UNIX is a registered trademark of The Open Group

1

Applications portability at the source code level
is also needed for real time systems, and for that rea-
son the PASC Real-time System Services Working
Group (SSWG-RT) has developed a series of stan-
dards for real-time systems. This group is aimed to
“develop standards which are the minimum syntac-
tic and semantics changes or additions to the POSIX
standards to support portability of applications with
real-time requirements” [1]. The standards relevant
to the development of real time and embedded sys-
tems are listed in Table 1.

IEEE Standard Name

1003.1b-1993 Real-time Extension
1003.1c-1995 Thread
1003.1d-1999 Additional Real-time Extensions
1003.1j-2000 Advanced Real-time Extensions
1003.1q-2000 Tracing

TABLE 1: POSIX Real-Time Standards

From this list of standards, the Real-Time Exten-
sion defined formerly by 1003.1b or POSIX.1b, and sup-
port for multiple threads in a process, defined by 1003.1c,
are the standards most commonly implemented. As said
before, these standards have been integrated into the
POSIX 1003.1 standard.

The POSIX definition of real-time in operating sys-
tems is “The ability of the Operating System to provide a
required level of service in a bounded response time” [4].
Trough the Real-Time Extension, therefore, is possible to
add to POSIX.1 those services necessary to achieve the
predictable timing behavior needed by a real-time oper-
ating system, specially in areas such as process schedul-
ing, real-time signals, virtual memory management, clock
and timers. Also, the Real-Time Extension facilitate con-
current programming for process synchronization, shared
memory, asynchronous I/O and synchronized I/O, and
message queues.

However, including all the features of POSIX in an
operating system may not be appropriate. When POSIX
was defined in the first place the system’s execution
units were process or heavyweight process, but now many
systems use threads or lightweight process instead, and
therefore implementing all POSIX features may be ineffi-
cient nor necessary. There are systems where only a sub-
set of the interfaces provided by POSIX are sufficient, like
in small embedded real-time systems that have space and
resources limitations. The POSIX.13 profile standard [8]
was defined to address this problem, providing the ade-
quate subsets of features of the base standard that are
required for a particular application environment. This
standard defines four real-time application environment
profiles:

• PSE51 or Minimal Real-Time System Profile: In-
tended for small embedded systems with no Mem-

ory Management Unit (MMU), no disk (no file sys-
tem) and no terminal. Only one process allowed
with multiple threads running concurrently.

• PSE52 or Real-Time Controller : Targeted to spe-
cial purpose controller, with no MMU, but with a
disk containing a simplified file system.

• PSE53 or Dedicated Real-Time System: Corre-
spond to large embedded system with no disk,
but with an MMU. Applications may benefit using
memory protection and network communications
in this profile.

• PSE54 or Multi-Purpose Real-Time System: This
profile is intended for large real-time system with
all the features, including a development envi-
ronment, network communications, file system on
disk, graphical user interfaces, and so on.

Table 2 summarizes the characteristics of the real-time
environments profiles.

Profile Multiple Processes Threads File System

PSE51 NO YES NO
PSE52 NO YES YES
PSE53 YES YES NO
PSE54 YES Optional NO

TABLE 2: Real-Time Environment Profiles

In this paper we discuss the real-time signal exten-
sion of POSIX.1 and how this extension can be improved
in systems where the execution entities are threads in-
stead of processes, as in Real-Time Operating Systems
conforming the POSIX PSE51 or Minimal Real-Time
System Profile.

The paper is organized as follows: Section 2 gives an
overview of POSIX Real-Time Signals Extension. Sec-
tion 3 discuses the Real-Time Signals Extension and how
this extension can be improved in systems where the ex-
ecution entities are threads instead of processes. Section
4 describes briefly the implementation of POSIX Real-
Time Signals Extension in RTLinux. Finally, Sections 5
is for conclusions and future work.

2 Real-Time Signals

2.1 Signal Concepts

A signal is a software equivalent to a hardware device in-
terrupt. Signals are used in POSIX as a notifying mech-
anism when an important event has occurred in the sys-
tem. Examples of such events are exception handling or
asynchronous interrupts. In fact, signals is perhaps the
most used mechanism for asynchrony in UNIX-like sys-
tems. Next we review some concepts that are important
when dealing with signals.

2

2.1.1 Signal definition

In the POSIX context, a signal is defined as “a mecha-
nism by which a process or thread may be notified of, or
affected by, an event occurring in the system. Examples
of such events include hardware exceptions and specific
actions by processes. The term signal is also used to refer
to the event itself” [4].

