
Soft Real-Time Linux Overview

Georg Schiesser and Nicholas Mc Guire

Distributed and Embedded Systems Lab
Lanzhou University (SISE), P.R.China, 730000

0307201@student.tuwien.ac.at
mcguire@lzu.edu.cn

Abstract

As real-time capabilities are becoming relevant in main-stream desk-top Linux more and more, and
new variants and ideas are popping up all over the Open-Source world, a notoriously incomplete, overview
of the existing variants of soft-real time Linux is given in the article. Many of the variants are for special
purposes, some are more general approaches that target every-day soft-rt demands, like audio/video
streaming, finding your way through the many approaches and selecting the one that best fits your
problem is not always easy, this article hopes to clarify a few basic terms and technological concepts, in
the hope that it will simplify this selection process.

1 Introduction

In recent years computer capabilities have increased
sharply. Many operating systems are multiuser mul-
titasking systems. Although the performance of
computers is steadily increasing the timing demands
cannot always be satisfied because there is a over-
whelming increase of complexity, resulting in a spe-
cial class of tasks, namely those with real-time de-
mands, being degraded.

The specifics of recent development have shown
that soft-realtime is not only a demand in industrial
computing but can be a demand in every day com-
puting problems. Not so much at the pure functional
level, but rather at the quality level. Most PCs can
emit sound, but that is not sufficient to call it an au-
dio system. Playing videos is not a specialized task,
but playing them jitter free while other activities are
going on on the system is a quality level that most
systems can’t offer.

This paper covers basic aspects of open source
soft-real-time technologies available, in the hope to
give the reader a sufficiently precise picture of avail-
able solution so that the direction of further inves-
tigation for a particular problem domain becomes
clear.

2 Basic concepts

Before available solutions can be introduced we must
be aware of the basic concepts. So I introduce some
basic definitions and technologies.

2.1 Definitions

There are many different definitions of these terms
floating around on the web so we present the def-
initions I use here in this paper, though we in no
way claim to be the authoritative source of such a
definition.

• non-realtime: In non-realtime applications av-
erage or typical times are more important.
There are no critical deadlines. The worst case
timing depends on the system load.

• soft-realtime: Systems that are realtime, but
where missing a deadline now and then is ac-
ceptable are called soft-realtime systems. Miss-
ing a deadline degrades the quality but is not
a failure.

• firm-realtime: There are hard deadlines, but
low probability of missing a deadline.

• hard-realtime: Applications that have real, se-
rious, non-negotiable deadlines. For these sys-
tems worst case timing is critical. Missing a
deadline is a failure.

1



In this paper we are only concerned about the
three basic concepts non-, soft- and hard-realtime.

2.2 Examples

Realtime covers a wide variety of applications, not
only high-tech problems can mandate realtime capa-
bilities but even fairly every-day situations.

If you have ever launched the CD burner under
Windows NT you will know that you may not move
the mouse while burning or the CD burners buffer
will not get filled on time.

Did you ever try audio recording with your lap-
top and were unsatisfied with the results? It almost
works.

There are several application fields which are
based on soft-realtime, even if some are built on non-
real-time OS they expect some form of soft-real-time
behavior:

• Audio, Video: If loosing frames while record-
ing or playing doesn’t cause a critical failure
you won’t have to use a hard-realtime OS. The
more frames you loose the worse the quality of
the data, so this is a very good example for
soft-realtime demands.

• Telecommunication: Transmitting voice data
with a mobile phone is an example for soft-
realtime too. You can understand the other
person even if a view samples are lost, but if it
gets too bad people will no longer be willing to
pay for this service quality.

• Networking: Lost packets in a ATM network
must be kept to an absolute minimum as the
path reconstruction times have a very serious
impact on the affected connection.

2.3 Why soft-realtime

Soft-realtime is used when you have a well defined
class of important events. If missing an event only
reduces the quality of your data but would not results
in a failure of the application soft realtime may do. In
contrast to non-realtime soft-realtime improves the
quality. Furthermore soft real-time adds scheduling
classes so that complex systems can be structured
better than with pure fair scheduling algorithms. At
the same time soft real-time can operate in an un-
restricted environment, utilizing most optimization
strategies available, and not mandating specific pro-
gramming practice. So as a quick summary - it im-
proves quality without requiring specialized know-
how. Naturally the quality improvement is not all to

high if one switches to a soft real-time system with-
out any real-time know how at all, but the transition
is painless compared to hard real-time programming.

