
Benchmarking - Cache issues

Nicholas Mc Guire and Qingguo Zhou
Distributed and Embedded Systems Lab

Lanzhou, P.R.China, 730000K

mcguire@lzu.edu.cn

Abstract

The purpose of benchmarking systems is most commonly to alow judgment if a system configuration

is suitable for a given RT-spec. Aside from the fact that these RT-specs are most often quite vague, the

problem of benchmarking is not well resolved in the currently available hard real-time solutions for Linux.

As a guidance to many of the findings presented here we have adopted the following theme:

Celestial navigation is based on the premise that the Earth is the center of the universe.

The premise is wrong, but the navigation works. An incorrect model can be a useful tool.

The issue thus is to validate the models on practical code and not drop to deeply into a theoretical

view. In this article we summarize our experience with benchmarking RTLinux and with some partially

paradox optimization strategies that we have derived from benchmark results.

1 Benchmarking Problem

statement

Any program that is supposed to reliably add a ser-
vice to a software system requires that it be validated
after software development has completed the initial
release. Any software that is to rely on available ser-
vices needs to verify and evaluate its performance in
the context of the system it will actually be operated
on and verify that it does not adversely affect any of
the previously existing services. With system not
only the hardware platform but the entire environ-
ment of operation is to be considered, including any
external inputs to the system (intentional like a key-
board, or non-intentional like network load due to
smart OS broadcasting). This testing, generally re-
ferred to as benchmarking, is common to all software,
but the rules for benchmarking realtime applications
has some specifics to it, due to the strong influence
on temporal behavior that the environment imposes
on such a realtime software system. In the following
paragraphs, isolated problem conditions will be ana-
lyzed at a very practical level, the goal of this work is
not to anticipate a scientific mechanism for analyzing
realtime systems, but to guide a practical approach
to benchmarking a RTLinux system and especially
point out some of the common missinterpretations

of results - especially regarding interrupt impact on
RT-Linux.

Benchmarking of RT-systems generally will be
split into three distinct parts.

• General Purpose OS Layer - Benchmarks of the
underlying system services your application re-
lies on in the context of the environment it
will operate in (disk read/write, network band-
width, system call overhead etc.).

• RT-Layer - Testing of the RT-mechanism im-
plemented in the system with respect to its
temporal properties (sheduler, interrupt dis-
patcher, ipc, etc.).

• Application Layer - Analyzing the specific
properties of your application with respect to
the demands that the anticipated utility, that
it should provide, will have (computation time,
disk/memory usage,etc.).

Doing a number of industry projects showd that
many times one of the three above steps is not per-
formed at all, or in some cases all three of them, and
in most cases the tests were either incomplete or per-
formed in a ”clean-room” environment being more or
less useless. Following the non-existant benchmark
results, a lot of speculation on the cause of excessive
jitter in the system results in ’system tuning’ at a

1

sometimes very speculative level. This is not to say
that these optimizations don’t sometimes work, but
they can be improved, and especially made platform
independant by systemactic analysis of the underlay-
ing problems.

If one benchmarks an application on a 100Mbit
point-to-point connection to your 2 GHz Pentium
system on a dedicated network link - you will get
(void *)NULL usable results for the behavior of this
system on a factory floor with a dozen Microsoft sys-
tems happily broadcasting like mad.

There will be many ideas and concepts about
the ”right” way to benchmark a system - the solu-
tion presented here will not be, and does not claim
to be, the absolute truth on RT-benchmarking. We
hope to offer a mapping of benchmark artefacts to
underlaying mechanisms in a way that allows better
interpretation of results and better indentification of
causes and thus improved therapy. Feedback on your
experience would be most appreciated so any com-
ments/corrections/flames to mcguirelzu.edu.cn - thx
!

In this report we will be focused on the second
and third part of benchmarking the RT-layer and the
RT-applications, which unfortunately are not com-
pletely independent of the GPOS nor of the non-RT
applications (seen as part of the GPOS layer).

1.1 System load

The influence of the hardware in a system on the
systems performance is obviously something that
one needs to analyze. Anybody designing a system
will take issues like data bandwidth, network band-
width, peak memory requirements and the like into
account. The rules applied for such a decision in a
non-realtime system are only of limited use for a re-
altime system. This is basically due to the fact that
a non-realtime system are using optimization strate-
gies to overcome the limitations of hardware in many
situations, and resolving the peak resource issue by
including fall-back resources that can satisfy peak
resource loads at a lower performance. Think of the
buffering of disk-writes, or the reordering of TCP-
packets in the network layer to prioritize a service
over another which may go as far as dropping a low
priority packet and waiting for a retransmission of it
later or as an example of slow fall-back resources -
swap partitions are one well known case. For real-
time systems these methods of optimization are not
usable as they would break determinism of the tasks,
if they are tolerable then that part of the task should
be run on the non-realtime side of the system and not
in RT-context.

As Linux is targeting best average performance
and does not really care about worst case, further-

more there is a slight preference of interactive over
non-interactive jobs, the analysis of the hardware re-
lated system parameters can be fairly simple if they
are quite close to main stream desk-top and server
setups. Consider the demand to write 2MB/sec of
data to disk, this can easily be mapped to a hard-
ware setup supported by Linux and is able to satisfy
this demand, simply by consulting the available data
on Linux from the Internet, but nobody will provide
a written guarantee that the system will reach this
level of throughput under all circumstances. The
question of the influence of such an I/O subsystem
load may have on the RT-side is harder to answer and
will be quite hardware specific. As an example, a sys-
tem with 32MB of RAM will have to do very high fre-
quency write-cycles to the disk to achieve 2MB/sec
disk bandwidth as there is not enough memory avail-
able to build extensive buffers for block reordering
and caching, if the same system had 256MB RAM
the number of Interrupts from the mass-storage sub-
system would decrease clearly and thus the influence
on the RT-side would decrease. This means that a
clean analysis of existing benchmark strategies is nec-
essary, and as we hope to show clearly a redesign.

The main issues with the existing benchmark
codes is that they focus on recording specific parame-
ters in RT-context, and it is up to the user to produce
‘well-defined‘ system loads allowing to judge the sys-
tems behavior in the target execution environment.