2.1.2 Classification of signals

Signals can be classified depending on the way they are
generated. By this criteria, signals can be classified as
generated synchronously, generated asynchronously, or
as sent explicitly to a process or thread.

When a process or thread, or the system itself, needs
to inform to the system that something important has
occurred, a signal can be generated to the correspond-
ing process. Signals can be generated when an exception
occurs, like dividing by zero or a page fault exception.
In this case, the signal is generated synchronously since
it is sent immediately in response to something the pro-
cess itself has done. Also, signals can be generated asyn-
chronously to the process’s execution, as when a timer ex-
pires or to inform an asynchronous I/O completion. Fur-
thermore, a process can send explicitly a signal to a pro-
cess or thread, using the kill(), sigqueue() or pthread kill()
functions when used as an interprocess mechanism.

2.1.3 Signal generation

POSIX.1 specifies that a signal is said to be generated for,
or sent to a process or thread when the event that causes
the signal first occurs. Determining if a signal has been
generated for a process or for a specific thread within the
process is done when the signal is generated. There are
situations where the signal is generated for an action at-
tributable to a particular thread, as when performing an
erroneous arithmetic operation. In these cases, the signal
shall be generated for the thread that caused the action.
In other situations, signals are generated in association
with a process ID or process group ID or an asynchronous
event, such as terminal activity, and then the signal shall
be generated for the process.

2.1.4 Signal delivery and acceptance

A signal is said to be delivered to a process when the
appropriate action for the process and signal is taken.
We discuss the possible actions to be taken later. On
the other hand, a thread can wait for a signal to arrive
using any of the sigwait() family of functions (sigwait(),
sigwaitinfo(), sigtimedwait()) and the action defined for
the signal is then not taken. In these cases the signal is
no delivered but accepted by the thread. A signal is said
to be accepted by a process when the signal is selected
and returned by one of the sigwait() functions.

A signal is pending during the time interval between
the generation of the signal and its delivery or accep-
tance. This interval of time generally cannot be detected
by an application. A process or thread can block the
delivery or acceptance of a signal, and in that case the

blocked signal will remain blocked until it is unblocked
and delivered, accepted by a call to the sigwait() func-
tion, or the action associated with it is set to ignore the
signal.

POSIX.1 specifies that if a signal is generated for a
process and one or more threads are active within the
process, the signal shall be delivered to exactly one of
those threads within the process which is in a call to a
sigwait() function selecting that signal or has not blocked
delivery of the signal. Nevertheless, determining which
thread within the process is the receiving thread is not
clearly specified. If no thread makes a call to a sigsus-
pend() function or any of the sigwait() functions selecting
that signal and all threads within the process block deliv-
ery of the signal, the signal shall remain pending until a
thread a calls any of these functions selecting that signal,
or a thread unblocks delivery of the signal.

2.1.5 Signal mask

In order to define the set of signals currently blocked
from delivery to a thread, a thread’s signal mask is used.
POSIX.1 specifies that the signal mask for a thread shall
be initialized from that of its parent or creating thread,
or from the corresponding thread in the parent process
if the thread was created as the result of a call to fork().
The pthread sigmask(), sigaction(), sigprocmask(), and
sigsuspend() functions control the manipulation of the
signal mask.

2.1.6 Signal actions

Each process has an action to be taken in response to
each signal defined by the system. A process can ignore
the signals, take the default action for the signal, or can
execute the application-defined signal handler. The def-
inition of the signal action for a particular signal can be
done using the signal() or sigaction() functions.

Next we present an overview of the POSIX.1 stan-
dard, which is mandatory for all POSIX systems, and the
Real-Time Signals Extension.

2.2 POSIX.1 Signals (UNIX Signals)

Signals are a very important part of an operating system.
Signal services are a basic mechanism within POSIX-
based systems and are required for error and event han-
dling. POSIX.1 defines a set of functions that must be
present in all POSIX systems, and some of them are de-
scribed in Table 3 [7].

3

Function Description

sigemptyset(sigset t *set) Initializes the signal
set, excluding all
signals.

sigfillset(sigset t *set) Initializes the signal
set, including all
signals.

sigaddset(sigset t *set, Adds an individual
int signo) signal to the

signal set.

sigdelset(sigset t *set, Deletes an individual
int signo) signal from the

signal set.

sigpending(sigset t *set) Stores the set of
signals that are
blocked from delivery.

sigismember(const sigset t Tests if a signal is a
*set, int signo) member of the set.

sigprocmask(int how, Examine or change the
sigset t *set, calling process
sigset t *oset) signal mask.

sigaction(int sig, Allows to specify the
struct sigaction *sa, action associated with
struct sigaction *osa) a specific signal.

pthread sigmask(int how, Examine or change
sigset t *set, the calling thread
sigset t *oset) signal mask.

sigsuspend(sigset t Suspends a thread
*sigmask) until delivery of a

signal in sigmask.

sigwait(sigset t *set, Similar to sigsuspend,
int *sig) but no signal handler

is executed.

kill(pid t pid, int sig) Sends a signal to
a process.

pthread kill(pthread t Sends a signal to
thread, int sig) a thread.

