
Introducing the C-API Simulink Target for RT-Linux

Arthur Siro

Universidad de Navarra, Escuela Superior de Ingenieros, TECNUN.

Paseo de Manuel Lardizabal 13, 20018, Donostia-San Sebastian, SPAIN

asiro@ceit.es

Iñaki Diaz

Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, CEIT.

Paseo de Manuel Lardizabal 15, 20009, SPAIN

idiaz@ceit.es

Abstract

The ‘C-API Simulink Target for RT-Linux’ (CAPI STRTL) is an application developed to extend
the functionality of the original ‘Simulink target for RT-Linux’ (STRTL) by providing the user with full
parameter tuning and signal access, of a real time application running in a RT-Linux kernel, independent
of the Simulink/MATLAB interface.

In this manner, CAPI STRTL extends the utility of the original STRTL from its conventional use
in control applications to more exotic fields such as haptics/virtual reality and even augmented reality
- not to mention the many other possible implementations users can realize by having signal access and
parameter tuning at the disposal of their custom applications.

The CAPI STRTL is an add-on feature to the STRTL and is not intended to replace it in anyway.
The purpose of this paper is to introduce the CAPI STRTL and demonstrate how its functionality

can extend the use of STRTL. This paper assumes some previous knowledge of the workings of STRTL.

Keywords: RT-Linux, Simulink, Real-Time Workshop

1 Introduction

Rapid prototyping tools e.g. Simulink Target for
RT-Linux (STRTL)[1] and RTAI-Lab[2], used for the
development and testing of real-time applications ex-
ecuting on RT Linux variants[3] have been around
for the last few years. These utilities in turn harness
code generating and signal monitoring tools such
as Real Time Workshop and Simulink/MATLAB[4],
and Scilab/Scicos[5].
A user - via a few mouse clicks on a modelling ap-
plication‘s GUI1 e.g. Simulink - generates code that
will execute on a RT Linux variant‘s kernel. All that
is left is to be done is compilation and execution
in the machine running the RT Linux variant and
viola! The user can then monitor signals and adjust
parameters via the interface provided to them by
Simulink or RTAI-Lab. This is by no means a trivial
achievement on the part of the designers but imposes

some limitations on the part of the user.
For instance, users might require that the signals
obtained ‘on the fly’ during program execution be
channelled to a custom application instead of the
interface provided by, say, Simulink. Now, though it
would be a worthy undertaking to try and list the
number of possible things users are capable of doing
if they had these signals at their complete disposal,
some ‘immediate’ areas of application can be in hap-
tics and even robotic tele-oparation applications in
augmented reality.
In other words, although most of these Rapid Proto-
typing tools are incredibly wonderful utilities, they
generally target conventional control and robotic ap-
plications. It is this restriction that CAPI STRTL
attempts to purge.

1Graphical User Interface

1

2 Software Description

STRTL is the outcome of a PhD research project
carried out at the Caledonian University, School of
Engineering, Design and Science by a certain Dr.
Raul Garcia Murillo[1]. STRTL is one of the few
widely tested and proven alternatives to the ex-
pensive commercial software required for develop-
ing and testing prototype hard real-time control ap-
plications. It is a modification of the RTW tar-
get Generic Real-Time Target used for UNIX based
computers[6]. STRTL offers the capability of remote
monitoring and control using a client-server model.
In Simulink/RTW jargon, a client/host is a computer
running the Simulink process while the machine run-
ning the real-time application is the server/target.
Simulink implements host/target communication via
the TCP/IP protocol.

Now, CAPI STRTL is a new software feature
that is partially based on the original STRTL frame-
work. It differs with respect to STRTL mainly in the
manner signals and parameters of the real-time ap-
plication are handled. CAPI STRTL strives to offer
mechanism and not policy in signal and parameter
handling on the part of the user. By mechanism and
not policy, we mean that the users are free to do
whatever they wish with the signals and parameters
of a running instance of a real-time application.