2.4 Why not soft-realtime

Obviously soft-realtime cannot be used in every sit-
uation. It is important to focus on the temporal
specifics of problem and choose the right strategy.
When not to use soft-realtime is best described by
specifying the non-realtime and the hard-realtime
domain.

There are two distinct directions:

• non-realtime: Using non-realtime increases the
performance (system throughput) of your sys-
tem but also increases latencies. It is the right
choice if you do not care about loosing events
and worst case jitter. With non-realtime you
get maximum average throughput, but you get
NO guarantees that an event will actually ever
be processed.
Application integration is trivial, if it compiles
and runs its fine - no need to consider system-
scope (at least not in general).

• hard-realtime: Loosing events can cause a fail-
ure in specific applications. Event determin-
ism can only be guaranteed by using a hard-
realtime system. Hard real-time systems are
less efficient with respect to resource usage and
to system throughput. They are more complex
and the available programming resources are
limited.
Software integration is non-trivial, each real-
time task added mandates the re-evaluation of
the system at a system scope.

3 Technologies

This chapter covers the most important technolo-
gies of existing free-software implementation con-
cepts and their problems concerning soft-realtime. In
general all problems are due to high latencies which
are not acceptable. The approaches differ in the way
they try to tackle the high latency problem. In many
cases combinations of these strategies are in use.

3.1 Timer resolution

Each time a timer interrupt occurs a counter is in-
creased. The frequency of the timer depends on the
system architecture. Systems like x86 use a 32bit
counter. Traditionally the timer frequency is set to
100Hz. So the timer interrupt occurs every 10mil-
liseconds. Traditionally the time is reported by this

2



hardware independent time base. An accuracy of
10ms is not acceptable for many soft-realtime sys-
tems. The solution are high resolution timers, which
can access the hardware directly.

3.2 Scheduling frequency

The scheduler is called periodically by the timer in-
terrupt. Standard desktop machines don’t need a
higher scheduling frequency than 100Hz because it
would not be recognizable by humans. Furthermore
the scheduler is invoked by other tasks as well - so
the effective average scheduling frequency is some-
what higher than the 100Hz. The more interactivity
the more often the scheduler is called Especially in
embedded (non-interactive) systems 100Hz schedul-
ing frequency is too low as there are no non-periodic
(interactive) tasks which invoke the scheduler Fur-
thermore a worst case jitter of 10ms is not accept-
able for soft-realtime Increasing the scheduling fre-
quency will improve this, but can lead to different
problems. First the performance is decreasing be-
cause the scheduler is called more often, thus spend-
ing more time in the scheduler proper. As an exam-
ple, a 486 75MHz will spend 100

3.3 Scheduling strategies

Many different scheduling strategies have been de-
veloped over time to optimize the utilization of the
CPU, both for real-time and for non-real-time sys-
tems. Traditionally for GPOS some form of dynamic
priorities are used as they offer the possibility that
every task can run even if it’s priority is very low.
These fair scheduling strategies cannot be used in
soft-realtime systems because realtime tasks must
not be interrupted by other non-realtime tasks.

Normal non-rt systems provide the scheduling
policy SCHED OTHER which is generally some
form of fair scheduling / dynamic priority, though
the actual behavior is not specified by standards
and can vary considerably between implementa-
tions. Soft real-time systems add SCHED RR and
SCHED FIFO as there real-time scheduling policies.
In general this will mean that SCHED FIFO has
highest priority, SCHED RR follows in priority and
SCHED OTHER processes have the lowest priori-
ties in the system. SCHED RR is a scheduling pol-
icy which is specific to soft-realtime, it allows to
group tasks together and make the aggregation of
these tasks performing some computation to exhibit
a statistically well determined behavior - the indi-
vidual task has no strict timings though. Although
the system naturally stays a preemptive multitask-
ing system independent of the scheduling strategy,
one can better think of SCHED FIFO tasks being

cooperative-multitasking, in the sense that they are
actually able to monopolize the CPU - thus Linux
mandates root-privileges for any task that wishes to
utilize the soft-realtime scheduling policies.

It should be noted that in Linux a task with
SCHED FIFO or SCHED RR has access to all user-
space resources, which does mandate a certain know-
how in using these scheduling policies (i.e. a
while(1); in your code would not ’crash’ the sys-
tem but slow it down to an unusable state if run
as SCHED FIFO task).