TABLE 3: POSIX.1 Signal Functions

As mentioned before, each process has an action to
be taken in response to each signal defined by the sys-
tem. To indicate the action to be taken POSIX.1 defines

several mechanisms. One of them is trough the use of
the sigaction() function. These functions use an argu-
ment of type struct sigaction whose members are shown
in Table 4. The first one is a pointer to a function and
it is used to define a POSIX.1 signal handler that will be
invoked when a signal is accepted by the process. If this
pointer has the value of the SIG IGN, then the action to
be taken is to ignore the signal. If, on the other hand,
the value is the macro SIG DFL, then the action is the
default one, as defined in signal.h [4]. The default action
for the majority of signals is to abnormal termination of
the process, or stopping the process. The fourth member
is also a pointer to a function and it will be discussed in
the next section.

Member Use

void (*sa handler)(int) Pointer to a signal-catching
function or one of the macros
SIG IGN or SIG DFL.

sigset t sa mask Set of signals to be blocked
during execution of the
signal handling function.

int sa flags Special flags.

void (*sa sigaction) Pointer to a signal-catching
(int, siginfo t *, function or one of the macros
void *) SIG IGN or SIG DFL

TABLE 4: Struct Sigaction Members

POSIX.1 defines several different signals. Some of
them are used primarily by the operating system, while
two are defined for application use: SIGUSR1 and SI-
GUSR2. This means that an application can make use
of this two signal the way it wants.

Signals have been used as a basic mechanism for
asynchronous communication between heavyweight pro-
cesses or processes. However, the use of lightweight pro-
cesses or threads have provided better mechanism for in-
ter threads communication since threads share the same
process’s address space. Furthermore, signals presents
some drawbacks to be used in real-time applications: too
few number of signals for application use, no priority on
signal delivery, limited information content associated to
a signal, signal lost due to not queueing, among others
problems. In order to overcome these limitations, the
real-time signals extension has been proposed.

2.3 POSIX Real-Time Signals Exten-
sion

The Real-time Signals Extension is “a determinism im-
provement facility to enable asynchronous signal notifi-
cations to an application to be queued without impact-
ing compatibility with the existing signal functions” [4].

4

Signals have been used as a synchronous communica-
tion mechanism for a long time, but nowadays the use
of threads are a good and alternate mechanism for syn-
chronous communication other than signals. Neverthe-
less, real-time applications often need signals for asyn-
chronous notification for events such as timeout, message
arrival, and hardware interrupt, and expect high perfor-
mance and low latency in signal’s notification. Real-time
Signals provide the reliable high-performance mechanism
to support such notification.

The Real-time Signals Extension improves POSIX.1
signals in several ways. For instance, there are more
signals available for application use. The new signal
numbers go from SIGRTMIN TO SIGRTMAX, inclusive.
There must be at least RTSIG MAX real-time signals,
and the minimum number of real-time signals that the
implementation is required to support has been increased
from the number specified in POSIX.1, form 8 to 16. The
rationale for this increase is that there are many appli-
cations that have more than 8 different kinds of events.

To define the action to be taken in response to a sig-
nal, the sigaction() function can be used. This function
uses a parameter of the type struct sigaction to specify
the action to be taken, but also uses this structure for
other purposes in the case of real-time signals (See Table
4).

One of them is the sa flags field. If the bit called
SA SIGINFO of the sa flags field is set , it indicates that
the corresponding signal should be queued to the process,
and that the signal will carry more information. It also
indicates that the signal-catching function, if defined, will
follow the prototype indicated next:

void (*sa_sigaction)(int signo,

siginfo_t *info,

void *);

The POSIX.1 signal-catching function receives only
one argument, but the real-time signal one receives three.
The second argument of this function is of the type sig-
info t, and its structure is shown next:

typedf struct {

int si_signo; // Signal number

int si_code; // Signal code

int si_errno; // An errno value

// associated

// with this signal

pid_t si_pid; // Sending process ID

uid_t si_uid; // Real user ID of

// sending process

void *si_addr; // Address of faulting

// instruction

int si_status; // Exit value or signal

long si_band; // Band event for SIGPOLL

union sigval si_value; // Signal value

} siginfo_t;

The union sigval is used to pass a value along with
the signal. The value could be either an integer or a
pointer data value. This extra information associated to
a signal can be used by an application to identify the
source of the signal for events of the same kind that use
the same signal number.