This approach has obvious flaws:

• RT-disruption does not map to Linux system
load

• The setup does not permit identifying sources
of RT-disruption

• The specifics of the target environment may
not lend them selves to triggering accumulated
events of relevance

• The specific data-set on which the target en-
vironment will operate might not be that well
know.

• ...and a few more...

The approach one can commonly find in reports
on mailing lists is to load the box to a point where
one is confident that such a load case will never hap-
pen during actual operation. Typically this is done
by

• compiling the kernel with make -j 30

• ping flooding with ping -f

• running multiple find /

2

So what is wrong with this aproach ?
make -j 30 does not tell you much as a com-

piler has a fairly nice balance of CPU and I/O load
and code locality is not as bad as one might think,
furthermore the granularity of multiple processes in
Linux, of 10 milli seconds, leads to a fairly continuous
cache load but hardly introduces wild peaks.

ping -f is benchmarking what ? It produces a
lot of interrupts - but those interrupts go through
the interrupt emulation/isolation layer so they cause
fairly small RT-related effects, they do cause a sub-
stantial I-cache related flush in Linux, once the pro-
cessing in non-RT starts, but that is an at least par-
tially synchronous disruption. But more importantly
ping -f is a very wide range, we have found sys-
tems (old systems mainly !) that would reach ping
a frequency of roughly 5 kHz, and new systems that
would hardly reach 500Hz, ping -f is a very non-
reproducible test and is thus not very well suited
for such benchmarks. An even worse problem is
that a ping -f can isolate the RT-system from the
user-space code because the system is kept bussy

in kernel-mode, which is a flat address space with
RT. One can show that running find / alone in-
flicts higher jitter than running find / and ping -f

in paralell !

find / was seen as a nice test, simply because
of find not being to smart about using buffers and
thus causing many disk interrupts. Obviously the
results found this way will be very dependant on the
underlying mass-storage subsystem and the filesys-
tem layer, but one of the greatest variables found
in the find test turns out to be the used display,
notably frame-buffer device’s and the used X-server.
Therefore these tests again don’t lend them selves
to a well reproducible system load that would allow
a comparison of systems. To see the effect simply
run it as find / >/dev/null 2>&1 which is obvi-
ously producing the same disk-load but no terminal
I/O - down goes the jitter or RT-Linux . A further
problem is that this is dramaticallz dependant on
the harddisk settings (i.e dma enabled or not shown
below)

 1

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000

sa
m

pl
es

scheduling jitter in nanoseconds

scheduling jitter at high disk load

optimized rtl − dma off
optimized rtl − dma on

FIGURE 1: caption

In general all three noted tests, and the criti-
cisms holds for many of the other suggested ‘system
loads‘, are platform specific and show a low repro-
ducibility. And even if they were reproducable what
would they say about the specific load caused by an
FFT in user-space ?

One of the prime goals of this benchmark-
ing approach thus was to find a reasonable set
of applications that can be used to provide
well reproducible system loads.

3

1.2 Test codes

The above criticism mandates that a cleaner and
more reproducible approach be taken. Our design
guidelines were as follows. With cleaner we mean
not only the code induced effects on the system but
also the interpretability of data.

1.2.1 RT test-applications

An analysis of existing test cases for RTAI and
RTLinux have shown that they all, deliberately or
not, enforce a fairly large data locality. This was ba-
sically done by having a small number of local vari-
ables that were used to register min/max values of
some timing and then report these values over a loop
period via a zero-copy IPC mechanism (i.e. rtFI-
FOs). Thus the numbers obtained by these tests are
fairly optimistic and can hardly be achieved by real
life applications (Note that RTAI uses the identical
test-cases that RTLinux uses).

To eliminate these issue a comparatively simple
test with a deliberately low data locality was intro-
duced (jitt stat.c - see below). A further problem
of the default test cases used in RTAI and RTLinux
is that these tests report values that are no longer
suitable to perform statistical operations and core-
lation analysis - we belive that this is at the core
of some common misunderstandings with respect to
performance limitations of the X86/PPC platform
(discussed later on in the section on TLB and cache
benchmarks). A main issue for our design thus was
to allow data sets produced to be suitable for statis-
tic methods - basically this means, at least record
each value. Ideally temporal corelation would also
be available, mandating the recording to be fully or-
dered, but all attempts at this have shown a tool
large impact on the systems performance to be us-
able, a possible solution would be an external record-
ing (logic-analyzer or the like) (TODO: design soft-
ware independent test-cases).

1.2.2 The User-space load applications

Based on the criticism of exiting benchmarking prac-
tice we have designed simple but hopefully suffi-
ciently effective load-apps that target a specific hard-
ware unit (or at least focus on a specific hardware
unit). To validate the test applications oprofile-
0.7.1 and oprofile-0.8 were used. Further direct read-
ing of performance monitor registers (MSRs) was
used, though it showed that a very fine grain read-
ing of PMCs is problematic as it inflicts a noticeable
penalty (i.e. reading MSRs/PMCs in core functions
of RTLinux). Never the less we think that a integra-
tion of PMC reading in the RTL Tracer could yield
better understanding of hardware induced effects.

1.3 Sensitivity

Error handling needs to focus on two distinct cases,
the non-RT and the RT side of the system.

If syslogd decides to have a party logging
2MB/sec to /var/log/messages then you probably
will end up having far more interrupts from the stor-
age device than you had taken into account during
the system analysis phase.

Error handling paths in RT-context may inflict
large delays due to cache/TLB effects if they exhibit
low code/data locality (at least for the Linux kernel
this is the case - no particular care is given to these
rare cases, which is legitimate for a non-RT system,
for a RT-system error handling could result in an
escalation of temporal errors).

1.3.1 Benchmarking sensitivity

This leads to a problem that is more or less im-
possible to cleanly solve - one can not take all po-
tential sources of disruption into account. So the
proposed strategy is to annalize the sensitivity of
individual hardware artefacts and then come to a
severity tagging for each of these potential hardware
artefacts. This is somewhat easier to do as one can
fairly easy produce well reproducible disruptions (in-
terrupts,TLB flushing,cache flushing, BTB exhaus-
tion, etc.).