3.4 Kernel code

Traditional kernels are non-preemptive in kernel
mode, basically any kernel path is thus to be seen
as an atomic operation from the perspective of user-
code. This is a source of latencies as every user-space
process must switch to kernel mode when accessing
hardware resources. A few of the typical problems
responsible for increased latency are:

• The longest kernel code execution path deter-
mines how long the one system call can take.

• Several synchronization strategies in the kernel
can lead to different problems, i.e. locking big
kernel structures which are accessed by multi-
ple tasks causes high latencies. In combination
with kernel preemption it is more efficient to
step through only locking small parts of the
structure.

• Interrupt disabling is often used in the kernel
to avoid the contention in critical sections. It
is necessary because critical data regions must
not be modified by interrupts while the kernel
changes them, or might not be reentrant, thus
not allowing interleaved interrupt processing.
But there are several disadvantages: During
this time interrupts can get lost, which is due
to loosing events and data. In addition hard-
ware latency is increased because the interrupt
is not handled until the interrupts are enabled
again.

• dynamic scheduling cause worst case delays
that are proportional to the absolute number
of tasks in the system.

3.5 Interrupts

Loosing interrupts is critical in many systems, long
periods of disabling interrupts will cause interrupt
loses as most hardware only has a single bit in hard-
ware to indicate that an interrupt occurred, queu-
ing is generally not implemented. A soft real-time

3



system must have the ability to re-enable interrupts
as quickly as possible. This is achieved by delegat-
ing most of the work to handlers (bottom halves or
tasklets and soft-interrupts) that can be executed af-
ter interrupts have been re-enabled and that can be
queued loss-free. Preferably a soft real-time system
would have the ability to assign priorities to differ-
ent interrupt related service routines. Linux offers
rough priorities for tasklets and for soft-interrupts.
For hardware interrupts patches are available to al-
low priority assignment, but these patches are not
merged in the mainstream kernel (and probably
won’t be merged).

3.6 Resource Management

This topic concerns all kinds of resources, not only
available memory. CPU time is an important re-
source too. In non-realtime resources are managed
by the kernel. For example there are two tasks p1
and p2. Both want to access the same resource. p1
gets the requested resource, because it is faster than
p2. While p1 is working p2 is put asleep. After p1
has freed the resource p2 is woken up and can now
do it’s work. The problem is that p2 didn’t recog-
nize that it was put asleep. Every process used the
same method to access the resource: request the re-
source, work, and free the resource. In soft-realtime
you must not be waiting for a resource. A strat-
egy called preallocated resources is often used there.
All required resources are allocated when you ini-
tialize the task. So there cannot be any problems
later. In cases where resource can be accessed in a
reentrant way, soft-realtime systems should do so, in
this respect soft-realtime tasks are not independent
of system scope issues. In general it is not possi-
ble to simply share resources between non-realtime
and soft-realtime tasks, if this sharing is necessary,
shared resources must be included in system testing.

3.7 Optimization

General purpose operating systems have many opti-
mization strategies which increase the performance
and average throughput of non-realtime systems but
can also increase the worst case jitter of realtime sys-
tems.

Here are some examples:

• Resource management, especially memory
management, of non-realtime systems dynami-
cally allocates resources when they are needed.

• When a new process is created by the fork
system call some non-realtime systems use
copy-on-write to allocate memory dynamically.
Both processes can use the same memory until

it is written to, causing large delays in that case
as this writing to a shared page would trigger
the actual copy.

• Caching, e.g. streaming: Often the data in the
cache can be used but not in every situation.
So the worst case jitter is increased in cases
where unnecessary caching is performed. The
O STREAM (a patch in Linux) can be used to
disable caching in soft-realtime systems.

4 Strategies

4.1 POSIX high resolution timers

POSIX high resolution timers are used to measure
time more accurate because traditional timers don’t
meet the requirements of soft-realtime systems. The
hardware timer is accessed directly to allow an accu-
racy in the range of nanoseconds seconds.

4.2 Advanced scheduling policies

Advanced scheduling policies like the O(1) scheduler
in 2.6 kernels provide a more deterministic latency of
the scheduler (though not necessarily lower latency
!).

4.3 Advanced kernel strategies

Up to now kernel space has not been preemptive,
only user space. There are two different solutions
to reduce the latency of the longest kernel execution
path.

