
Development of robot controllers based on PC hardware and open

source software

D. Dallefrate, D. Colombo And L. Molinari Tosatti

ITIA-CNR Institute of Industrial Technologies and Automation
Viale Lombardia 20/A, 20131, Milan, Italy

{d.dallefrate, d.colombo, l.molinari}@itia.cnr.it

Abstract

Researchers, developers and system integrators require more openness in control systems in order
to design, develop and rapidly integrate functionalities to fulfill new application requirements. Even if
several robot control vendors provide their products with customized development tools, low cost and not
proprietary solutions should be preferred to face the rapid market changes and to reduce control life cycle
costs. In fact, most important success factors are the use of off-the-shelf hardware and open source and/or
free software, as well as a design focused on reconfigurability and portability of the control software is
crucial. In this paper a control architecture which complies with the above mentioned requirements is
presented. Specifically a modular control portable on different platforms has been designed, implemented
and then validated on two different platforms both based on real-time operating systems (RTOS). The
porting activity between the two platforms and specifically between QNX 4.25 and RTAI Linux has been
done using features compliant to the POSIX standard. As specific target, the proposed architecture has
been exploited to control two robots with different kinematics architectures. The first one is a 4 d.o.f
parallel robot prototyped at ITIA-CNR while the second one is an industrial 7-d.o.f robot manufactured
by Mitsubishi which is based on a serial kinematic chain. The obtained results for the second application
case are presented more in detail. Such a robot has an open architecture dedicated to Research &
Development that allows the direct control of servo PLC controller through an upper level PC controller.
To guarantee the real-time communication, the servo and upper level controller are linked by a dedicated
fiber optic network based on Arcnet interface at 100 Mb/s. Procedures have been developed to move the
robot in a safe and robust way.

1 Introduction

Nowadays, to be competitive, handling rapidly
changes in product design, in product mixes and vo-
lumes is crucial. In such a scenario, researchers and
developers, system integrators and end users require
more and more openness in systems they deal with.
Focusing on control systems, during the last decade,
the openness issue has been addressed in several ways
by worldwide research projects both in the field of
machine tools (i.e. OSEC/JOP, OMAC, OSACA) [1]
and in the field of Robotics (i.e. OROCOS) [2]. Al-
though a universal agreement on definition of Open
Control Systems (OAC) has been not yet achieved,
a basic set of common requirements has been drawn
and they can be summed up as follows:

• an OAC allows the portability of software
on different hardware platforms and operating

systems

• an OAC is modular having the capability of
easy replacement of modules with new ones,
allowing scalability both in performances and
functionalities

• an OAC allows easy integration of new func-
tionalities. This means firstly that it is based
on standards to let third parties develop hard-
ware and software that meet new requirements;
secondly, it means that an OAC provides plug-
and-play mechanisms for fast integration of
such new functionalities.

• an OAC is reconfigurable providing mecha-
nisms of easy adaptation of its parameters in
order to customize the system to different ap-
plication scenario

1



• an OAC is economic since it is based on off-the-
shelf modules both with reference to hardware
and software

Even if many control vendors offer integrated devel-
opment tools to customize their systems, such tools
are often based on proprietary solutions. Then, pro-
viding customizations for specific applications, for
instance modifications to better exploit robots and
machines with new kinematics [3], requires great en-
gineering efforts in term of knowledge, time and cost.
On the other hand, controls based on PC hardware
cover mostly the requirements of an OAC. Main rea-
sons include the increasing power of PC microproces-
sors that make them suitable for real-time applica-
tion, economies of scale of the PC market that reduce
their cost, the easy integration of PCs in enterprise
network that fulfills the need of accurate manufactur-
ing information at all enterprise level. Another key
point for a modern OAC is the use of open source
software (OSS) which has attracted recently also the
field of numerical controls for machine tools [4]. One
of the most promising use of OSS in OAC is at ope-
rating system level: first, OSS allows to reduce cost
of the whole controller cutting the license fee of com-
mercial RTOS, then OSS has the advantages of full
code sources availability that allow developers to pro-
vide their own customization [5].

In this paper ITIA approach to robot controllers
based on PC hardware and open source software is
presented. Specifically, the work is organized as fol-
lows: in Section 2 an overall view of the robot con-
trol architecture is shown. With reference to such
an architecture, in Section 3 the correspondent soft-
ware implementation is detailed and two different
test beds are presented. In Section 4 the specific
results obtained controlling a 7 d.o.f industrial robot
arm are described; then final conclusions are drawn.