Since POSIX.1 signals are not queued some events
may be lost. To overcome this limitation, real-time sig-
nals are queued. If the SA SIGINFO bit of of the sa flags
field is set for a given signal, multiple occurrences of the
signal are queued to the process. When the process is
able to receive its signals, they will be dequeued and de-
livered to the process without signal lost. There’s a limit
of the number of signals that can be queued to a process.
This limit is defined in SIGQUEUE MAX (limits.h). The
minimum acceptable is 32.

Another improvement is that real-time signals must
be delivered in order. These signals are dequeued and de-
livered lowest-numbered signal first. This feature allows
applications to use the number as a signal priority.

There are new signal-related functions in the Real-
time Signals Extension, and are shown in Table 5.

Function Description

sigqueue(pid t pid, Sends a queued signal
int signo, to a process.
union sigval value)

sigwaitinfo(sigset t *set, Similar to sigwait(),
siginfo t *info) with additional info.

sigtimedwait(sigset t *set, Similar to sigwaitinfo(),
siginfo t *info, but waits timeout units.
struct timespec
*timeout)

TABLE 5: Real-Time Signal Functions

The sigqueue() function is used to send queued sig-
nals to a process. The Real-time Signals Extension de-
fines that if signal is generated for the sending process
(as will be the case in a single-process system) using the
sigqueue() function, and if the signal is not blocked for
the calling thread and if no other thread has the sig-
nal unblocked, it shall be queued and sent to the calling
thread. This means that if a signal is sent to one process
and within the process are multiple threads, to define the
calling (or receiving) thread must be necessary block the
signal in all but the calling thread.

5

3 Integrating Real-Time Sig-
nals into a RTOS

POSIX was formerly defined to standardize the AT&T
System V and Berkeley CSGR systems interfaces, that
operated in a heavyweight process environment. Sub-
sequent modifications and additions to the POSIX stan-
dard have been done taking care of backward compatibil-
ity, which means that old applications, designed to work
in a heavyweight process environment, may continue
to work correctly in systems that conform to the new
standard. As POSIX evolved, additions as the POSIX
1003.1c (threads) standard have made possible the cre-
ation of more efficient and flexible applications without
loosing compatibility with existing API. Nevertheless,
when the real-time signal extension is used in real-time
systems where the execution entities are threads instead
of processes, there are specific areas in which the stan-
dard is ambiguous. On the other hand, conformance
with standard APIs is always desirable since it guaran-
tees source code portability and thus flexibility. The au-
thors believe that an extension to the real-time signals
standard could be helpful in avoiding ambiguity, reduce
overhead and simplify implementation, preserving porta-
bility and making a compromise between standard con-
formance and predictability. In this section we discuss
the POSIX Real-Time Signals Extension integration into
a real-time operation system conforming the POSIX Min-
imal Real-Time System Profile, and propose an extension
to the standard semantics.

There are some issues where the extension proposed
may be improve the real-time signals implementation and
portability. One of them is related to selecting the tar-
get thread of a signal. In a heavyweight process envi-
ronment, determining the target process of a signal is
straightforward. However, in a lightweight process envi-
ronment, POSIX doesn’t specify it clearly. Determina-
tion whether the signal has been generated for the pro-
cess or for a specific thread within the process should
be made at signal’s generation time. If the action that
generated the signal is attributable to a specific thread,
as a page fault exception, the signal is then generated
for the thread that caused the action. But if the signal
is generated for the whole process, it shall be delivered
to exactly one of those threads within the process that
has not blocked the signal. The operating system has
to set up a loop through the thread’s list to check every
thread’s signal mask and to find out a suitable thread
to deliver the signal. This search implies both system
overhead and non determinism. If there’s more than one
thread with the signal unblocked, is not specified which
one to choose. This indeterminism can be avoided if a
programmer takes care of blocking the signal in all but
one thread, but this mechanism doesn’t avoid overhead,
and if it is missed or not set up properly the system is
left in an indeterministic state, which is not acceptable
for a real-time system.