• low latency patch: This strategy takes the
longest kernel path and adds preemption
points. So the code must be reentrant, and the
scheduler must be called by one’s own. This
method is difficult and there are no clear defi-
nitions where to place preemption points.

• preemptive kernel: This means that spin locks
are used as preemption points. The big ad-
vantage of this method is that you must only
program the code SMP safe, you need not care
about preemption points because they come
with spin locks.

Synchronization latencies in the kernel can be
reduced with the lock breaking patch. Fine grain
locking means that big data structures are split into
several parts and so small parts can be locked, and
not only the whole structure.

4



4.4 Interrupts

It is important to split realtime and non-realtime in-
terrupts. One way is to use interrupt priorities. Im-
portant interrupts get higher priorities than others.
Soft-realtime systems often use DSRs (deferred ser-
vice routines) to apply priorities on interrupts. The
most important part of the code stays in the ISR
(interrupt service routine). The execution time of
this code must be very short. ISR no longer need in-
terrupt priorities, because it can be guaranteed that
each interrupt is caught. All other code is imple-
mented in a soft interrupt, which is also called DSR.
Soft interrupt priorities are more useful because no
other interrupt is lost while executing DSR code.
Furthermore more important tasks can be executed
before others.

4.5 Linux-based solutions

In recent years different Linux-based solutions have
been developed. Note that soft-realtime capabilities
should not be limited in perspective to the cpu. This
list covers some of the general purpose operating sys-
tems that have soft-realtime capabilities.

• Montavista Linux: [6] preemptive kernel, high
resolution timers

• Timesys Linux (Linux/RT): [7] resource mu-
texes

• Kurt: [3] low latency (preemption points), high
resolution timers

• LXRT user-space realtime [5]

• kpreempt patches for 2.4 Linux kernels [?]

• 2.6 Linux kernels: [1] kernel preemption, high
resolution timers, O(1) scheduler

4.6 Mainstream Linux soft-realtime

capabilities

In recent years Linux has become very popular espe-
cially for industrial purpose. Allthough mainstream
Linux is not targeting realtime capabilities it in the
mean time offers several features related to soft-
realtime. This is basically due to a large part of
the soft-realtime problems being very similar to the
problems posed by scalability in multiprocessor sys-
tems. If latencies are too high SMP systems with
many CPUs become inefficient. Thus the SMP scal-
ability problem has indirectly solved some of the soft-
realtime problems aswell. The main soft-realtime re-
lated features in mainstream Linux are:

• high resolution timers

• lock breaking

• advanced synchronization primitives like se-
quence locks, read-write locks and buffer swap-
ping.

• kernel preemption: preemption points and
scheduling check in spin locks

• interrupt priorities: soft interrupts, DSRs,
tasklets, as well as patches to introduce ISR
priorities.

• compile-time configurable scheduling fre-
quency

• boot-time selectable scheduling strategies.

5 Conclusion

Developing realtime software can lead to serious
problems if one does not or can not strictly split non-
realtime and realtime components, stating with this
split is the first step.

As there are many existing solutions floating
around the web, these need to be evaluated for the
particular problem before deciding which one to take.

It is important to consider that non-realtime op-
timization strategies can increase worst case jitter ex-
tremely, thus introducing real-time in a system also
limits what the non-realtime tasks may do, this needs
to be taken into consideration when designing the
non-realtime task-set.

As a general rule we would recommend to stick
to the variant that has the least modifications to the
main stream system selected, as maintenance of, es-
pecially exotic, patches is not always that good.

Realtime extensions should only be considered if
it is clearly shown that non-realtime will not due, too
many system out there running realtime extensions
that simply do not need them.

References

[1] [Linux Kernel] Linux Kernel Home-Page,
http://www.kernel.org

[2] [Preemptive Kernel] kpreempt Home-Page,
http://kpreempt.sourceforge.net

[3] [Libertos] LibeRTOS Home-Page,
http://www.linutronix.de

[4] [RTLinux on the web] RTLinux Home-Page,
http://www.rtlinux-gpl.org

5



[5] [Real Time Application Interface] RTAI Home-

Page, http://www.rtai.org

[6] [Montavista Software] Montavista Home-Page,

http://www.mvista.com

[7] [TimeSys] TimeSys Home-Page,
http://www.timesys.com

6