What preliminary tests have shown until now is
that the effect of hardware artefacts in some cases
can be distinct enough that events can be assigned
to these artefacts provided a minimum set of timing
data is logged - clearly this logging causes an over-
head but as the tracer implementation shows: the
temporal overhead and distortion as well as the re-
source requirements can be kept fairly low.

1.4 Applying benchmarks

Before you can go and actually do reasonable bench-
marks you need to designate the bottlenecks of in-
terest and roughly sort them by severity. So inter-
preting benchmarks beyond pure ”my box has 20
bogmips more than your box”, we need to introduce
the bottlenecks first.

The good news is that once you get the bottle-
necks straight, code optimization kind of becomes a
natural issue. And that is one of the main objectives
of benchmarking - to guide you on hardware desci-
sions and code optimization strategies after a bot-
tleneck was indentified as being critical. The second
objective of benchmarking is to record an initial per-
formance profile of a system to allow detection of po-
tentially harmful developments at runtime - though

4

this second objective is of importance to applied em-
bedded and RT systems it is not covered here as this
is out side the scope of this study, noted here only as
the methods will not be substantially different than
described here (although I know of no project to date
that actually bothered to implement system runtime
monitoring at this level...)

We end up with a fairly short list of low level
bottlenecks:

• system busses

• memory hardware settings (memory timings)

• memory hierarchy (L1, L2, Write-combine
buffer)

• memory management unit (TLB, pgd).

• branch penalty (BTB buffer and prediction ’al-
gorithm’)

Some might be supprised not to find interrupts
here - our findings are that interrupts are really not
that much of an issue, in fact one can isolate RTLinux
from interrupts in a way that a ping flood (which
de-facto is high interrupt load with close to no data
load) has no substantial effect on the RT-system any
more.

1.4.1 code design

One of the main problems with benchmark code de-
sign is that in RT-systems we are interested in worst
case events, but due to the steadily increasing re-
sources in general purpose architectures, exhausting
a specific unit may not be that easy and even less
reproducible. Further more most tests do not isolate
well enough that they only test a single unit, but
due to side effects will test multiple units and unit
interaction with a variance of unit-load distribution
only.

The increase of resource, i.e. cache sizes, BTB
size, and the fact that in some cases execution
streams will NOT utilize these units (i.e. tight loops
not querying the BTB at all, pre-fetch mechanisms,
and write reorder buffers) mandates that benchmark
code be reviewed at the assembler level and not only
at the C-source level. It may well happen that gcc
is too smart when attempting to write bad code de-
liberately - in fact our first attempts to write naively
bad code resulted in GCC optimizing almost every-
thing away that we did to hurt performance !

Further it should be kept in mind that average
case optimization often implies rare cases of perfor-
mance penalty taken into account (fast-path/slow-
path concepts), this means for RT-systems that one

can encounter seemingly paradox effects of ”bad-
code” performing better when it comes to worst
case than well optimized code. This is especially
true with respect to branch optimization based on
profiling data (GCCs -fprofile-generate and -fprofile-
use), which yields best average throughput (in most
cases) but will not optimize the worst case, in fact
generally optimizing for throughput implies inflict-
ing higher worst case response times.Even optimiza-
tion for average throughput by means of profile data
feedback yields case-specific optimizations and only
is efficient if the system/application-load profile dur-
ing profile generation reflects the actual runtime sit-
uation. Even if this might be an over statement,
profiling data will never handle the worst case, the
wors-case is a rare case, profiling catches the aver-
age case only and thus is not too helpfull for hart
realtime systems.

A further critical issue that popped
up, and it took us quite some time
to detect this, is that the RT-subsystem
(RTLinux/Pro,RTLinux/GPL,RTAI,ADEOS) is
quite small so having multiple threads in RT-context
that exhibit a very high RT-load and permit a small
share to be utilized by Linux only, will show some
”insolation” effects. What this means is that the
cache lines are filed with core RT-routines, and as
long as one stays in RT-context one hardly will flush
the i-cache or the BTB, thus exhibiting good perfor-
mance. One symptom of this isolation effect is that
single low frequency RT-tasks will perform worst
than multiple RT-tasks or high frequency RT-tasks.
Obviously this means that one needs quite detailed
information about the target scenario or one must
sweep the entire spectrum. This can be seen in the
following figures in the sweep that shows a decreas-
ing worst case jitter up to about 50kHz RT-task
frequency. The slow task will find all its cache lines
flushed - thus a clear increase in worst case jitter.
For pure interrupt load this effect is obviously much
waeker, but never the less visible.

This sweep was done up to 200kHz with a shift
of jitter to hard peaks of low jitter at 2-3us at high
frequencies - but as at this frequency hard realtime
can not be guaranteed reliably any more as one is al-
ready missing deadlines (though in rare cases only)
we did not pursue these tests any further. The in-
teresting part is to see that at very high frequencies
there is a self-isolation effect with the non-rt system
simply no longer able to inflict any harm on the RT-
application. This effect is visible both for interrupt
load and memory subsystem load.

5

 0.1
 1

 10
 100

 0 5000 10000 15000 20000

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

samples
scheduling jitter, one task, ping flood, rtl opt

"one_task"

task frequency in kHz

scheduling jitter (ns)

samples

FIGURE 2: caption

 0.1
 1

 10
 100

 0 5000 10000 15000 20000

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

samples
scheduling jitter, one task, cache sweep, rtl opt

"one_task"

task frequency in kHz

scheduling jitter (ns)

samples

FIGURE 3: caption

A further isolation effect can be seen in the stan-
dard tests of RTLinx and RTAI that offer to run
two tasks for benchmarking task-switch times. The
problem is that the low priority RT-task that is to
be preempted by the high-priority RT-task is causing
an unrealistic code/data loality as this task does not

actually do anything but run a tight loop for enough
time to be preempted. this effect can be see by the
worst case scheduling jitter of this test running only
the high priority task and non-RT tasks is higher
than if both RT-tasks run.