Another issue is related to the signal’s delivery and
acceptance time. In the previous section, it was men-
tioned that POSIX defines that a signal is pending dur-

ing the time interval between the generation of the signal
and its delivery and acceptance, and that the length of
this time interval generally cannot be detected by the
application. When a signal must be delivered and ac-
cepted is not clearly defined in the POSIX standard, and
therefore a POSIX-conformance real-time system doesn’t
provide predictability in this issue. This may also lead
to unnecessary overhead, as we show next.

POSIX defines several scheduling algorithms [4], and
among them the preemptive fixed-priority algorithm [10]
is the one used for the vast majority of real-time op-
erating systems. In such operating systems, processor
is assigned to the highest priority thread, preempting a
lower priority one if necessary. Once the scheduler de-
cides which thread to execute, in some operating systems
it’s a common practice to program the next scheduling
point (the time when a new scheduling decision must be
taken) looking for the nearest highest-priority scheduling
event (a new thread is created, a thread becomes ready,
a timer expires, etc) and arming a timer at that time.
In the case of a signal delivery, at what priority level
should it be considered? Delivering signals at at highest
priority level seems to be the safer choice, but this de-
cision leads to undesirable overhead. Let’s suppose that
a given thread jiwith priority pi becomes ready at time
ti and executes until time tf in a priority-based system.

Suppose that a timer expires at time tr (ti≤ tr ≤ tf) and

as a consequence of timer expiration signal sk shall be
delivered to thread jk. Thread jk has priority pk ¡ pi.
If signal sk is delivered at the highest priority level, ji’s
execution is suspended at time tr and signal sk delivered,
but since the target thread jk has lower priority than ji,
this one (ji) continues its execution and the action as-
sociated with the signal is executed until ji finishes its
execution. This overhead could be avoided if sk is de-
livered at jk’s priority level. In this case, ji will not be
unnecessarily suspended at time tr and signal sk will be
delivered when ji finishes.

Overhead due to the issues discussed above can be re-
duced with the notion of signal owner, which is presented
next. We also discuss the consequences of the defined de-
fault POSIX signal actions in real-time systems and pro-
pose a different way to address this problem, along with a
discussion about signal handlers for synchronously gener-
ated signals. Finally, we discuss the implications of signal
queueing in the Minimal Real-Time System Profile.

3.1 Signal Owner

We propose the signal owner notion to eliminate or re-
duce some of the problems discussed before. We’ll see
how this concept extends the semantics of some func-
tions related with threads and can be used to simplify
signal’s implementation in a RTOS and to preserve porta-
bility among applications. The main motivation in defin-
ing the signal owner notion is to avoid ambiguity or un-
predictability in determining the receiving thread when
asynchronously generated signals are used. The signal
owner is defined as the thread that installed the signal
handler last, or that made a call to any of sigwait()

6

functions last. Using the signal owner notion not also
simplifies system implementation but reduces overhead.
We discuss next how this can be accomplished.

The sigaction() function is used as a mechanism for
threads to define the action associated with a specific sig-
nal. This function supersedes the signal() function and
POSIX suggests that it should be used in preference. One
of the actions associated with a specific signal is to han-
dle it by setting up a function to be called when a signal
is delivered. This function is called the signal handler.
As we’ve seen, the signal owner is defined as the thread
that installed the signal handler last. When a signal is
asynchronously generated, it’s delivered to its owner, and
if a handler is defined for that signal, it is executed at the
owner’s priority level. Determining the calling thread is
done without ambiguity.

The sigsuspend() function can be used to wait for a
signal, and once it is received, the defined action is exe-
cuted. If the action defined for the received signal is to
execute a signal handler, then sigsuspend() shall return
after the signal handler returns if the thread in a call of
the sigsuspend() is the signal owner.

There exist another way for a thread to wait for a
signal. The sigwait() functions provide a synchronous
mechanism for threads to wait for signals. When a thread
makes a call to a sigwait() function, it is suspended until
any of the waited signals arrive. When this happens, the
signal handler or the action defined for the signal is not
executed; instead, the blocked thread returns when the
signal arrives, allowing a user-level signal handling oper-
ation to be executed. The use of this functions avoids the
overhead associated with the execution of a kernel-level
signal handler. The family of sigwait() functions offer an
efficient method to deal with signals, and in heavyweight
process environment determining the receiving process
is done unambiguously. Nevertheless, determining it in
lightweight process environment is not as clear. When
these functions where proposed, one important question
for the POSIX group was how many threads that are
suspended in a call to a sigwait() functions for a signal
should return from the call when the signal is received
[7]. Four choices were considered:

1. Return an error for multiple simultaneous calls to
sigwait functions for the same signal.

2. One or more threads return.

3. All waiting threads return.

4. Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal
was felt to be overly restrictive, and the consensus was
that exactly one thread that was suspended in a call to a
sigwait function for a signal should return when that sig-
nal occurs. However, determining which of the threads
should return when the signal is sent is not specified. The
concept of signal owner offers a way to address this prob-
lem, since it clearly defines the which is receiving thread.
The signal owner is, in this case, the thread that made a
call to any of sigwait() functions last. If more than one
thread made a call to any of sigwait() functions, signal
acceptance should be done in a First In Last Out basis.