2 Architecture design

The proposed architecture shown in figure 1 is basi-
cally divided in two layers: an application layer that
contains modules needed by a robotic controller; a
system layer where main functionalities of an RTOS
are encapsulated. The application layer is made up
by 4 main modules: interpreter, trajectory genera-

tor, kinematics, axis controller and axis driver.

FIGURE 1: Reference architecture

The Interpreter translates high level motion
commands specified by the user into an inner data
format (i.e. motion data structure) suitable for fur-
ther elaborations of the controller described below.

The Kinematics includes algorithms to solve
transformations from Cartesian to joint space of the
controlled robot and vice versa and to check robot
workspace and limits. An easy reconfiguration of
this module is a basic requirement in order to apply
rapidly the controller to different robots achieving
one of the goals of an OAC (chapter 1); such a re-
configuration can usually be done in two ways: by
means of the definition of a general set of parame-
ters that describe a wide range of kinematics archi-
tectures; by means of the implementation of different
kinematics modules, each one specific for one kind
of architecture. Specifically, this is the design rule
followed in our reference architecture. In this case
reconfiguration is done by the substitution of a kine-
matics module with another one. This operation is
feasible without effort only if all kinematics modules
implement the same interfaces.

The Trajectory Generator acts through three dif-
ferent levels: first, it provides the path planning ge-
nerating a Cartesian trajectory according to the geo-
metrical data specified in the motion data structure
prepared by the Interpreter; then, it performs a sam-
pling of such a path according to a given motion law;
finally it calls services provided by the kinematics
module to transform end effector movements to ac-
tuators coordinates set points.

The Axis Controller keeps the actual actuators
coordinates as close as possible to the corresponding
set points by means of proper control algorithms.

The Axis Driver is the software interface to the
actual I/O board that allows bi-directional data com-
munication between the controller and the robot;

2



specifically, it allows the reading of sensors signal
(encoders, analog and digital inputs) and the wri-
ting of command set points.

Beneath the control layer, in order to achieve
the software portability on different RTOS platforms,
the system layer has been designed. Specifically, it
encapsulates some basic functionalities of an RTOS,
i.e. task management and inter process communi-
cation, providing three modules: task, queue and
shared memory.

The Task provides functionalities to handle an
RT process. Specifically it allows the task configu-
ration setting basic properties such as id, priority,
sample time, the task activation and deactivation (i.e
make periodic, run, suspend, resume,kill); finally, it
provides diagnostic functions to check the task state.

The Queue and the Shared Memory modules en-
capsulate respectively the mechanisms of the same
name for the communication between different tasks.

3 Implementation

This section presents the implementation of the
above mentioned reference architecture. More spe-
cially, implementation for the application and sys-
tem layer are shown in detail by applying the refe-
rence model to two different robots, a 4-dof parallel
kinematics robot and an industrial robot, and two
different RTOS, QNX 4.25 [7] and Linux RTAI[6].

3.1 Control system

Figure 4 shows the five main processes interacting in
the robot system control:

• Command interpreter process

• TrjGen process

• pControl process

• MC server process

• HMI Server process

FIGURE 2: Control Scheme

The command interpreter process receives from the
shell or from the HMI Server process robot scripts.
A robot script is an high level command that can be
expressed in Cartesian or joint space. The user has
to explain the movement command type, the posture
to reach, and the time needed. Command movement
type can be linear, circular or spline. The main task
for the command interpreter process is to make an in-
terpretation of the robot script message and to insert
it into a command queue. The Trajectory generator
process reads a value from the command queue then,
using several interpolation routines (i.e. linear, cir-
cular, spline), it generates a set of points with a given
sample time (1 ms in our application). If the robot
script makes the request of a Cartesian movement
the process calls the kinematics functionalities from
the kinematics library. Such a library is composed
by the following main procedures: position trans-
formations through direct and inverse kinematics al-
gorithms, velocity transformations through Jacobian
functions, and work-space verification through Is-
Reacheable function. The planned points are filled
into a queue that is named reference-queue. Then

3



pControl, the process with the highest priority in the
system, extracts one value from the reference queue
at each cycle. Specifically, this process is the heart
of the robot controller where axis control algorithms,
alarm and synchronization procedures have been im-
plemented. A shared memory is used to make a syn-
chronization of the pControl Process and the Trj-
Gen Process. The pControl process has to manage
the five possible states of the machine: initialization
when parameters are loaded; the starting which pow-
ers the robot on; the control loop when control algo-
rithms are executed; the stopping which powers the
robot off; the alarming when an error occurs. In all
these machine states the pControl process communi-
cates with the robot through the MC-Server Process,
that makes possible the communication with the I/O
board encapsulating all hardware dependent func-
tionalities. Furthermore, for monitoring purposes all
information related to the machine status (e.g. po-
sition, velocity, motor current and so on), is writ-
ten into a data-structure stored in a shared memory
by the pControl process. The HMI Server process,
polling such a shared memory with a fixed rate of
10HZ, sends the machine status through the Ether-
net LAN using TCP/IP protocol to all client that
have been connected to the HMI Server. The HMI
Clients are also allowed to send high level commands
to the controller using Telnet protocol.