6

scheduling jitter, one task, idle system, default rtl

"one_task"

0
20

40
60

80
100

task period in us

02000400060008000100001200014000 scheduling jitter (ns)

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

samples

FIGURE 4: caption

scheduling jitter, two tasks, idle system, default rtl

"two_task"

0
20

40
60

80
100

task period in us

02000400060008000100001200014000 scheduling jitter (ns)

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

samples

FIGURE 5: caption

When benchmarking RT-systems one should
have to distinct benchmark sets

• RT-RT benchmarks

• RT-non-RT benchmarks

The first set will produce large RT-loads and
then measure a parameter of interest in one of the

threads, the second basically should be running one
RT-task only and vary the non-RT loads. Naturally
one can construct a number of variations of these
setups, but we don’t belive that is too useful, as RT-
benchmarking is only a check for ”can the system
NOT do it” - it will most likely not be possible to
say if the system can definitely do the job - not unless
the exact task-set is known!

7

1.5 User space isolation effects

A further case of isolation is user-space processes
putting a specific load on the non-RT system and
thus preventing Linux from causing jitter in the
RT-subsystem. Even during regurlar benchmarks
one can see that the minimum values of jitter tests
are reduced, indicating that a user-space load that
results in good data/code locality will result in false-
positive evaluation. A ping-flood for instance, will
on a low end platfrom, result in the non-RT side
being permanenntly busy in the ping related code
section in the kernel, and thus the user-space simply
more or less stalls, resulting in a very unrealistic
load profile and thus false results. An extrem case
of isolation can be seen by running a trivial:

int main(){

while(1);

}

resulting in a pure CPU load but absolutely no
memory subsystem or I/O subsystem contention and
thus the RT-subsystem performs much better (both
average and worst case scheduling jitter) during such
a ”high” user-space load.

2 RT-Linux related cache is-
sues

In this section we will introduce the main findings
with respect to RT systems reaction to cache subsys-
tem artefacts. Aside from analyzing the systems and
validating tests with profiling data, we have fed back
the findings into a RTLinux/GPL source tree and
validated that the so optimized system actually per-
forms better. At time of writing this improvement is
in the range of worst case reduction yielding 60% to
65% and we are not sure if we are at the limit yet.
On the other hand we found that the optimization
is only in some parts generic enough to be applied
for all platforms, many of the low level optimizations
are specific to a particular CPU/memory-subsystem
setup mandating per-setup optimizations.

2.1 Quick summary

• BIOS settings related to memory subsystem

– cache disabling is ignored once the kernel
boots (booting is slower)

– memory bus settings are not ignored but
influence Linux

• MTRR issues

– MTRR may be relevant for inactive de-
vices (X86 specific)

– write-through settings can de-stabilize the
systems (not really clear why !)

– MTRR settings in Linux most likely in-
correct (2.4.X kernel)

– fix up of MTRR code improved system re-
sponsiveness substantially

• PCI Bus

– PCI bus settings (MAX LAT,MIN GNT)

– L2-insolation is sufficient to make PCI set-
tings negligible for common devices (there
might be exceptions i.e. HSD,Video-
processing).

• Write combine issues:

– kernel does not use write combined (no
RT-effects)

– user-space RT-may well be impacted by
write combined settings

– most likely disabling them will reduce la-
tency (though impact throughput)

– I/O writes are not buffered in the write
buffer only memory writes are .

• TLB management (flush tlb/flush tlb all/flush tlb one)

– SH4 tlb management instruction (loadtlb)

– ia32 and PPC have very limited (course
grain) TLB management functions only

• Cache management functions

– ia32/PPC de-facto have no cache manage-
ment functions

– some cache related functions appear as
’side-effects’ (MTRR setting)

– P4 clflush assembler instruction (not in
use in 2.4)

– SSE2/MMX/Altivec pre-load instruc-
tions (currently not used in RT-Linux
variants but they are used in the kernel
i.e. memcpy)

– Branch penalty

– cache penalty of branches can be influ-
enced via (likely/unlikely in core mod-
ules)

– GCCs (builtin expect()) cache effects of
instruction ordering can have a negative
impact if incorrectly used.

8

– predictable if - well defined prediction
state (not taken)

• Misc issues

– Arch selection while compiling (basi-
cally turning off optimizations) inefficient
- selectively disable MMX/Altivec and
atomic SIMD instructions

– Compiler (2.95 vs 3.2.2) negligible to ir-
relevant

– Unused devices should not be present in
the system as some devices even if seem-
ingly unused may have degrading effects
(notably USB).

2.2 Critical MM related functions for
RT-systems

There are not very many places in the Linux kernel
where the cache subsystem is directly impacted on
- the actual cache management API is de-facto not
in use on ia32 and PPC. Some issues where side ef-
fects may arise and that would be hard to track down
(and in fact catastrophic if they happen during RT-
operations !).

• change page attr -¿ wbinvl - flushes the entire
cache resulting in potential CPU stalls of hun-
dreds of microseconds.!

• MTRR related functions at runtime

• wbinvl is a serializing instruction - long lock on
SMP possible

• update of MTRR with WRMSR flushes the
TLB

At this point (2.4.X kernels) it is sufficient to
make sure that no MTRR settings are changed dur-
ing RT-operations. The page attr are currently not
updated at runtime (at least we have not found any
such kernel path - but admittedly it is hard to ex-
clude this at present (TODO - verify this))

2.2.1 Cache Management functions in Linux

Most Linux kernel cache manipulation functions are
unfortunately not really an issue.

List of functions from include/asm-i386/pgtable.h

/* Caches aren’t brain-dead on the Intel. */

#define flush_cache_all() do { } while (0)

#define flush_cache_mm(mm) do { } while (0)

#define flush_cache_range(mm, start, end) do { } while (0)

#define flush_cache_page(vma, vmaddr) do { } while (0)

#define flush_page_to_ram(page) do { } while (0)

#define flush_dcache_page(page) do { } while (0)

#define flush_icache_range(start, end) do { } while (0)

#define flush_icache_page(vma,pg) do { } while (0)

#define flush_icache_user_range(vma,pg,adr,len) do { } while (0)

unfortunately they are thus quite brain dead
when it comes to predictability as there are no man-
agement functions available in ia32. PII++ per-
mits selective control of L2 caches including. load-

ing/flushing L2 lines via MSR - though there seems
to be no implementation of this available (at least
not in Linux).