In other words, while STRTL offers a great deal
of ease in parameter tuning and/or signal viewing
(via Simulink scope / display blocks) of the real-time
process(users practically require no need of knowl-
edge of the C/C++ programming language) users
are restricted to the interface offered by Simulink.
This is fine for control engineers but is not of much
help for somebody wishing to play with signals his
own way. The down side of the latter case(and yes,
nothing comes for free!) is that the user has to have
some C/C++ programming know how since an API
to access the signals and parameters of the real-time
application has to be used. But the programming
interface is quite straight forward.

3 CAPI STRTL Versus STRTL

Below are some similarities and differences in the
workings of CAPI STRTL and STRTL. Some of the
features (as regards CAPI STRTL) mentioned below
are subject to change.2

• Parameter Tuning and Signal Handling

With STRTL, parameter tuning and signal handling
is done via the interface provided by Simulink. Scope

blocks are used to view the signals generated by a
running instance of the real-time process in the (re-
mote) computer while parameters are passed to the
kernel module via Dialog boxes of the corresponding
blocks of the Simulink model version of the real-time
application. Once the user configures Simulinks Con-
figuration /Simulation parameters Dialog Box and
generates code all that is left to be done is compila-
tion in the target machine, connection to, and exe-
cution control from the host computer. This mode
of operation in Simulink/RTW jargon is referred to
as External Mode; the low-level transport layer han-
dling physical transmission of messages between the
client and server being the TCP/IP protocol.

Linux

Server

Ethernet
node

Real-time algorithm
within the STRTL
framework in RT-Linux

I/O

HARDWARE

RT-FIFO
Shared Memory

TCP/IP(optional) Ethernet
Node

CLIENT

Windows

Simulink

FIGURE 1: STRTL Operation and Usage

in External Mode

In the case of CAPI STRTL, the user employs a
specific signal naming protocol. This protocol marks
the signals to be read and specifies the order in which
these signals will be passed to the users custom ap-
plication. The use of scope blocks in the Simulink
model is simply ignored in the code generation pro-
cess. Parameter tuning - at runtime- is done via a
consistent API. Thus, the user has to write a cus-
tom user land3 program to handle these signals and
parameters.

Linux

Real-time algorithm
within the CAPI_STRTL
framework in RT-Linux

I/O

HARDWARE

RT-FIFO
Shared Memory

TCP/IP (OPTIONAL)

Windows

TCP/IP(OPTIONAL)

CAPI_STRTL
 Server

Custom App

Custom App

Linux

UNIX etc

FIGURE 2: CAPI STRTL Operation and

Usage

2See future direction below
3See future direction below

2

STRTL implements a Discarding Algorithm
to improve real-time monitoring in Local Area
Networks. It discards signal points (SIMULINK
packets) according to the hardware-network
infrastructure[7]. Now as CAPI STRTL delivers sig-
nals and parameters to custom applications, each
with varying implementation goals a variety of
communication mechanisms arise from monitored
non-buffered reads in real-time to non-synchronised
buffered signal acquisition. At the time of the writing
of this paper, a simple synchronisation mechanism
has been implemented that enables users perform
non-buffered reads (of signals)in real-time(i.e. syn-
chronisation is maintained by the kernel mode task);
the user - via a CAPI STRTL simulink library M
S-function Simulink block,GetSignals - specifies the
rate at which the userland application can handle
signals generated by the real-time process (much in
the same way as would have been done with scope
blocks in STRTL) and later on, during real-time pro-
gram execution, the kernel mode task writes these
signals into shared memory at the rate specified while
counter checking whether the user space process is
reading this data in real-time. If not, a synchro-
nisation error is flagged. The solution in this case
would be to specify a lower frequency value in the M
S-function, GetSignals and redo the code generation
and build process.