3.2 4-dof parallel kinematic robot

FIGURE 3: Morpheum Manipulator

The above mentioned implementation has been first
exploited for the control of a parallel robot designed
and developed by I.T.I.A. whose name is MorpheuM
[8]. Such a robot is based on a particular parallel
structure that allows the translation and the rota-
tion of the end effector along its axis. The transla-
tion is achieved by means of linear actuators while

the rotation is actuated by a brushless torque motor
and the movement is transmitted by a double uni-
versal joint. Techno-economic advantages of such a
robot derive from the symmetry structure and the
high modularity and from the possibility to obtain
multiple configuration of the end-effector through a
structural reconfiguration from a minimum of two
till a maximum of six degrees of freedom. Further-
more the work space of the manipulator is adaptable
changing the length of the motor’s linear guides. The
flexibility and modularity qualities let the robot be
applied to a large field of tasks[9], ranging from pick
& place to assembling, spray painting, laser or water
jet cutting. The performance of the robot permits
to reach 3.5 m/s of velocity and acceleration above
3g with a maximum load of 5 Kg applied to the end
effector. Regarding the controller, the hardware is
based on a PC with Intel architecture (i.e. P4 2GHz)
and QNX 4.25 as a operating system [10]. For such a
robot the implementation of the control system has
required the following customizations. Within the
application layer a new implementation of the kine-
matics module to deal with the parallel structure of
the robot has been developed; then both the inter-
preter and the trjGen process have been reconfigured
to manage 4D data. At system level, the Task mo-
dule has been implemented to encapsulate QNX 4.25
functionalities for process management, then OS im-
plementation of POSIX Queues and SharedMemory
are used. Regarding the communication with I/O
the MC Server module has been develop to hide the
use of a driver provided by the manufacturer of the
axis control board.

3.3 Industrial robot arm

The second implementation is related to the Mit-
subishi PA-10, a commercial robot with an open ar-
chitecture that makes the manipulator suitable for
research and development. The robot is composed
by seven links that allow seven d.o.f. (three rota-
tion and four pivot axes); its structure is shown in
figure 3. The geometrical characteristics of the PA-
10 manipulator are as follow: the length of the ma-
nipulator is 1.37 m and the weight is about 35 kg.
The robot joints are actuated through three-phase
AC servo motors, while the power is given through
the domestic 230V AC. The setup that is normally
sold, consists of a robot arm, a servo controller, a
motion control card, and an upper control computer
linked to the servo controller by means of a dedicated
Arcnet optic fiber network. Several levels of control
are allowed by the standard Mitsubishi axis control
card, from an higher level controlling the movement
in Cartesian space by using an inner interpolator to
a lower level controlling directly the position of the

4



joints. Using the high-level Mitsubishi libraries pro-
vided in the upper controller, the maximum control
frequency is 100Hz. In the control mode used in our
application the Mitsubishi upper controller has been
replaced by ours, bypassing the high level control li-
braries. In this mode it’s possible to obtain a control
of the robot with a frequency of 1kHz. The control
of the servo may be carried out in Torque mode or in
Velocity mode. At the moment, the second modality
has been chosen, sending a velocity signal for each
joint to the servo. This means that position loops
are closed within the upper controller. The servo
has a digital PI feedback that allows the joint-torque
control of the robot. The upper controller runs the
Linux RTAI 3.2 operating system and supports an
Intel Pentium 4 processor 2.4 Gbyte. A CControl
PCX20020 Arcnet card is mounted on the upper con-
trol computer to allow the communication with the
servo controller. Specific electrical modifications[11]
have been done to make the Arcnet card compatible
for PA-10 application. The nominal communication,
allowed by a specific optic fiber connection, reaches
a maximum of 10 Mb/s. Regarding the upper con-
troller software, the architecture described in chap-
ter 2 has been applied. First some customizations
have been done within the Application layer. Spe-
cifically, they involve the kinematics, the interpreter
and the trjGen in order to deal with a 7 d.o.f. serial
robot. Then, at system level a specific RTAI kernel
module has been used to provide the implementation
of POSIX message queues. Finally a custom imple-
mentation of Task and SharedMemory modules have
been developed to encapsulate the same Linux RTAI
functionalities. The communication with the hard-
ware has been achieved by means of customization
of Arcnet driver provided by standard Linux kernel
2.6.10; all such functionalities have been encapsu-
lated in the MC server Process.