On PPC its a bit better (pgtable.h):

#define flush_cache_all() do { } while (0)

#define flush_cache_mm(mm) do { } while (0)

#define flush_cache_range(mm, a, b) do { } while (0)

#define flush_cache_page(vma, p) do { } while (0)

#define flush_page_to_ram(page) do { } while (0)

The available functions are (implemented in
arch/ppc/kernel/misc.S):

flush_icache_user_range

flush_icache_range

__flush_dcache_icache

flush_dcache_page

flush_icache_page

Unfortunately the implementation is quite

lengthy as there is no simple low level support for
these functions - so the actual advantage is not that
clear. Also on many PPC (notably 8xx) these func-
tions are quite heavily in use due to the CPM copro-
cessor not allowing bus-snooping and thus mandat-
ing quite a few flush operations (bad for RT and RT
on 8xx does not look too good, although we are only
speculating that this is a main issue at this point).

9

2.3 MTRR settings

As of 2.4.22 it looks like the MTRR settings are not
properly set up - actually flipping the MTRR bits on

improved the system performance substantially.

The code sequence used for this on PPro/PII++
is as follows.

pthread_spin_lock (&cr0_lock);

__asm__ __volatile__(\

"movl $0x2FF,%%ecx\n\t" \

"rdmsr\n\t" \

"orl $0x800,%%eax\n\t" /* turn on MTRR again */ \

"wrmsr\n\t" \

"movl %%cr0,%%eax\n\t" \

"andl $0x9fffffff,%%eax\n\t" \

"movl %%eax,%%cr0\n\t" \

"wbinvd\n\t" \

:::"eax","ecx");

pthread_spin_unlock (&cr0_lock);

The fact that this turning on of MTRR im-
proved the performance in a substantial way indi-
cates that the MTRR management in the kernel is
atleast partially incorect - it also should be noted
though that MTRR enabled systems potentially have
a RT-related risk as MTRR manipulation requires
flushing of the entire cache. Therefor MTRR usage
mandates that RT systems set up the MTRR at sys-
tem initialization and don’t modify settings at run-
time. For the test-codes this MTRR setup is done in
the benchmark codes simply as to allow varying con-
figurations without requireing recompilation of the
kernel or rebooting the system.

It also should be noted that the systems with
cache disabled (via MTRR settings) are extremly
slow and thus test-codes must be launched with fre-
quency settings roughly two orders smaller than on
normal systems or the systems will overload and thus
lock up (more than 100

The most notable result of cahce-disable tests
was that the jitter in the system dramatically in-
creases in cache-disabled systems due to the lack
of bus-isolation (L2) and due to the inefficient bus-
mutiplexing (L1 I/D) towards the CPU. Naturally
disabling the cache in the BIOS will NOT due the
trick as Linux, once booted, ignores the BIOS. This
was also validated that the cache enable/disable in
the BIOS is ignored. Note though that this is not
true for timing settings in the BIOS - these due in-
fluence Linux as one would expect !

2.4 Bus-isolation - Unified L2-cache

The L2 caches operate in a speed range of roughly
10-20ns the primary function aside from memory-
speed (cost reduction) issues by allowing large (slow)
RAM to be used with small (fast) cache-ram is to
ensure a proper bus isolation of the CPU’s mem-
ory access (thus DMA will not cause CPU stalls if
data/instructions are available in L2 - which is the
case on 486 that has no L2 yet) This bus-isolation is
the primary functionality of interest in RT-systems
- thus we focused on validation the system in this
respect.

2.4.1 Benchmarking bus-isolation:

The PCI bus has a fairly elaborate management
interface that is fully available in Linux. The
three values of interest to use are MIN GNT (mini-
mum grant) MAX LAT (maximum latency) and LA-
TENCY TIMER.

• Minimum grant (MIN GNT): the time a device
may be expected to lock the buss

• Maximum latency (MAX LAT): maximum
wait time for the device

• Latency timeer (LATENCY TIMER): the la-
tency timer - after expireing the devcie should
release the buss

run 1:

MIN_GNT=1 - lock the buss as short as posible

MAX_LAT=99 - wait as long as posible

LATENCY_TIMER=1 - give the bus back as fast as posible

jitt_stat.o period=25000 bperiod=0 cache_mode=2

run 2:

10

MIN_GNT=99 - lock the buss as long as posible

MAX_LAT=1 - request the bus as fast as opsible

LATENCY_TIMER=99 - delay giving it back as long as posible

jitt_stat.o period=25000 bperiod=0 cache_mode=2

If both runs show the same or similar results on
the idle system then the bus isolation is asumed to be
good. the uncirtenty left though is that some PCI
cards simply don’t care about PCI settings so the
tests may deliver false positive results if the results
are the same - indicating good isolation - if all de-
vices simply ignored the settings (note though that
this would indicate violation of the PCI specifica-
tion!).

The rational behind the idle system and the sin-
gle task is to ensure that a ”clean” system in this
constelation would show no substantial peaks above
a few microseconds - allowsing to see event a low
number of delay events that might occure.

Note that the frequency of the rt-task may not
in it selfe be an overload resulting in false negative
results - a save setting seems to be a single rt-task
running at 10kHz (300MHz Celeron - 2GHz AMD-
XP tested).

PII write buffers (4 write buffres length 4) can
reduce effect of write misses if write instructions that
expect misses are no longer than 4 writes.

2.4.2 Arch notes

Intels are using MCHs that isolate the PCI bus well
from the RAM/memory-bus but in recent (P4) vari-
ants the AGP bus aswell as dedicated devices (i.e.
Gbit Ethernet are being serviced directly from the
MCH - this is most likely problematic (though we
did not verify this as we don’t have any such devices
available at present).