If signals are used as a asynchronous notification
mechanism, determining the calling thread is straight-
forward using the notion of signal owner. When a signal
is generated, either because a timer has expired, a mes-
sage has been received on a message queue, or an asyn-
chronous I/O has been completed, the operating systems
doesn’t need to look to every thread’s signal mask to find
out a suitable thread to deliver the signal. It only needs
to check the owner’s signal mask and if the signal is not
blocked or if is not set to be ignored, it is delivered to
the signal owner. On the other hand, if it is blocked for
that thread, it is marked pending until unblocked.

Deciding when to deliver the signal is also simpler
and more congruent in a priority based system using the
signal owner concept. The signal inherits the owner’s pri-
ority and therefore signal delivery and signal handler ex-
ecution is done at the corresponding priority level. This
way, signal delivery and signal handler execution will be
done without interfering with higher priority threads ex-
ecution, giving predictability to the system.

The pthread kill() function deserves special atten-
tion. In a multi-threaded environment, since threads
share process address space, there are better and more
efficient mechanisms than using signals for inter-thread
communication, and therefore its use should not be en-
couraged for this purposes. With the semantics proposed
in this paper, the pthread kill() function should be lim-
ited to a very specific situations, as to stop, continue or
terminate a given thread’s execution, or to check the va-
lidity or existence of the given thread. More about this
is discussed next.

As summary, the notion of signal owner is proposed
in order to avoid ambiguity in determining the receiving
thread when asynchronously generated signals are used.
Furthermore, it gives a clear way to define the priority
level at which a signal handler must be executed. This
notion also reduces overhead and simplifies implementa-
tion.

3.2 Signals default action

Three types of action are associated to a signal: ignore
the signal, execute a signal handler, or execute the de-
fault action. Depending on the signal, the default action
can be [4]:

T Abnormal termination of the process. The process
is terminated with all the consequences of exit() ex-
cept that the status made available to wait() and
waitpid() indicates abnormal termination by the
specified signal.

A Abnormal termination of the process. Addition-
ally, implementation-defined abnormal termina-
tion actions, such as creation of a core file, may
occur.

I Ignore the signal.

S Stop the process.

C Continue the process, if it is stopped; otherwise,
ignore the signal.

7

As can be seen from Table 6, that shows a list of
signals that may be present in any POSIX conformance
system, the default action for most signals is the abnor-
mal termination of the process or stopping the process.
This seems appropriate in a heavyweight process envi-
ronment, but in a PSE51 system where there’s only one
process and many threads, the default action is too dras-
tic. From a fault-tolerance point of view, either an ab-
normal termination of the process or stopping the pro-
cess may not be acceptable since the PSE51 system is
terminated as a whole. The authors propose that for
a PSE51 system instead of terminating or stopping the
whole process, the default action be cancelling the offend-
ing or calling thread in the first place, and if the thread is
not cancelled, then suspending the thread. In this case,
the system will still be active and perhaps a degraded
level of system operation can be activated. In any case,
the proposed defaults actions are always less restrictive
than the current standard. With this new approach the
pthread kill() function could be used safely since only the
receiving thread and not the process is affected via the
default action.

On the other hand, if a signal is not generated syn-
chronously, then the thread to be suspended is the signal
owner. Nevertheless, for asynchronous generated signals,
or when a signal is generated using the sigqueue() func-
tion, not always a signal owner is clearly defined. If no
signal handler has been defined for the signal, or if there
is no thread waiting for it with the sigwait() functions,
the signal doesn’t have an owner accordingly to our def-
inition. If the signal is not set to be ignored, the de-
fault action takes place. Since no signal owner is defined,
which thread should be suspended? In order to solve
this ambiguity, the authors propose that as default ev-
ery signal is set to be ignored when the system starts
execution. Setting the default action for a signal must
be done explicitly, and the thread that sets it becomes
the signal owner. With this approach, a signal owner is
always defined and ambiguity is avoided at any time.