• Code Generation

When generating C code from a Simulink model for
any target platform, RTW requires a script file (or
a .tlc file) called a System target file for its Tar-
get Language Compiler (TLC). When targeting the
STRTL platform, the strtl.tlc System target file is
used to control the code generation process for the
Simulink model and the strtfl.tmf template makefile
to generate a Makefile for the target machine. In the
case of the CAPI STRTL target, the capi strtl.tlc
and capi strtl.tmf file are usedinstead as the System
target file and the template makefile respectively.
However, this implementation style is a temporary
phase.4

• Compilation and Execution

Applications based on either of the CAPI STRTL
and STRTL frameworks are compiled and loaded
into the RT-Linux kernel in an identical fashion, i.e.
by use of the make f MODEL.mk command. How-
ever, to get up and running, the Simulink interface is
used with STRTL in ’External Mode’ while a custom
application is needed to handle signals and parame-
ters in the CAPI STRTL framework.

• Mischalleneous

CAPI STRTL implements the same watchdog al-
gorithm used in STRTL to ensure that the target
platform can handle the requested sample rate(s).
CAPI STRTL like STRTL supports both Single and
Multi-tasking modes.

4 EXAMPLE

1. A Simple Signal Data Read Example.

Below is a Simulink model that contains a
wrapper S-Function that invokes some custom
control algorithm which we can consider as a
black box as the details of its implementation
are trivial. What is of interest to us here is
how the user will obtain signals. The signal
lines labelled “x 1”, “x 2” and “x 3” will be
captured by CAPI STRTL at the rate speci-
fied by the sample time of the “ln1” block that
drives the GetSignals M S-function. A MultiQ-
3 DAQ board is used here. You could replace
this with your card interface or the Comedi
(kernel mode)library interface.

MULTIQ_3
Encoder 0

MULTIQ3_ENC

MULTIQ_3
Encoder 1

MULTIQ3_ENC1

MULTIQ_3
Encoder 2

MULTIQ3_ENC1

CINEMATICA

S-Function

MULTIQ_3
Analog Output0

MULTIQ3_A0

MULTIQ_3
Analog Output 1

MULTIQ3_A1

MULTIQ_3
Analog Output2

MULTIQ3_A2

GetSignals1

GetSignalsln1

x_1

x_2

x_3

FIGURE 3: Simulink model with a ’Black

Box’ S-function

Now there exist two small but important struc-
tures which store signal and parameter in-
formation. These structs are defined in the
params signls.h header file. The user applica-
tion should use these structures to extract sig-
nal info passed from the real-time process or
send parameters to it. These structs are de-
fined as follows.

typedef _rtSignls{

char signlsName[SZ_SIGNLSNAME];

4See future direction below

3

double signlsValue;

}rtSignls;

typedef _rtParams{

char paramsName[SZ_PARAMSNAME];

double paramsValue;

}rtParams;

Below is the gist of a typical signal reading ap-
plication to be used with the above implemen-
tation of a Simulink model.

/* required Unix headers here */

#include ‘‘params_signls.h’’

#include ‘‘c_api_common.h’’

int main()

{

rtSignls *userSignls;

/*

* socket creation, connection,

* buffer size initialization,

* misc. pointer sizes etc etc

*/

while(1){

capi_strtlRead(userSignls);

/* signals now in userSignls buffer i.e.

* a pointer now to an array of rtSignls

* structs...so do something (or nothing)

* with signals

*/

}

}

2. A Real World Demo:

CAPI in HAPTICS

Haptics is the science of applying touch (tac-
tile) sensation and control to interaction with
computer applications. By using special in-
put/output devices (joysticks, data gloves or
other devices), users can recieve feedback from
computer applications in the form of felt sensa-
tions in the hands or other parts of the body. In
combination with a visual display, haptics tech-
nology can be used to train people for tasks re-
quiring hand-eye coordination, such as surgery
and space ship maneuvers. It can also be used
for games in which you feel as well as see your
interactions with images. Haptics offer an ad-
ditional dimension to virtual reality or 3-D en-
vironment. A number of universities are exper-
imenting with haptics.