2.5 Memory Bus mutliplexing L1-
cache

L1 cahces operate in the speed range of 1-10ns and
provide three core functions

• isolation against write combine buffer

• permit concurent L2 update and L1 access

• provide memory bus-mutliplexing to the CPU
data/intstructions subunits.

The first function can be influenced by the
MTRR settings in systems supporting MTRR
(PPro/II++), the second function is a ”pure” hard-
ware artefact and not realy of relevance to software
optimization issues. The third is of relevance in so far
as especially the branche prediction unit directly de-
pends on L1/I-cache - systems with larger L1 caches
(AMD 64kB) show a clearly less sensitive behavior
than systems with small L1/I-cahces to branch miss-
prediction (P4-Celeron 12kB,PII 16kB).

The predictable if funciton we have experimented
with targets this L1 I-cache issues as folows.

if(condition){

body;

}

is replaced by:

if(unlikely(!condition){

;

}else{

body;

}

the unlikely negated condition servers the pur-
pose of ensuring that the ”not-taken” branch is the
default and inlined at the current code position gcc
gurartees to put the likely path in the continguous
code sequence and will move the unlikely code to the
end of the current function. The empty if statement
is droped by gcc (-O2) and the conditional jump ad-
dress is set to the instruction following the body (gcc
sometimes inserts a nop).

thus we receive:

.file "if.c"

.section .rodata.str1.1,"aMS",@progbits,1

.LC0:

.string "%d"

.LC1:

.string "1"

.text

.p2align 4,,15

.globl main

.type main,@function

main:

pushl %ebp

11

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

subl $8, %esp :frame setup

leal -4(%ebp), %eax

pushl %eax

pushl $.LC0

call scanf

addl $16, %esp :branch start

cmpl $1, -4(%ebp) :condition

je .L3 :branch on equality

.L2:

movl %ebp, %esp :not taken path (cleanup)

xorl %eax, %eax

popl %ebp

ret

.p2align 4,,15

.L3:

subl $12, %esp :taken path

pushl $.LC1

call puts

addl $16, %esp

jmp .L2 :cleanup

.Lfe1:

.size main,.Lfe1-main

.ident "GCC: (GNU) 3.2.3"

if body is at the end of the current function and
will impact on the performance du to cache misses
(CPU stall while loading the cache lines correspond-
ing to the appended ”body”.

#include <stdio.h>

main(){

int i;

scanf("%d",&i);

if(i==1){

printf("1\n");

}

return 0;

}

2.5.1 GCC Branch related cache control at-
tributes

#define likely(x) __builtin_expect((x),1)

#define unlikely(x) __builtin_expect((x),0)

The above defines correspond to the Linux ker-
nel likely/unlikely macros used in the kernel code
to represent the builtin expect attributes in GCC.
the intention of these macros is to optimize the cache
behavior of branches by reordering the above assem-
bler output as follows:

cmpl $1, -4(%ebp) :condition

jne .L2 :inverted not taken

subl $12, %esp :body

pushl $.LC1

call puts

addl $16, %esp

.L2:

movl %ebp, %esp :cleanup / not taken code

xorl %eax, %eax

popl %ebp

ret

This improves the cache behavior for frequently
taken conditional code. The obvious opposite ”un-
likely” behavior is to deliberately push the code of
the not taken branch to the end of the function , thus
increasing the probability of having code that will be

actually needed in the cache line all ready.

12

2.5.2 Problems with likely/unlikely

GCC’s intention are unfortunately not quite mapped
to the reality of branch prediction algorithms. The
branch prediction unit in the CPUs instruction unit
maintains a BTB (Branch Trace Buffer or Branch
Target Buffer (found both definitions - don’t really
know which one is the authentic one), and this BTB
consists of a address list together with a branch ”his-
tory”

state 0 - guess not taken

if taken state ++

else state = 0

state 1 - guess not taken

if taken state ++

else state --

state 2 - guess taken

if taken state ++

else state --

state 3 - guess taken

if taken state ++

else state = 3

Thus the optimization introduced by GCC fails
in two cases:

• The branch is new to the BTB - thus guessed
not taken and the cache line corresponding to
the not taken code is requested any way.

• The branch is known in the BTB but is not yet
in state 2++

The second condition can be seen as a ”startup”
problem and is not really an issue - the first condi-
tion is the problem that needs to be addressed - it
will be encountered if:

• the branch was really not yet taken (startup)

• the branch was kicked out of the BTB due to
too many branches being processed before re-
visiting the branch address.

The second case is quite common on larger sys-
tems and even on embedded systems it will happen
as the kernel paths them selves will easily fill the cur-
rently typical BTBs of 1k/2k. The consequence of a
branch miss-prediction is a CPU stall - if the code
is not already in L1 cache. In case the instruction
must be fetched from main memory the stall can be
substantially - note that typical main memory has
latency in the range of 100-200ns and with L2 cache
line sizes of 32/64bytes that must be loaded (even if
instruction bypassing is available and the stall would
hit the second instruction not the first) the stall will
easily amount to microsecond order jitter.

The immediate impact on benchmarking here is
that for RT-systems this problem DOES NOT occurs

with high-frequency tasks as these may well never
fall out of the BTB, but impacts on low-frequency
tasks. It also should be noted that very tight loops
(i.e. spinn-locks) don’t use the BTB at all but use
the instruction pool to reference the last taken value
- thus for very high frequency conditional code (any-
thing hat will fit into the pipeline) no BTB related
effects will be found.

To allow a clean benchmarking of BTB related
effects we have ”designed” brute force BTB flushers
as follows:

/* unlikely false 2048 */

#define likely(x) __builtin_expect((x),1)

#define unlikely(x) __builtin_expect((x),0)

main(){

int i;

long long loop = 0xFFFFFFFFFFFFFFFFLL;

int j,k,l,m,n,o,p,q;

j=k=l=m=n=o=p=q=0;

while(loop--){

for(i=0;i<7;i++){

if(unlikely(i!=0)){j++;} /* 1 */

if(unlikely(i!=1)){k++;} /* 2 */

if(unlikely(i!=2)){l++;} /* 3 */

....

if(unlikely(i!=1)){q++;} /* 2048 */

}

}

printf("%d,%d,%d,%d,%d,%d,%d,%d\n",

j,k,l,m,n,o,p,q);

return 0;

}

With variations for likely (false/true) and un-
likely (false/true) the code actually must be 2048 (or
how many ever) lines of ifs ! - the 8 variables used
were chosen to ensure that gcc can’t assign registers
to all variables - thus falsely improving D-cache char-
acteristics - and the concluding printf is needed to
prevent GCC from optimizing the entire code away
as it would detect that the variables are not used and
thus don’t need processing.