FIGURE 4: PA-10 Manipulator

4 Experimental results

With reference to the implementation of the con-
troller for the PA-10 robot, hereunder some expe-
rimental results are shown in order to validate both
hard real-time and control performance of the sys-
tem. In detail, first the cycle time of the control
process has been measured. The results are drawn
in the figure below.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

number of samples

sa
m

pl
e 

tim
e 

[m
s]

FIGURE 5: RT performance of PA10 con-
troller

The test, executed when the controller is running,
has shown a maximum error of 3.777 µs with refe-
rence to a nominal sample time of 1 ms. Thus, such
results confirm the hard real-time performance of the
whole system. Regarding the control performance,
the trajectory followed by the 6th axis is compared
with the reference one as shown in figure 6.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

10

20

30

40

50

60

70

80

90
Axis6

time [ms]

ax
is

 p
os

iti
on

 [d
eg

re
es

]

reference position
real position

FIGURE 6: Comparison between planned
and followed trajectory

Specifically, in figure 7 the following error is drawn:
it ranges between a minimum of -3.3 to a maximum

5



of +3.7 degrees.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−3

−2

−1

0

1

2

3

Axis6

time [ms]

F
fo

llo
w

in
g 

er
ro

r 
[d

eg
re

e]

FIGURE 7: Following error of 6th axis

.

5 Conclusion and future works

In this paper, a reference architecture for robot con-
troller has been illustrated. Our major goals includes
the definition of a modular architecture which can
be easily reconfigured with reference to the kinemat-
ics of the controlled robot and which can be easily
applied to two different RTOS, i.e. QNX 4.25 and
Linux RTAI 3.2. Specifically, such an architecture
has been implemented with reference to two differ-
ent robots, the former prototyped by ITIA-CNR, the
latter manufactured by Mitsubishi Robot. With re-
ference to the Mitsubishi robot, experimental results
are shown to validate both RT and control perfor-
mance. Future works include the use of the con-
trol architecture to test new control algorithms for
robots.

References

[1] G. Pritschow, Y. Altintas, F. Jovane, Y. Ko-
ren, M. Mitsuishi, S. Takata, H. Van Brussel, M.
Weck, K. Yamazaki, 2001, Open Controller Ar-
chitecture - Past, Present and Future, Annals
of the Cirp, vol. 50/2/2001.

[2] The Orocos Project. http://www.orocos.org,
2003.

[3] D. Dallefrate, E. Carpanzano, L. Molinari
Tosatti, F. Jovane, Feed rate optimization tech-
nique for high-speed CNC machining with paral-
lel manipulators, The 3rd Chemnitz paral-
lel Kinematics Seminar and 2002 Paral-
lel Kinematic Machines International
Conference; April 23-25, 2002, Chem-
nitz, Germany.

[4] G. Pritschow, G. Rogers, G. Bauer, M. Kre-
merOpen Controller Enabled by an Advanced
Real-Time Network. CIRP 2nd Interna-
tional Conference on Reconfigurable
Manufacturing, Ann Arbor, MI, USA,
August 20-21 2003.

[5] L. Dozio, P. Mantegazza, Linux Real Time
Application Interface (RTAI) in low cost high
performance motion control, Motion Con-
trol 2003, a conference of ANIPLA,
Associazione Nazionale Italiana per
l’Automazione (National Italian Asso-
ciation for Automation), Milano, Italy,
27-28 March 2003.

[6] http://www.rtai.org

[7] http://www.qnx.com

[8] S. Negri, Analysis and Design of a Reconfig-
urable Machine for Assembly Operations, 10th
International Workshop on Robotica in
Alpe Adria Region (RAAD), 16-18 Mag-
gio 2001.

[9] D. Colombo, F. Jatta, L. Molinari Tosatti, Re-
configurable control strategies applied to a re-
configurable PKM 3rd CIRP Conference
on Reconfigurable Manufacturing, Ann
Arbor, USA, May 10-12, 2005

[10] M. Malosio, M. Finardi, S. Negri, L. Molinari
Tosatti, F. Jatta, A Modular Architecture for
High-Level Robot Programming and Control in a
PC-Based Environment IEEE International
Conference on Robotics and Automa-
tion (ICRA), New Orleans, 2004.

[11] http://tech-www.informatik.uni-hamburg.de/
personal/westhoff/en/robotics/robotics.html

6