REVIMA is a haptic system developed at
the CEIT5 Applied Mechanics Department,
Spain[8]. REVIMA is a multidisciplinary en-
terprise that encompasses mechanical design,

control theory, computer graphics, computa-
tional geometry and human-machine interac-
tion. The system runs on 2 PC’s. One
computer is charged with executing the con-
trol loop (that controls the haptic interface)
while the other handles the graphics engine,
GUI and the algorithms of the collision solver.
Currently, a 500MHz Celeron CPU executing
the system control algoritm at 2KHz within
the CAPI STRTL framework is being imple-
mented. The scheme of the system architecture
is presented in the figure below.

FIGURE 4: REVIMA Schematic

The above control system has been imple-
mented in CAPI STRTL for MATLAB 6.5,
SIMULINK/RTW 5.0.1. A port to MATLAB
7.0, SIMULINK/RTW 6.0 is currently under-
way.

5 STATE OF AFFAIRS

1. The stable and tested version of CAPI STRTL
is for MATLAB 6.5, SIMULINK/RTW 5.x. A
port to MATLAB 7.0, SIMULINK/RTW 6.x
is currently underway and should be ready by
November or December 2005. This was only
due to lack of availability.

2. The TCP/IP communication implemenation
between the custom applications and the
CAPI STRTL framework needs a more rig-
orous analysis and testing. In addition,
once CAPI STRTL is ready for download,
more communication mechamisms will be aug-
mented according user feedback.

5Centro de Estudios e Investigacoines Tecnico de Gipuzkoa

4

3. CAPI STRTL may not work well (or not work
at all) with the more obscure Simulink blocks
and Non-Inlined S-functions. Wrapper S-
functions are the best alternatives in such sit-
uations.

6 FUTURE DIRECTION

Currently, CAPI STRTL and STRTL are separate
applications. However, their execution engines for
the control algorithms generated by RTW are prac-
tically identical. With a few #ifdefs and such pre-
compiler directives, there is no (known) reason why
CAPI STRTL cannot be merged into STRTL. As
far as the authors are concerned, STRTL is only
MATLAB 6.x and SIMULINK/RTW 5.x compati-
ble. A port may be neccessary to MATLAB 7.x and
SIMULINK/RTW 6.x. As mentioned before, IPC6

mechanisms between CAPI STRTL and user appli-
cations are subject to further study e.g. use of real-
time sockets.

7 DOWNLOAD

CAPI STRTL should be ready for free download
and usage with associated documentation and tuto-
rials by December or thereabouts from this web site:
www.tecnun.es/bitcrib/asiro/

References

[1] Raul Murillo Garcia, 2002, Simulink Target for

RT-Linux, Caledonian University

[2] Roberto Butcher, University of Applied Sciences
of South Switzerland, Lorenzo Dozio, Diparti-
mento di Ingegneria Aerospaziale del Politecnico
di Milano, 2003,CACSD under RTAI Linux with

RTAI-LAB, Fifth Real-Timw Linux Work-
shop, Valencia, Spain,

[3] www.realtimelinuxfoundation.org

[4] www.mathworks.com/
products/product listing/index.html

[5] www.scilab.org

[6] Vishal J.Desai DA-IICT Near Indroda Circle,
Gandhinagar, Gujarat, India, vishal desai@da-
iict.org, 2003, Interfacing RT-Linux and

Simulink,Fifth Real-Time Linux Work-
shop, Valencia, Spain.

[7] The Mathworks Inc., Real-Time Workshop

User’s Guide

[8] Savall.J.Borro, D.Gil J.J, Matey.L, 2002,
CEIT,Description of a Haptic System

for Virtual Maintainability in Aeronau-

tics,Proceedings of the IEEE/RSJ
International Conference on Intelli-
gent Robots and Systems (IROS), EPFL,
Lausanne, Switzerland pp2887–2892.

6Inter Process Communication

5