With this code prototype tests were run with
32,64,128....8192 branches of varying type and
scheduling jitter was measured (see BTB 3d plot).
The results show that a miss-predicted if(likely()) is
fairly uncritical as the code will occupy a cache line
but other than that there is little impact if the falsely
marked body of the if is not very large (in which the
cache miss-loads due impact on the system). in the
case of incorrect unlikely the effect is more dramatic
(even for a very short body!) as the body will be
moved to the end of the function and thus very bad
code-locality (spatial and temporal) is introduced.

13

2.6 TLB Management

The TLB (Translation lookaside Buffer) is the cache
for the MMUs translation of virtual to physical ad-
dresses. In most (all?) current CPUs the MMU is
integrated in the CPU. TLB misses will cause CPU-
stalls, due to the small size of the TLB (32pages) the
likely hood of such stalls is fairly large - notably due
to the low code-locality of the Linux kernel - to exag-
gerate a bit - the interrupt path through the Linux
kernel with a interrupt code from a runtime loaded
module will come very close to a TLB flush (a quick
ksyms -a will reveal the low code locality !). Therefor
a prime conclusion for a RT-system is that statically
linking ALL kernel modules at compile time that are
providing hardware management is preferable - most
likely this can be extended to non hardware related
modules as well (FS,etc. - but not checked yet). It
should also be noted that TLB issues impact on slow
running RT-tasks more than on high frequency tasks,
as the probability of the TLB entry for the RT-task

to be flushed in a low frequency task is very high
(although on a mildly loaded system this is only of
statistic relevance - the worst case will not be much
influenced).

As X86 provides no explicit TLB load-
ing/flushing assembler instructions (note that it
should be possible to load TLB entries via MTRR
and the i386 (!) had the ability to load/read TLB en-
tries via the debug registers) only a indirect method
of invalidating specific TLB entries (invlpg) or the
entire TLB via cr3/cr4 is available.

This limited possibility of manipulating the TLB
never the less allows to optimize the system as free
TLBs allow quicker loading of new entries than is
required if a TLB entry must be flushed first. This
to us was a bit surprising and we have not found
sufficiently detailed docs on the TLB/MMU man-
agement states to explain these effects in detail. The
summary of our experimental findings is as follows:

All systems with 32 page TLB:

L1 64K+64K

L2 64K unified -> 1 x invlpg im sched

+ 1 x invlpg in interrupt entry = lowest latency

L1 64K+64K

L2 256 unified -> 2 x invlpg im sched

+ flush_tlb() interrupt entry = lowest latency

L1 16K+16K

L2 512K unified -> 4-5 x invlpg im sched

+ conditional flush_tlb im sched

+ flush_tlb_all() interrupt entry = lowest latency

+ additional invlpg flush-points in core rpt-routines

(clock_nanosleep etc.)

The key issue here seems to be that the larger the
cache is the more sensitive the system reacts to TLB
misses - it is quite irrespective of I or D TLB misses
(at least we were not able to measure a relevant im-
pact on increasing D-TLB load - I-TLB load seems
to be ”sufficiently” high in Linux any way so our I-
cache flusher was not able to really push the I-TLB
misses up (need to redesign it - not done yet)).

2.6.1 PII speculations on TLBs

plot 9 shows a closes 1/X behavior indicating that
the TLB related effects are close to eliminated and
that the remaining artifacts are truly related to cache
misses (see HPCA)

3 Test codes

Aside from the BTB flush code noted above that was
implemented for 32-8192 branches (likely(true/false)

unlikely(true/false)) we also implemented a dcache
sweeper, and a icache sweep. Both basically do noth-
ing else but aggressively step through a large memory
area with variable stride to show cache influence

Not too surprising a stride 1byte larger than the
cache line size impacted on the system heavily, stride
1 was not dramatic (as could be expected). The
sweeper was the application that profited most from
the TLB flush points - that is the RT-subsystem im-
proved (reduced) scheduling jitter significantly by
introducing TLB flush points in RT-entry paths
(scheduler and interrupt-interception - both in
RTAI/RTHAL and RTLinux/GPL - it can though
be expected that this works fine for RTLinux/Pro
and for ADEOS as in all four hard RT implemen-
tation the identical low level mechanisms are used
(RTAI == RTLinux-1.X, ADEOS == RTLinux-2.X,
RTLinux/Pro == RTLinux-3.X)(pleas no flames for
this - but the core interrupt emulation in ADEOS
really is very very similar to RTLinux-2.X, although

14

it should be noted that a very large amount of work
was done to utilize this interface in a much more
elaborate manner and ADEOS also introduced ad-
ditional features that were not present in any of the
RTLinux variants.)

Note on static code - statically linked code ex-
hibits a very bad code locality (spatial locality) and
due to the lack of shared objects also shows lower
temporal code locality - thus statically linked ex-
ecutables should be considered deprecated for RT-
systems. Naturally the impact of statically linked
code on the RT-subsystem could also be improved
by flush-points.