It could be claimed that applications should install
handlers for every signal used and that a change in the
signal default action is not needed. However, some con-
siderations must be taken into account. If in an en-
vironment where the execution entities are process the
default action is to stop the offending execution entity
(process), a natural extension of the standard to environ-
ments where the execution entities are threads should be
to also stop the the offending execution entity, a thread in
this case. On the other hand, signals use are not a com-
mon practice among programmers, and therefore that a
signal is the cause of an abnormal termination of the
whole process may not be easily detected or prevented
and may lead to catastrophic results. As an example, the
European Ariane 5 launcher crashed about 40 seconds af-
ter takeoff due to a floating-point error not handled by
any exception-handler [9]. Perhaps a different default
action could be helpful in avoiding this costly disaster.

Signal Default Description
Action

SIGABRT A Process abort signal.
SIGALRM T Alarm clock.
SIGBUS A Access to an undefined

portion of a memory
object.

SIGCHLD I Child process terminated,
stopped, or continued.

SIGCONT C Continue executing, if
stopped.

SIGFPE A Erroneous arithmetic
operation.

SIGHUP T Hang-up.
SIGILL A Illegal instruction.
SIGINT T Terminal interrupt signal.
SIGKILL T Kill (cannot be caught

or ignored).
SIGPIPE T Write on a pipe with

no one to read it.
SIGQUIT A Terminal quit signal.
SIGSEGV A Invalid memory reference.
SIGSTOP S Stop executing (cannot

be caught or ignored).
SIGTERM T Termination signal.
SIGTSTP S Terminal stop signal.
SIGTTIN S Background process

attempting read.
SIGTTOU S Background process

attempting write.
SIGUSR1 T User-defined signal 1.
SIGUSR2 T User-defined signal 2.
SIGPOLL T Pollable event.
SIGPROF T Profiling timer expired.
SIGSYS A Bad system call.
SIGTRAP A Trace/breakpoint trap.
SIGURG I High bandwidth data

is available at a socket.
SIGVTALRM T Virtual timer expired.
SIGXCPU A CPU time limit exceeded.
SIGXFSZ A File size limit exceeded.
SIGRTMIN to T Real-Time user-defined
SIGRTMAX signals.

TABLE 6: Signals List

3.3 Synchronous signals

So far we have mainly discussed asynchronously-
generated signals. The notion of signal owner lets de-
fine, for a given signal, a per-thread signal handler. For
synchronously-generated signals, however, a global sig-
nal handler seems to be more appropriate. Let’s suppose
that a thread tries to perform a zero-divide operation.
The operating systems detects the invalid operation and

8

generates a SIGFPE signal for the thread that caused
the erroneous arithmetic operation. If no signal handler
is defined for SIGFPE, the offending thread is cancelled
or suspended and the system will go on. If a signal han-
dler is defined, on the other hand, proper actions may
take place to solve the problem or to activate a fault-
tolerant action in order to leave the system in a stable
state. Since all threads share the same signal handler,
the pthread self() function can be used inside the han-
dler code to allow detection of the offending thread and
to take the proper action. Furthermore, using this tech-
nique, the creation of a handler’s library is easier and
can be used to add a certain level of fault-tolerance to
the system.

3.4 Queued Signals

Before the sigqueue() function was introduced, signals
were used in a heavyweight process environment as soft-
ware interrupts for specific events. When signal queue-
ing was incorporated into the POSIX standard it made
possible the use of signals as message queues for inter-
process communication, which offers many advantages.
However, in a single-process multi-threaded environment
there are better mechanisms for inter-threads communi-
cation other than signals. Using sigqueue() for this pur-
pose is not the most efficient option since latency of sig-
nals can be too high, and for the overhead and resources
waste associated to signal queueing. Nevertheless, in a
PSE51 system the sigqueue() function can be useful for
generating software interrupts that will use handlers de-
fined for other signals, such as the handler of a group of
timers. Also, these group of timers can use the same sig-
nal number benefiting from the signal queueing services.

Independently of the mechanism used to send a
queued signal, it may fail if the system has insufficient
resources to queue the signal. POSIX defines an explicit
limit on the number of queued signals that a process
could send, and it suggest that this limit is ”per-sender”,
even though it does not specify that the resources be part
of the state of the sender. The notion of signal owner, on
the other hand, offers a different approach to address this
issue. If the limit on the number of queued signals that
a process could send is set “per signal owner” instead
than “per sender”, implementation is simplified and per-
formance improved. When the signal owner is chosen to
be executed, it dequeue any queued signals directly.