3.0.2 sweep.c

data cache / data-TLB sweeper
allocate a large memory chunk and step through

it in a non-cache line aligned manner - never reusing
data. the core simply is:

while(1){

for(i=0;i<array_size-stride;i+=stride){

array[i] = i+array[array_size-i];

}

}

3.0.3 icache sweep.c

icache sweep via array of functions that is stepped
through in a non-linear fashion to maximize instruc-

tion cache/TLB misses. the icache flushers showed
little impact (less than large statically linked apps).
The icache sweeper is similar to the d-cache sweeper
simply using an array of unique functions. The core
code again is:

while(1){

for(i=0;i<NUM_FUNC;i++){

functions[i]();

functions[NUM_FUNC-i-1]();

}

}

3.0.4 btb*NUM.c

Branch trace buffer flusher - by selecting a very large
value of if statements being processed in an endless
loop the BTB de-facto is trashed completely. This
code shows a very constant behavior up to the size of
the BTB and then a system performance breakdown.
The core code is listed above (see section on branch
traces). One of the paradox results is that code try-
ing to optimize BTB issues by utilizing likely and
unlikely macros will backfire if the BTB ever is ex-
hausted, tests with code to delibarately exhaust the
BTB, show that one can not improve worst case ex-
ecution time with the help of gcc’s builtin expect.

 0
 20

 40
 60

 80
 100

 0 5000 10000 15000 20000

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

samples
sched jitter, btb exhaustion , rtl using likely/unlikely

"one_task"

task frequency in kHz

scheduling jitter (ns)

samples

FIGURE 6: caption

15

 0
 20

 40
 60

 80
 100

 0 5000 10000 15000 20000

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

samples
sched jitter, btb exhaustion, rtl without likely/unlikely used

"one_task"

task frequencz in kHz

scheduling jitter (ns)

samples

FIGURE 7: caption

4 Code optimization strategies

derived from the above

The BTB and TLB related optimizations were al-
ready noted above, but beyond these some other
strategies come into mind.

• inlineing of code

• explicit ordering

• conditional expressions

• local variables

4.0.5 Inlineing of code

Naturally inlineing of code (either explicitly with the
inline directive or via the -finline-functions gcc

option to let gcc do it on its own) CAN improve
performance - but unfortunately inlineing too much
code will degrade performance - notably inlineing
code that is rarely executed will trash intermedi-
ate cache lines and thus cause a high MM load that
is counter productive (basically this is what GCCs
likely/unlikely is all about - it tries to ”inline” the
body of conditional code properly).

For RT-systems the issue becomes more com-
plex - in RT-systems rarely executed but time critical
code may be better off in inline - though one must be
aware of such measures being expensive with respect
to impacting on non-RT (Linux) performance. As an
example the interrupt interception generally is pro-
cessing more non-RT interrupts than RT-interrupts

- never the less inlineing the code for processing the
RT-case will improve the RT-systems responsiveness.

When inlineing code there are three methods
available (gcc-based tool-chain):

• -finline-functions to let the compiler do it

• in source:

inline int

inc (int *a)

{

(*a)++;

}

• header files:

__inline__

Our recommendation would be to let gcc do it
at the first shot and then inspect the code generated
as well as benchmark the performance before going
into the lengthy process of manually inlineing. The
rational behind this recommendation is two fold:

• manually inlineing can be painfully slow to do,
and would need to be re-done on code changes
- so if done at all, not before code really stabi-
lized sufficiently !

16

• letting the compiler do it will most likely not
yield the best possible output but can be done
easily.

If GCCs inlineing shows significant changes of
worst case performance then it most likely pays of
to investigate in detail what can be inclined, and a
manual cleanup could be considered.

4.0.6 explicit ordering

Locality of code has a big impact on the TLB -
pulling all relevant code together will reduce the like-
lihood of TLB misses - TLBs are operating on pages
- thus to improve tlb-miss-rates PAGE SIZE aligned
functions and function sequences are preferred. With
respect to data items this means that traversing large
data structures in PAGE SIZE alignment will help
- as a practical example, we reordered the RTLinux
task-list to be ordered by priorities - thus the highest
priority task can be located with a high probability
of causing no D-TLB miss once the task-list it self
was loaded , the impact of this explicit reordering is
in the range of a few hundred nanoseconds to one
microsecond on a 2GH AMD!

4.0.7 conditional expression

Simple rule - don’t do:

if(condition)

var = val;

cmpl $1, -4(%ebp) :condition

je .L3 :branch

.L2:

movl %ebp, %esp

xorl %eax, %eax

popl %ebp

ret

.p2align 4,,15

.L3:

movl $2, -4(%ebp) :assignment

jmp .L2

use:

var = codition ? var : val ;

popl %eax

setne %al

andl $255, %eax

decl %eax

andl $-33554, %eax

popl %edx

addl $33555, %eax

pushl %eax

pushl $.LC1

movl %eax, -4(%ebp)

call printf

movl %ebp, %esp

xorl %eax, %eax

popl %ebp

instead - it will not require a jump instruction
and also many platforms provide conditional load
instructions (i.e. cmov on most X86). Unfortu-
nately this rule might be strictly claimed for the
simple case of conditionally setting a variable but
for slightly more complex statements it is not gener-
ally predictable if the conditional (jmp based) execu-
tion path is less optimal than a conditional expres-
sion equivalent - in cases where this is in time crit-
ical code, inspection of the isolated assembler code
should be done.

4.0.8 local variables

Not in all cases but in some - usage of local variables
will improve system RT-performance, basically this
is primarily a TLB/cache effect as the local variables
are most likely to be within the same page address.
So simply reducing the global variable stacked at the
top of an application helps. We have not yet writ-
ten and benchmark code to quantify the effect or
to give a more explicit recommendation on scope is-
sues (TODO). It also should be noted that due to
gcc assigning local variables to registers before the
coresponding assignment of global variables, local
variables that end up as registers obviously have no
cache/TLB side effects.

5 Conclusions

This section is notoriously incomplete - it will be
updated along the path of finding and is focused on
giving practically applicable information and not too
theoretical ”hints”.

5.1 Data/Code locality

Analysis of user-space should focus on cache/tlb ef-
fects -¿ gprof,gcov and related tools.

Data locality should be a prime issue when de-
signing and must be known for benchmarking as it
is a critical parameter.

5.2 Interrupts

Interrupt scheduling is suboptimal in RTAI and in
RTLinux (both GPL and Pro) as interrupts may in-
terrupt interrupts - furthermore there is no interrupt
priority available - thus application priority design
into the interrupt service is not really possible.

The only way out at this point is signals. All cur-
rently available flavors of hard real-time Linux lack
this capability and will need changes in this respect.

17