4 Implementation

A preliminary version of POSIX real-time signals includ-
ing some of the proposals made in this paper has been
implemented in RTLinux [12]. RTLinux is a small and
fast hard real-time operating system. It uses Linux as
a general-purpose operating system and the real-time
components are left in a single, multi-threaded, real-
time process running on a bare machine. Linux can
be seen as a PSE54 or Multi-Purpose Real-Time Sys-
tem, while RTLinux as a PSE51 or Minimal Real-Time
System Profile system. Our approach in implementing

the POSIX Real-Time signals and timers was to build
a PSE51 conformance system making a compromise be-
tween efficiency and standard conformance. The imple-
mentation of both POSIX.1 [12] and POSIX Real-Time
signals was done using the OCERA [2] GPL kernel (based
on RTLinux version 3.2pre1 and Linux kernel 2.4.18).

5 Conclusions and Future

Work

POSIX defines a standard operating system interface
and environment to support applications portability at
the source code level. Implementing all the features of
POSIX in an real-time operating system may not be ap-
propriate. There are systems where a subset of the inter-
faces provided by POSIX are sufficient. Furthermore,
portability is often sacrificed to provide predictability
and low overhead. In this paper we discussed the POSIX
Real-Time Signals and proposed an extension to the stan-
dard semantics in order to simplify implementation, im-
prove performance and to provide portability of systems
where the execution entities are threads instead of pro-
cesses, making a compromise between standard confor-
mance and efficiency. The authors proposal does not
add new system calls and it is compatible with current
methodology related with the use of signals. The no-
tion of Signal Owner has been presented to improve pre-
dictability, minimize overhead and give flexibility. Also,
we discussed the consequences of the defined default
POSIX signals action in real-time systems and propose
a different way to address this issue in order to avoid
unexpected system termination. Furthermore, we dis-
cussed the implications of signal queueing in the Mini-
mal Real-Time System Profile and a proposal was made
to improve performance and simplify implementation.
The POSIX Real-Time Signals Extension has been im-
plemented in RTLinux. Future work includes implemen-
tation of the proposal in another RTLinux areas, such as
Asynchronous I/O.

References

[1] M. Aldea and M. Gonzalez-Harbour, 2003, Evalu-
ation of New POSIX Real-Time Operating Systems
Services for Small Embedded Platforms, Proceed-

ings of the 15th Euromicro Conference on

Real-Time Systems, pp.161-168.

[2] A. Crespo and I. Ripoll, 2003, OCERA Whitepaper,
OCERA Project and Universidad Politec-

nica de Valencia.

[3] IEEE 1003.1-1988, 1988, IEEE Standard Portable
Operating System Interface for Computer Environ-
ments, IEEE Std 1003.1-1988, Institute of Elec-

trical and Electronic Engineers.

[4] IEEE Std 1003.1, 2004 Edition, 2004, The Open
Group Technical Standard Base Specifications, Issue
6. Base Definitions, Institute of Electrical and

Electronic Engineers and The Open Group.

9

[5] IEEE Std 1003.1, 2004 Edition, 2004, The Open
Group Technical Standard Base Specifications, Issue
6. Ratioale (Informative), Institute of Electri-

cal and Electronic Engineers and The Open

Group.

[6] IEEE Std 1003.1, 2004 Edition, 2004, The Open
Group Technical Standard Base Specifications, Is-
sue 6. Shell and Utilities, Institute of Electri-

cal and Electronic Engineers and The Open

Group.

[7] IEEE Std 1003.1, 2004 Edition, 2004, The Open
Group Technical Standard Base Specifications, Is-
sue 6. System Interfaces, Institute of Electri-

cal and Electronic Engineers and The Open

Group.

[8] IEEE Std 1003.13-2003,2003, IEEE Standard for
Information Technology - Standardized Application

Environment Profile (AEP) - POSIX Realtime and
Embedded Application Suppor, Institute of Elec-

trical and Electronic Engineers.

[9] J.M. Jazequel and B. Mayer, 1997, Design by Con-
tract: The Lessons of Ariane, IEEE Computer,
pp.129-130.

[10] C.L. Liu and J.W. Layland, 1973, Scheduling Algo-
rithms for Multiprogramming in a Hard Real-Time
Environment, Journal of the ACM, pp.44-61

[11] J. Vidal, F. Gonzales and I. Ripoll, 2002, POSIX
Signals Implementation in RTLInux, OCERA

Project and Universidad Politecnica de Va-

lencia.

[12] V. Yodaiken, 1999, The RTLinux Manifesto, Pro-

ceedings of the 5th Linux Expo.

10

